Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review

Identifieur interne : 000552 ( Main/Exploration ); précédent : 000551; suivant : 000553

Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review

Auteurs : F. Degryse [États-Unis, Belgique] ; E. Smolders [États-Unis] ; D. R. Parker [États-Unis]

Source :

RBID : ISTEX:AB81AA5B78AE3B9756C6E071E39D976394319E55

English descriptors

Abstract

Prediction of the fate of metals in soil requires knowledge of their solid–liquid partitioning. This paper reviews analytical methods and models for measuring or predicting the solid–liquid partitioning of metals in aerobic soils, and collates experimental data. The partitioning is often expressed with an empirical distribution coefficient or Kd, which gives the ratio of the concentration in the solid phase to that in the solution phase. The Kd value of a metal reflects the net effect of various reactions in the solid and liquid phases and varies by orders of magnitude among soils. The Kd value can be derived from the solid–liquid distribution of added metal or that of the soil‐borne metal. Only part of the solid‐phase metal is rapidly exchangeable with the solution phase. Various methods have been developed to quantify this ‘labile’ phase, and Kd values based on this phase often correlate better with soil properties than Kd values based on total concentration, and are more appropriate to express metal ion buffering in solute transport models. The in situ soil solution is the preferred solution phase for Kd determinations. Alternatively, water or dilute‐salt extracts can be used, but these may underestimate in situ concentrations of dissolved metals because of dilution of metal‐complexing ligands such as dissolved organic matter. Multi‐surface models and empirical models have been proposed to predict metal partitioning from soil properties. Though soil pH is the most important soil property determining the retention of the free metal ion, Kd values based on total dissolved metal in solution may show little pH dependence for metal ions that have strong affinity for dissolved organic matter. The Kd coefficient is used as an equilibrium constant in risk assessment models. However, slow dissociation of metal complexes in solution and slow exchange of metals between labile and non‐labile pools in the solid phase may invalidate this equilibrium assumption.

Url:
DOI: 10.1111/j.1365-2389.2009.01142.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review</title>
<author>
<name sortKey="Degryse, F" sort="Degryse, F" uniqKey="Degryse F" first="F." last="Degryse">F. Degryse</name>
</author>
<author>
<name sortKey="Smolders, E" sort="Smolders, E" uniqKey="Smolders E" first="E." last="Smolders">E. Smolders</name>
</author>
<author>
<name sortKey="Parker, D R" sort="Parker, D R" uniqKey="Parker D" first="D. R." last="Parker">D. R. Parker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AB81AA5B78AE3B9756C6E071E39D976394319E55</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1111/j.1365-2389.2009.01142.x</idno>
<idno type="url">https://api.istex.fr/document/AB81AA5B78AE3B9756C6E071E39D976394319E55/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001191</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001191</idno>
<idno type="wicri:Area/Istex/Curation">001105</idno>
<idno type="wicri:Area/Istex/Checkpoint">000389</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000389</idno>
<idno type="wicri:doubleKey">1351-0754:2009:Degryse F:partitioning:of:metals</idno>
<idno type="wicri:Area/Main/Merge">000552</idno>
<idno type="wicri:Area/Main/Curation">000552</idno>
<idno type="wicri:Area/Main/Exploration">000552</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review</title>
<author>
<name sortKey="Degryse, F" sort="Degryse, F" uniqKey="Degryse F" first="F." last="Degryse">F. Degryse</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Earth and Environmental Sciences, K.U. Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium , and b Department of Environmental Sciences, University of California, Riverside, CA 92521</wicri:regionArea>
<wicri:noRegion>CA 92521</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="Smolders, E" sort="Smolders, E" uniqKey="Smolders E" first="E." last="Smolders">E. Smolders</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Earth and Environmental Sciences, K.U. Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium , and b Department of Environmental Sciences, University of California, Riverside, CA 92521</wicri:regionArea>
<wicri:noRegion>CA 92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parker, D R" sort="Parker, D R" uniqKey="Parker D" first="D. R." last="Parker">D. R. Parker</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Department of Earth and Environmental Sciences, K.U. Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium , and b Department of Environmental Sciences, University of California, Riverside, CA 92521</wicri:regionArea>
<wicri:noRegion>CA 92521</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">European Journal of Soil Science</title>
<idno type="ISSN">1351-0754</idno>
<idno type="eISSN">1365-2389</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2009-08">2009-08</date>
<biblScope unit="volume">60</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="590">590</biblScope>
<biblScope unit="page" to="612">612</biblScope>
</imprint>
<idno type="ISSN">1351-0754</idno>
</series>
<idno type="istex">AB81AA5B78AE3B9756C6E071E39D976394319E55</idno>
<idno type="DOI">10.1111/j.1365-2389.2009.01142.x</idno>
<idno type="ArticleID">EJSS1142</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1351-0754</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acceptor solution</term>
<term>Activity model</term>
<term>Adsorption</term>
<term>Alkaline soils</term>
<term>Analytical chemistry</term>
<term>Analytical techniques</term>
<term>Anderson christensen</term>
<term>Australian journal</term>
<term>Authors journal compilation</term>
<term>Barrow</term>
<term>Binding site capacity</term>
<term>Bioavailability</term>
<term>British society</term>
<term>Brummer</term>
<term>Buekers</term>
<term>Buffering</term>
<term>Cacl2</term>
<term>Cadmium</term>
<term>Calcareous soils</term>
<term>Cationic metals</term>
<term>Christensen</term>
<term>Clay minerals</term>
<term>Colloid</term>
<term>Colloidal</term>
<term>Colloidal transport</term>
<term>Column experiments</term>
<term>Complexation</term>
<term>Crout</term>
<term>Degryse</term>
<term>Desorption</term>
<term>Detection limits</term>
<term>Diffusion layer</term>
<term>Dissociation</term>
<term>Dissociation rate</term>
<term>Donnan</term>
<term>Donnan dialysis</term>
<term>Edta</term>
<term>Environmental</term>
<term>Environmental pollution</term>
<term>Environmental quality</term>
<term>Environmental science technology</term>
<term>Environmental toxicology chemistry</term>
<term>Equilibrium assumption</term>
<term>European journal</term>
<term>Free ions</term>
<term>Free metal</term>
<term>Groot</term>
<term>Heavy metals</term>
<term>Hendershot</term>
<term>Humic substances</term>
<term>Ionic strength</term>
<term>Isotope</term>
<term>Isotope dilution</term>
<term>Isotopic</term>
<term>Isotopic dilution</term>
<term>Isotopically</term>
<term>Kdfree</term>
<term>Kdlab</term>
<term>Kdtot</term>
<term>Kinetic limitations</term>
<term>Kinetics</term>
<term>Labile</term>
<term>Labile complexes</term>
<term>Labile fraction</term>
<term>Labile metal</term>
<term>Labile metal fraction</term>
<term>Labile metal pool</term>
<term>Labile pool</term>
<term>Large metal concentrations</term>
<term>Large part</term>
<term>Larger ratios</term>
<term>Leaching</term>
<term>Ligand</term>
<term>Liquid phase</term>
<term>Litre</term>
<term>Local equilibrium assumption</term>
<term>Logkd</term>
<term>Mclaughlin</term>
<term>Mercury electrode</term>
<term>Metal</term>
<term>Metal addition</term>
<term>Metal complexes</term>
<term>Metal concentration</term>
<term>Metal concentrations</term>
<term>Metal fraction</term>
<term>Metal ions</term>
<term>Metal partitioning</term>
<term>Metal pool</term>
<term>Metal salt</term>
<term>Metal solubility</term>
<term>Metal sorption</term>
<term>Metal speciation</term>
<term>Metal species</term>
<term>Metal transport</term>
<term>Metal uptake</term>
<term>Modelled</term>
<term>Modelling</term>
<term>Msolid</term>
<term>Multisurface models</term>
<term>Nolan</term>
<term>Oort</term>
<term>Organic matter</term>
<term>Other hand</term>
<term>Partitioning</term>
<term>Phase concentration</term>
<term>Plant soil</term>
<term>Pore</term>
<term>Pore volumes</term>
<term>Pore water</term>
<term>Regression equation</term>
<term>Regression equations</term>
<term>Regression model</term>
<term>Regression models</term>
<term>Response time</term>
<term>Reversible kinetics</term>
<term>Rhizon samplers</term>
<term>Richter</term>
<term>Riemsdijk</term>
<term>Romkens</term>
<term>Salt extracts</term>
<term>Sampler</term>
<term>Sandy soil</term>
<term>Sauve</term>
<term>Slow dissociation</term>
<term>Slow reactions</term>
<term>Soil</term>
<term>Soil pollution</term>
<term>Soil properties</term>
<term>Soil research</term>
<term>Soil science</term>
<term>Soil solution</term>
<term>Soil solution composition</term>
<term>Soil solution concentration</term>
<term>Soil solutions</term>
<term>Soil suspension</term>
<term>Solid phase</term>
<term>Solid phase concentration</term>
<term>Solubility</term>
<term>Solution concentration</term>
<term>Solution concentrations</term>
<term>Solution phase</term>
<term>Solution speciation</term>
<term>Sorption</term>
<term>Sorption curve</term>
<term>Sorption curves</term>
<term>Sorption reactions</term>
<term>Speciation</term>
<term>Stability constants</term>
<term>Stable isotope dilution</term>
<term>Streck</term>
<term>Streck richter</term>
<term>Surface sites</term>
<term>Temminghoff</term>
<term>Total concentration</term>
<term>Total environment</term>
<term>Total metal</term>
<term>Total solution</term>
<term>Total solution concentration</term>
<term>Toxicity</term>
<term>Trace elements</term>
<term>Trace metals</term>
<term>Unpublished data</term>
<term>Voltammetric techniques</term>
<term>Voltammetry</term>
<term>Water resources research</term>
<term>Welp brummer</term>
<term>Weng</term>
<term>Xation</term>
<term>Zhang</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Prediction of the fate of metals in soil requires knowledge of their solid–liquid partitioning. This paper reviews analytical methods and models for measuring or predicting the solid–liquid partitioning of metals in aerobic soils, and collates experimental data. The partitioning is often expressed with an empirical distribution coefficient or Kd, which gives the ratio of the concentration in the solid phase to that in the solution phase. The Kd value of a metal reflects the net effect of various reactions in the solid and liquid phases and varies by orders of magnitude among soils. The Kd value can be derived from the solid–liquid distribution of added metal or that of the soil‐borne metal. Only part of the solid‐phase metal is rapidly exchangeable with the solution phase. Various methods have been developed to quantify this ‘labile’ phase, and Kd values based on this phase often correlate better with soil properties than Kd values based on total concentration, and are more appropriate to express metal ion buffering in solute transport models. The in situ soil solution is the preferred solution phase for Kd determinations. Alternatively, water or dilute‐salt extracts can be used, but these may underestimate in situ concentrations of dissolved metals because of dilution of metal‐complexing ligands such as dissolved organic matter. Multi‐surface models and empirical models have been proposed to predict metal partitioning from soil properties. Though soil pH is the most important soil property determining the retention of the free metal ion, Kd values based on total dissolved metal in solution may show little pH dependence for metal ions that have strong affinity for dissolved organic matter. The Kd coefficient is used as an equilibrium constant in risk assessment models. However, slow dissociation of metal complexes in solution and slow exchange of metals between labile and non‐labile pools in the solid phase may invalidate this equilibrium assumption.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Belgique</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Degryse, F" sort="Degryse, F" uniqKey="Degryse F" first="F." last="Degryse">F. Degryse</name>
</noRegion>
<name sortKey="Parker, D R" sort="Parker, D R" uniqKey="Parker D" first="D. R." last="Parker">D. R. Parker</name>
<name sortKey="Smolders, E" sort="Smolders, E" uniqKey="Smolders E" first="E." last="Smolders">E. Smolders</name>
</country>
<country name="Belgique">
<noRegion>
<name sortKey="Degryse, F" sort="Degryse, F" uniqKey="Degryse F" first="F." last="Degryse">F. Degryse</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000552 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000552 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:AB81AA5B78AE3B9756C6E071E39D976394319E55
   |texte=   Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024