Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective

Identifieur interne : 000D77 ( Main/Exploration ); précédent : 000D76; suivant : 000D78

The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective

Auteurs : C. Koretsky [États-Unis]

Source :

RBID : ISTEX:AB2716027F52584BF860AA9B8ADAA6E7AD936A19

Descripteurs français

English descriptors

Abstract

Complexation reactions at the mineral–water interface affect the transport and transformation of metals and organic contaminants, nutrient availability in soils, formation of ore deposits, acidification of watersheds and the global cycling of elements. Such reactions can be understood by quantifying speciation reactions in homogeneous aqueous solutions, characterizing reactive sites at mineral surfaces and developing models of the interactions between aqueous species at solid surfaces. In this paper, the application of thermodynamic principles to quantify aqueous complexation reactions is described. This is followed by a brief overview of a few of the methods that have been used to characterize reactive sites on mineral surfaces. Next, the application of empirical and semi-empirical models of adsorption at the mineral–water interface, including distribution coefficients, simple ion exchange models, and Langmuir and Freundlich isotherms is discussed. Emphasis is placed on the limitations of such models in providing an adequate representation of adsorption in hydrological systems. These limitations arise because isotherms do not account for the structure of adsorbed species, nor do they account for the development of surface charge with adsorption. This is contrasted with more sophisticated models of adsorption, termed ‘surface complexation models’, which include the constant capacitance model, the diffuse layer model, the triple layer model and the MUSIC model. In these models, speciation reactions between surface functional groups and dissolved species control the variable surface charge build-up and the specific adsorption properties of minerals in aqueous solutions. Next, the influence of mineral surface speciation on the reactivity of adsorbed species and on far from equilibrium dissolution rates of minerals is discussed. Finally, the applicability of microscopic models of surface complexation to field-scale systems is explored and the need to integrate sophisticated surface chemical and hydrological modeling approaches is stressed.

Url:
DOI: 10.1016/S0022-1694(00)00215-8


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective</title>
<author>
<name sortKey="Koretsky, C" sort="Koretsky, C" uniqKey="Koretsky C" first="C" last="Koretsky">C. Koretsky</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AB2716027F52584BF860AA9B8ADAA6E7AD936A19</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0022-1694(00)00215-8</idno>
<idno type="url">https://api.istex.fr/document/AB2716027F52584BF860AA9B8ADAA6E7AD936A19/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001187</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001187</idno>
<idno type="wicri:Area/Istex/Curation">001101</idno>
<idno type="wicri:Area/Istex/Checkpoint">000B67</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000B67</idno>
<idno type="wicri:doubleKey">0022-1694:2000:Koretsky C:the:significance:of</idno>
<idno type="wicri:Area/Main/Merge">000D78</idno>
<idno type="wicri:Area/Main/Curation">000D77</idno>
<idno type="wicri:Area/Main/Exploration">000D77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective</title>
<author>
<name sortKey="Koretsky, C" sort="Koretsky, C" uniqKey="Koretsky C" first="C" last="Koretsky">C. Koretsky</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332</wicri:regionArea>
<wicri:noRegion>GA 30332</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Hydrology</title>
<title level="j" type="abbrev">HYDROL</title>
<idno type="ISSN">0022-1694</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">230</biblScope>
<biblScope unit="issue">3–4</biblScope>
<biblScope unit="page" from="127">127</biblScope>
<biblScope unit="page" to="171">171</biblScope>
</imprint>
<idno type="ISSN">0022-1694</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1694</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical weathering</term>
<term>Geochemistry</term>
<term>Mineral surface</term>
<term>Sorption</term>
<term>Surface complexation</term>
<term>Water–rock interactions</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absorption spectroscopy</term>
<term>Acid rain</term>
<term>Acta</term>
<term>Activation energies</term>
<term>Activity model</term>
<term>Adsorbate</term>
<term>Adsorption</term>
<term>Adsorption data</term>
<term>Adsorption reactions</term>
<term>Albite</term>
<term>American journal</term>
<term>Anion</term>
<term>Apparent stability constants</term>
<term>Aquatic</term>
<term>Aquatic systems</term>
<term>Aqueous complexes</term>
<term>Aqueous solution</term>
<term>Aqueous solutions</term>
<term>Aqueous speciation models</term>
<term>Aqueous species</term>
<term>Atomic force microscopy</term>
<term>Background electrolyte</term>
<term>Brantley</term>
<term>Cadmium adsorption</term>
<term>Calcite</term>
<term>Capacitance</term>
<term>Capacitance values</term>
<term>Cappellen</term>
<term>Catchment</term>
<term>Catchment area</term>
<term>Cation</term>
<term>Chapman hall</term>
<term>Chemical geology</term>
<term>Chemical reactions</term>
<term>Chemical society</term>
<term>Chemical species</term>
<term>Chemical structure</term>
<term>Chemical weathering</term>
<term>Chemical weathering rates</term>
<term>Clay minerals</term>
<term>Colloid</term>
<term>Complexation</term>
<term>Complexation reactions</term>
<term>Component additivity approach</term>
<term>Constant capacitance model</term>
<term>Contaminant</term>
<term>Coordination numbers</term>
<term>Coordinatively</term>
<term>Cosmochimica</term>
<term>Cosmochimica acta</term>
<term>Criscenti</term>
<term>Crystal chemical considerations</term>
<term>Crystal chemistry</term>
<term>Crystal structures</term>
<term>Deprotonation</term>
<term>Deprotonation reaction</term>
<term>Diffuse layer</term>
<term>Diffuse layer model</term>
<term>Dissolution</term>
<term>Dissolution kinetics</term>
<term>Dissolution rate</term>
<term>Dissolution rates</term>
<term>Divalent</term>
<term>Divalent metal adsorption</term>
<term>Drever</term>
<term>Dzombak</term>
<term>Electrolyte</term>
<term>Empirical models</term>
<term>Environmental science</term>
<term>Equilibrium constants</term>
<term>Equilibrium thermodynamics</term>
<term>Exchange reactions</term>
<term>Experimental data</term>
<term>Feldspar</term>
<term>Feldspar dissolution</term>
<term>Fresh waters</term>
<term>Freundlich</term>
<term>Freundlich isotherm</term>
<term>Geochemical</term>
<term>Geochemical processes</term>
<term>Geochemical reactions</term>
<term>Geochemical systems</term>
<term>Geochemistry</term>
<term>Geochimica</term>
<term>Goethite</term>
<term>Heavy metals</term>
<term>Hematite</term>
<term>High pressures</term>
<term>High sites</term>
<term>Hochella</term>
<term>Homogeneous solutions</term>
<term>Hydration</term>
<term>Hydration sphere</term>
<term>Hydrologic</term>
<term>Hydrology</term>
<term>Hydroxyl</term>
<term>Iiiofe</term>
<term>Iiiofe iioh</term>
<term>Interface</term>
<term>Interface geochemistry</term>
<term>Interface science</term>
<term>Interscience publishers</term>
<term>Ionic strength</term>
<term>Isotherm</term>
<term>Kaolinite</term>
<term>Kinetics</term>
<term>Kno3</term>
<term>Koretsky</term>
<term>Koretsky journal</term>
<term>Laboratory experiments</term>
<term>Laboratory studies</term>
<term>Langmuir</term>
<term>Langmuir isotherm</term>
<term>Lasaga</term>
<term>Lewis publishers</term>
<term>Ligand</term>
<term>Liger</term>
<term>Lino3</term>
<term>Lled</term>
<term>Lled circles</term>
<term>Metal adsorption</term>
<term>Metal speciation</term>
<term>Mineral</term>
<term>Mineral dissolution</term>
<term>Mineral dissolution rates</term>
<term>Mineral growth</term>
<term>Mineral sample</term>
<term>Mineral structure</term>
<term>Mineral structures</term>
<term>Mineral surface</term>
<term>Mineral surfaces</term>
<term>Mineralogical</term>
<term>Mineralogical society</term>
<term>Mineralogical society series</term>
<term>Model adsorption</term>
<term>Modeling</term>
<term>Morel</term>
<term>Music model</term>
<term>Nacl</term>
<term>Naclo4</term>
<term>Nagy</term>
<term>Nano3</term>
<term>Natural sediments</term>
<term>Natural waters</term>
<term>Nitrobenzene</term>
<term>Nitrobenzene compounds</term>
<term>Nutrient availability</term>
<term>Organic acids</term>
<term>Organic ligands</term>
<term>Organic matter</term>
<term>Other words</term>
<term>Oxford university press</term>
<term>Oxide</term>
<term>Oxygen atoms</term>
<term>Partial charge</term>
<term>Phzpc</term>
<term>Precipitation</term>
<term>Precipitation kinetics</term>
<term>Protonation</term>
<term>Protonation reaction</term>
<term>Quartz</term>
<term>Rate estimates</term>
<term>Reaction rates</term>
<term>Reactive</term>
<term>Reactive sites</term>
<term>Reactive surface area</term>
<term>Reactive surface areas</term>
<term>Reactive surface sites</term>
<term>Reduction reaction</term>
<term>Room temperature</term>
<term>Rutile</term>
<term>Sahai</term>
<term>Same time</term>
<term>Saturation state</term>
<term>Scanning electron microscopy</term>
<term>Schematic representation</term>
<term>Scms</term>
<term>Sediment</term>
<term>Silica</term>
<term>Silicate</term>
<term>Silicate dissolution rates</term>
<term>Silicate minerals</term>
<term>Silicate weathering rates</term>
<term>Silicon atom</term>
<term>Site densities</term>
<term>Site density</term>
<term>Soil science</term>
<term>Soil solutions</term>
<term>Solute</term>
<term>Solution composition</term>
<term>Sorption</term>
<term>Speciation</term>
<term>Spectroscopic</term>
<term>Spectroscopic methods</term>
<term>Spectroscopy</term>
<term>Sposito</term>
<term>Stability constants</term>
<term>Stillings</term>
<term>Stumm</term>
<term>Surface area</term>
<term>Surface charge</term>
<term>Surface complexation</term>
<term>Surface complexation model</term>
<term>Surface complexation modeling</term>
<term>Surface complexation models</term>
<term>Surface complexes</term>
<term>Surface groups</term>
<term>Surface hydroxyl group</term>
<term>Surface hydroxyl groups</term>
<term>Surface reactions</term>
<term>Surface site</term>
<term>Surface sites</term>
<term>Surface speciation</term>
<term>Surface species</term>
<term>Surface titration data</term>
<term>Sverjensky</term>
<term>Teng</term>
<term>Thermodynamic</term>
<term>Thermodynamic datasets</term>
<term>Thermodynamic properties</term>
<term>Thermodynamics</term>
<term>Titration</term>
<term>Total concentration</term>
<term>Total concentrations</term>
<term>Trace metals</term>
<term>Triple layer model</term>
<term>Tritium</term>
<term>Trivalent ligand adsorption</term>
<term>Tting</term>
<term>Tting parameters</term>
<term>Vandevivere</term>
<term>Velbel</term>
<term>Wang</term>
<term>Weathering</term>
<term>Weathering rates</term>
<term>Whole mineral</term>
<term>Yates</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Géochimie</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Complexation reactions at the mineral–water interface affect the transport and transformation of metals and organic contaminants, nutrient availability in soils, formation of ore deposits, acidification of watersheds and the global cycling of elements. Such reactions can be understood by quantifying speciation reactions in homogeneous aqueous solutions, characterizing reactive sites at mineral surfaces and developing models of the interactions between aqueous species at solid surfaces. In this paper, the application of thermodynamic principles to quantify aqueous complexation reactions is described. This is followed by a brief overview of a few of the methods that have been used to characterize reactive sites on mineral surfaces. Next, the application of empirical and semi-empirical models of adsorption at the mineral–water interface, including distribution coefficients, simple ion exchange models, and Langmuir and Freundlich isotherms is discussed. Emphasis is placed on the limitations of such models in providing an adequate representation of adsorption in hydrological systems. These limitations arise because isotherms do not account for the structure of adsorbed species, nor do they account for the development of surface charge with adsorption. This is contrasted with more sophisticated models of adsorption, termed ‘surface complexation models’, which include the constant capacitance model, the diffuse layer model, the triple layer model and the MUSIC model. In these models, speciation reactions between surface functional groups and dissolved species control the variable surface charge build-up and the specific adsorption properties of minerals in aqueous solutions. Next, the influence of mineral surface speciation on the reactivity of adsorbed species and on far from equilibrium dissolution rates of minerals is discussed. Finally, the applicability of microscopic models of surface complexation to field-scale systems is explored and the need to integrate sophisticated surface chemical and hydrological modeling approaches is stressed.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Koretsky, C" sort="Koretsky, C" uniqKey="Koretsky C" first="C" last="Koretsky">C. Koretsky</name>
</noRegion>
<name sortKey="Koretsky, C" sort="Koretsky, C" uniqKey="Koretsky C" first="C" last="Koretsky">C. Koretsky</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:AB2716027F52584BF860AA9B8ADAA6E7AD936A19
   |texte=   The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024