Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Efficient Index-Based Audio Matching

Identifieur interne : 000011 ( PascalFrancis/Corpus ); précédent : 000010; suivant : 000012

Efficient Index-Based Audio Matching

Auteurs : Frank Kurth ; Meinard Müller

Source :

RBID : Pascal:08-0185407

Descripteurs français

English descriptors

Abstract

Given a large audio database of music recordings, the goal of classical audio identification is to identify a particular audio recording by means of a short audio fragment. Even though recent identification algorithms show a significant degree of robustness towards noise, MP3 compression artifacts, and uniform temporal distortions, the notion of similarity is rather close to the identity. In this paper, we address a higher level retrieval problem, which we refer to as audio matching: given a short query audio clip, the goal is to automatically retrieve all excerpts from all recordings within the database that musically correspond to the query. In our matching scenario, opposed to classical audio identification, we allow semantically motivated variations as they typically occur in different Interpretations of a piece of music. To this end, this paper presents an efficient and robust audio matching procedure that works even in the presence of significant variations, such as nonlinear temporal, dynamical, and spectral deviations, where existing algorithms for audio identification would fail. Furthermore, the combination of various deformation- and fault-tolerance mechanisms allows us to employ standard indexing techniques to obtain an efficient, index-based matching procedure, thus providing an important step towards semantically searching large-scale real-world music collections.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  2    @0 1558-7916
A05       @2 16
A06       @2 2
A08 01  1  ENG  @1 Efficient Index-Based Audio Matching
A09 01  1  FRE  @1 Music Information Retrieval
A11 01  1    @1 KURTH (Frank)
A11 02  1    @1 MÜLLER (Meinard)
A12 01  1    @1 SLANEY (Malcolm) @9 ed.
A12 02  1    @1 ELLIS (Daniel P. W.) @9 ed.
A12 03  1    @1 SANDLER (Mark) @9 ed.
A12 04  1    @1 GOTO (Masataka) @9 ed.
A12 05  1    @1 GOODWIN (Michael M.) @9 ed.
A14 01      @1 Research Institute for Communication, Information Processing and Ergonomics (FKIE), Research Establishment for Applied Scenice (FGAN) @2 53343 Wachtberg @3 DEU @Z 1 aut.
A14 02      @1 Max-Planck Institut für Informatik, Department D4-Computer Graphics @2 66123 Saarbrücken @3 DEU @Z 2 aut.
A15 01      @1 Yahoo! Research Labs and Stanford University CCRMA @2 Santa Clara, CA 95054 @3 USA @Z 1 aut.
A15 02      @1 Columbia University @2 New York, NY 10027-6902 @3 USA @Z 2 aut.
A15 03      @1 Queen Mary, University of London @2 London, E1 4NS @3 GBR @Z 3 aut.
A15 04      @1 National Institute of Advanced Industrial Science and Technology (AIST) @2 Tsukuba, 305-8568 @3 JPN @Z 4 aut.
A15 05      @1 Creative Advanced Technology Center @2 Scotts Valley, CA 95066 @3 USA @Z 5 aut.
A20       @1 382-395
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 26266 @5 354000183429570120
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 38 ref.
A47 01  1    @0 08-0185407
A60       @1 P
A61       @0 A
A64 01  2    @0 IEEE transactions on audio, speech and language processing
A66 01      @0 USA
C01 01    ENG  @0 Given a large audio database of music recordings, the goal of classical audio identification is to identify a particular audio recording by means of a short audio fragment. Even though recent identification algorithms show a significant degree of robustness towards noise, MP3 compression artifacts, and uniform temporal distortions, the notion of similarity is rather close to the identity. In this paper, we address a higher level retrieval problem, which we refer to as audio matching: given a short query audio clip, the goal is to automatically retrieve all excerpts from all recordings within the database that musically correspond to the query. In our matching scenario, opposed to classical audio identification, we allow semantically motivated variations as they typically occur in different Interpretations of a piece of music. To this end, this paper presents an efficient and robust audio matching procedure that works even in the presence of significant variations, such as nonlinear temporal, dynamical, and spectral deviations, where existing algorithms for audio identification would fail. Furthermore, the combination of various deformation- and fault-tolerance mechanisms allows us to employ standard indexing techniques to obtain an efficient, index-based matching procedure, thus providing an important step towards semantically searching large-scale real-world music collections.
C02 01  X    @0 001D04A04A2
C02 02  X    @0 001D04A05D
C03 01  3  FRE  @0 Base de données audio @5 01
C03 01  3  ENG  @0 Audio databases @5 01
C03 02  X  FRE  @0 Document musical @5 02
C03 02  X  ENG  @0 Musical score @5 02
C03 02  X  SPA  @0 Documento musical @5 02
C03 03  X  FRE  @0 Enregistrement son @5 03
C03 03  X  ENG  @0 Sound recording @5 03
C03 03  X  SPA  @0 Registro sonido @5 03
C03 04  X  FRE  @0 Identification système @5 04
C03 04  X  ENG  @0 System identification @5 04
C03 04  X  SPA  @0 Identificación sistema @5 04
C03 05  X  FRE  @0 Immunité bruit @5 05
C03 05  X  ENG  @0 Noise immunity @5 05
C03 05  X  SPA  @0 Inmunidad ruido @5 05
C03 06  3  FRE  @0 Traitement signal audio @5 06
C03 06  3  ENG  @0 Audio signal processing @5 06
C03 07  X  FRE  @0 Compression signal @5 07
C03 07  X  ENG  @0 Signal compression @5 07
C03 07  X  SPA  @0 Compresión señal @5 07
C03 08  X  FRE  @0 Artefact @5 08
C03 08  X  ENG  @0 Artefact @5 08
C03 08  X  SPA  @0 Artefacto @5 08
C03 09  X  FRE  @0 Similitude @5 09
C03 09  X  ENG  @0 Similarity @5 09
C03 09  X  SPA  @0 Similitud @5 09
C03 10  X  FRE  @0 Requête @5 10
C03 10  X  ENG  @0 Query @5 10
C03 10  X  SPA  @0 Pregunta documental @5 10
C03 11  X  FRE  @0 Présentation de la ligne apellante @5 11
C03 11  X  ENG  @0 Calling line identification presentation @5 11
C03 11  X  SPA  @0 Identificación de llamada entrante @5 11
C03 12  X  FRE  @0 Base de données @5 12
C03 12  X  ENG  @0 Database @5 12
C03 12  X  SPA  @0 Base dato @5 12
C03 13  X  FRE  @0 Analyse sémantique @5 13
C03 13  X  ENG  @0 Semantic analysis @5 13
C03 13  X  SPA  @0 Análisis semántico @5 13
C03 14  X  FRE  @0 Algorithme @5 14
C03 14  X  ENG  @0 Algorithm @5 14
C03 14  X  SPA  @0 Algoritmo @5 14
C03 15  X  FRE  @0 Tolérance faute @5 15
C03 15  X  ENG  @0 Fault tolerance @5 15
C03 15  X  SPA  @0 Tolerancia falta @5 15
C03 16  X  FRE  @0 Indexation @5 16
C03 16  X  ENG  @0 Indexing @5 16
C03 16  X  SPA  @0 Indización @5 16
C03 17  3  FRE  @0 Traitement signal acoustique @5 31
C03 17  3  ENG  @0 Acoustic signal processing @5 31
C03 18  X  FRE  @0 Présentation ligne appelante @4 CD @5 96
C03 18  X  ENG  @0 Calling line identification presentation @4 CD @5 96
N21       @1 119
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 08-0185407 INIST
FT : Music Information Retrieval
ET : Efficient Index-Based Audio Matching
AU : KURTH (Frank); MÜLLER (Meinard); SLANEY (Malcolm); ELLIS (Daniel P. W.); SANDLER (Mark); GOTO (Masataka); GOODWIN (Michael M.)
AF : Research Institute for Communication, Information Processing and Ergonomics (FKIE), Research Establishment for Applied Scenice (FGAN)/53343 Wachtberg/Allemagne (1 aut.); Max-Planck Institut für Informatik, Department D4-Computer Graphics/66123 Saarbrücken/Allemagne (2 aut.); Yahoo! Research Labs and Stanford University CCRMA/Santa Clara, CA 95054/Etats-Unis (1 aut.); Columbia University/New York, NY 10027-6902/Etats-Unis (2 aut.); Queen Mary, University of London/London, E1 4NS/Royaume-Uni (3 aut.); National Institute of Advanced Industrial Science and Technology (AIST)/Tsukuba, 305-8568/Japon (4 aut.); Creative Advanced Technology Center/Scotts Valley, CA 95066/Etats-Unis (5 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on audio, speech and language processing; ISSN 1558-7916; Etats-Unis; Da. 2008; Vol. 16; No. 2; Pp. 382-395; Bibl. 38 ref.
LA : Anglais
EA : Given a large audio database of music recordings, the goal of classical audio identification is to identify a particular audio recording by means of a short audio fragment. Even though recent identification algorithms show a significant degree of robustness towards noise, MP3 compression artifacts, and uniform temporal distortions, the notion of similarity is rather close to the identity. In this paper, we address a higher level retrieval problem, which we refer to as audio matching: given a short query audio clip, the goal is to automatically retrieve all excerpts from all recordings within the database that musically correspond to the query. In our matching scenario, opposed to classical audio identification, we allow semantically motivated variations as they typically occur in different Interpretations of a piece of music. To this end, this paper presents an efficient and robust audio matching procedure that works even in the presence of significant variations, such as nonlinear temporal, dynamical, and spectral deviations, where existing algorithms for audio identification would fail. Furthermore, the combination of various deformation- and fault-tolerance mechanisms allows us to employ standard indexing techniques to obtain an efficient, index-based matching procedure, thus providing an important step towards semantically searching large-scale real-world music collections.
CC : 001D04A04A2; 001D04A05D
FD : Base de données audio; Document musical; Enregistrement son; Identification système; Immunité bruit; Traitement signal audio; Compression signal; Artefact; Similitude; Requête; Présentation de la ligne apellante; Base de données; Analyse sémantique; Algorithme; Tolérance faute; Indexation; Traitement signal acoustique; Présentation ligne appelante
ED : Audio databases; Musical score; Sound recording; System identification; Noise immunity; Audio signal processing; Signal compression; Artefact; Similarity; Query; Calling line identification presentation; Database; Semantic analysis; Algorithm; Fault tolerance; Indexing; Acoustic signal processing; Calling line identification presentation
SD : Documento musical; Registro sonido; Identificación sistema; Inmunidad ruido; Compresión señal; Artefacto; Similitud; Pregunta documental; Identificación de llamada entrante; Base dato; Análisis semántico; Algoritmo; Tolerancia falta; Indización
LO : INIST-26266.354000183429570120
ID : 08-0185407

Links to Exploration step

Pascal:08-0185407

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Efficient Index-Based Audio Matching</title>
<author>
<name sortKey="Kurth, Frank" sort="Kurth, Frank" uniqKey="Kurth F" first="Frank" last="Kurth">Frank Kurth</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research Institute for Communication, Information Processing and Ergonomics (FKIE), Research Establishment for Applied Scenice (FGAN)</s1>
<s2>53343 Wachtberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Muller, Meinard" sort="Muller, Meinard" uniqKey="Muller M" first="Meinard" last="Müller">Meinard Müller</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Planck Institut für Informatik, Department D4-Computer Graphics</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0185407</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0185407 INIST</idno>
<idno type="RBID">Pascal:08-0185407</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Efficient Index-Based Audio Matching</title>
<author>
<name sortKey="Kurth, Frank" sort="Kurth, Frank" uniqKey="Kurth F" first="Frank" last="Kurth">Frank Kurth</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Research Institute for Communication, Information Processing and Ergonomics (FKIE), Research Establishment for Applied Scenice (FGAN)</s1>
<s2>53343 Wachtberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Muller, Meinard" sort="Muller, Meinard" uniqKey="Muller M" first="Meinard" last="Müller">Meinard Müller</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Planck Institut für Informatik, Department D4-Computer Graphics</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on audio, speech and language processing</title>
<idno type="ISSN">1558-7916</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on audio, speech and language processing</title>
<idno type="ISSN">1558-7916</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustic signal processing</term>
<term>Algorithm</term>
<term>Artefact</term>
<term>Audio databases</term>
<term>Audio signal processing</term>
<term>Calling line identification presentation</term>
<term>Database</term>
<term>Fault tolerance</term>
<term>Indexing</term>
<term>Musical score</term>
<term>Noise immunity</term>
<term>Query</term>
<term>Semantic analysis</term>
<term>Signal compression</term>
<term>Similarity</term>
<term>Sound recording</term>
<term>System identification</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Base de données audio</term>
<term>Document musical</term>
<term>Enregistrement son</term>
<term>Identification système</term>
<term>Immunité bruit</term>
<term>Traitement signal audio</term>
<term>Compression signal</term>
<term>Artefact</term>
<term>Similitude</term>
<term>Requête</term>
<term>Présentation de la ligne apellante</term>
<term>Base de données</term>
<term>Analyse sémantique</term>
<term>Algorithme</term>
<term>Tolérance faute</term>
<term>Indexation</term>
<term>Traitement signal acoustique</term>
<term>Présentation ligne appelante</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Given a large audio database of music recordings, the goal of classical audio identification is to identify a particular audio recording by means of a short audio fragment. Even though recent identification algorithms show a significant degree of robustness towards noise, MP3 compression artifacts, and uniform temporal distortions, the notion of similarity is rather close to the identity. In this paper, we address a higher level retrieval problem, which we refer to as audio matching: given a short query audio clip, the goal is to automatically retrieve all excerpts from all recordings within the database that musically correspond to the query. In our matching scenario, opposed to classical audio identification, we allow semantically motivated variations as they typically occur in different Interpretations of a piece of music. To this end, this paper presents an efficient and robust audio matching procedure that works even in the presence of significant variations, such as nonlinear temporal, dynamical, and spectral deviations, where existing algorithms for audio identification would fail. Furthermore, the combination of various deformation- and fault-tolerance mechanisms allows us to employ standard indexing techniques to obtain an efficient, index-based matching procedure, thus providing an important step towards semantically searching large-scale real-world music collections.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="2">
<s0>1558-7916</s0>
</fA01>
<fA05>
<s2>16</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Efficient Index-Based Audio Matching</s1>
</fA08>
<fA09 i1="01" i2="1" l="FRE">
<s1>Music Information Retrieval</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KURTH (Frank)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MÜLLER (Meinard)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SLANEY (Malcolm)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>ELLIS (Daniel P. W.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SANDLER (Mark)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>GOTO (Masataka)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>GOODWIN (Michael M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Research Institute for Communication, Information Processing and Ergonomics (FKIE), Research Establishment for Applied Scenice (FGAN)</s1>
<s2>53343 Wachtberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Max-Planck Institut für Informatik, Department D4-Computer Graphics</s1>
<s2>66123 Saarbrücken</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Yahoo! Research Labs and Stanford University CCRMA</s1>
<s2>Santa Clara, CA 95054</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Columbia University</s1>
<s2>New York, NY 10027-6902</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Queen Mary, University of London</s1>
<s2>London, E1 4NS</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="04">
<s1>National Institute of Advanced Industrial Science and Technology (AIST)</s1>
<s2>Tsukuba, 305-8568</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA15 i1="05">
<s1>Creative Advanced Technology Center</s1>
<s2>Scotts Valley, CA 95066</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA15>
<fA20>
<s1>382-395</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26266</s2>
<s5>354000183429570120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0185407</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="2">
<s0>IEEE transactions on audio, speech and language processing</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Given a large audio database of music recordings, the goal of classical audio identification is to identify a particular audio recording by means of a short audio fragment. Even though recent identification algorithms show a significant degree of robustness towards noise, MP3 compression artifacts, and uniform temporal distortions, the notion of similarity is rather close to the identity. In this paper, we address a higher level retrieval problem, which we refer to as audio matching: given a short query audio clip, the goal is to automatically retrieve all excerpts from all recordings within the database that musically correspond to the query. In our matching scenario, opposed to classical audio identification, we allow semantically motivated variations as they typically occur in different Interpretations of a piece of music. To this end, this paper presents an efficient and robust audio matching procedure that works even in the presence of significant variations, such as nonlinear temporal, dynamical, and spectral deviations, where existing algorithms for audio identification would fail. Furthermore, the combination of various deformation- and fault-tolerance mechanisms allows us to employ standard indexing techniques to obtain an efficient, index-based matching procedure, thus providing an important step towards semantically searching large-scale real-world music collections.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D04A04A2</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D04A05D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Base de données audio</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Audio databases</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Document musical</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Musical score</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Documento musical</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Enregistrement son</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Sound recording</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Registro sonido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Identification système</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>System identification</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Identificación sistema</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Immunité bruit</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Noise immunity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Inmunidad ruido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Traitement signal audio</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Audio signal processing</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Compression signal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Signal compression</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Compresión señal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Artefact</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Artefact</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Artefacto</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Similitude</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Similarity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Similitud</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Requête</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Query</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Pregunta documental</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Présentation de la ligne apellante</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Calling line identification presentation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Identificación de llamada entrante</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Base de données</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Database</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Base dato</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Analyse sémantique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Semantic analysis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Análisis semántico</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Algorithme</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Algorithm</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Algoritmo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Tolérance faute</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Fault tolerance</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Tolerancia falta</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Indexation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indexing</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indización</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Traitement signal acoustique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Acoustic signal processing</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Présentation ligne appelante</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Calling line identification presentation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>119</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 08-0185407 INIST</NO>
<FT>Music Information Retrieval</FT>
<ET>Efficient Index-Based Audio Matching</ET>
<AU>KURTH (Frank); MÜLLER (Meinard); SLANEY (Malcolm); ELLIS (Daniel P. W.); SANDLER (Mark); GOTO (Masataka); GOODWIN (Michael M.)</AU>
<AF>Research Institute for Communication, Information Processing and Ergonomics (FKIE), Research Establishment for Applied Scenice (FGAN)/53343 Wachtberg/Allemagne (1 aut.); Max-Planck Institut für Informatik, Department D4-Computer Graphics/66123 Saarbrücken/Allemagne (2 aut.); Yahoo! Research Labs and Stanford University CCRMA/Santa Clara, CA 95054/Etats-Unis (1 aut.); Columbia University/New York, NY 10027-6902/Etats-Unis (2 aut.); Queen Mary, University of London/London, E1 4NS/Royaume-Uni (3 aut.); National Institute of Advanced Industrial Science and Technology (AIST)/Tsukuba, 305-8568/Japon (4 aut.); Creative Advanced Technology Center/Scotts Valley, CA 95066/Etats-Unis (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on audio, speech and language processing; ISSN 1558-7916; Etats-Unis; Da. 2008; Vol. 16; No. 2; Pp. 382-395; Bibl. 38 ref.</SO>
<LA>Anglais</LA>
<EA>Given a large audio database of music recordings, the goal of classical audio identification is to identify a particular audio recording by means of a short audio fragment. Even though recent identification algorithms show a significant degree of robustness towards noise, MP3 compression artifacts, and uniform temporal distortions, the notion of similarity is rather close to the identity. In this paper, we address a higher level retrieval problem, which we refer to as audio matching: given a short query audio clip, the goal is to automatically retrieve all excerpts from all recordings within the database that musically correspond to the query. In our matching scenario, opposed to classical audio identification, we allow semantically motivated variations as they typically occur in different Interpretations of a piece of music. To this end, this paper presents an efficient and robust audio matching procedure that works even in the presence of significant variations, such as nonlinear temporal, dynamical, and spectral deviations, where existing algorithms for audio identification would fail. Furthermore, the combination of various deformation- and fault-tolerance mechanisms allows us to employ standard indexing techniques to obtain an efficient, index-based matching procedure, thus providing an important step towards semantically searching large-scale real-world music collections.</EA>
<CC>001D04A04A2; 001D04A05D</CC>
<FD>Base de données audio; Document musical; Enregistrement son; Identification système; Immunité bruit; Traitement signal audio; Compression signal; Artefact; Similitude; Requête; Présentation de la ligne apellante; Base de données; Analyse sémantique; Algorithme; Tolérance faute; Indexation; Traitement signal acoustique; Présentation ligne appelante</FD>
<ED>Audio databases; Musical score; Sound recording; System identification; Noise immunity; Audio signal processing; Signal compression; Artefact; Similarity; Query; Calling line identification presentation; Database; Semantic analysis; Algorithm; Fault tolerance; Indexing; Acoustic signal processing; Calling line identification presentation</ED>
<SD>Documento musical; Registro sonido; Identificación sistema; Inmunidad ruido; Compresión señal; Artefacto; Similitud; Pregunta documental; Identificación de llamada entrante; Base dato; Análisis semántico; Algoritmo; Tolerancia falta; Indización</SD>
<LO>INIST-26266.354000183429570120</LO>
<ID>08-0185407</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000011 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000011 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0185407
   |texte=   Efficient Index-Based Audio Matching
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024