Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Melatonin affects the temporal pattern of vocal signatures in birds

Identifieur interne : 001552 ( Istex/Corpus ); précédent : 001551; suivant : 001553

Melatonin affects the temporal pattern of vocal signatures in birds

Auteurs : Sébastien Derégnaucourt ; Sigal Saar ; Manfred Gahr

Source :

RBID : ISTEX:D239D50F7442A431A512C23BE9A1FB04E3BB926D

English descriptors

Abstract

Abstract:  In humans and other animals, melatonin is involved in the control of circadian biological rhythms. Here, we show that melatonin affects the temporal pattern of behavioral sequences in a noncircadian manner. The zebra finch (Taeniopygia guttata) song and the crow of the Japanese quail (Coturnix japonica) are courtship vocalizations composed of a stereotyped sequence of syllables. The zebra finch song is learned from conspecifics during infancy, whereas the Japanese quail crow develops normally without auditory input. We recorded and analyzed the complete vocal activity of adult birds of both species kept in social isolation for several weeks. In both species, we observed a shortening of signal duration following the transfer from a light–dark (LD) cycle to constant light (LL), a condition known to abolish melatonin production and to disrupt circadian rhythmicity. This effect was reversible because signal duration increased when the photoperiod was returned to the previous LD schedule. We then tested whether this effect was directly related to melatonin by removal of the pineal gland, which is the main production site of circulating melatonin. A shortening of the song duration was observed following pinealectomy in LD. Likewise, melatonin treatment induced changes in the temporal structure of the song. In a song learning experiment, young pinealectomized finches and young finches raised in LL failed to copy the temporal pattern of their tutor’s song. Taken together, these results suggest that melatonin is involved in the control of motor timing of noncircadian behavioral sequences through an evolutionary conserved neuroendocrine pathway.

Url:
DOI: 10.1111/j.1600-079X.2012.00993.x

Links to Exploration step

ISTEX:D239D50F7442A431A512C23BE9A1FB04E3BB926D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Melatonin affects the temporal pattern of vocal signatures in birds</title>
<author>
<name sortKey="Deregnaucourt, Sebastien" sort="Deregnaucourt, Sebastien" uniqKey="Deregnaucourt S" first="Sébastien" last="Derégnaucourt">Sébastien Derégnaucourt</name>
<affiliation>
<mods:affiliation>Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Saar, Sigal" sort="Saar, Sigal" uniqKey="Saar S" first="Sigal" last="Saar">Sigal Saar</name>
<affiliation>
<mods:affiliation>Department of Biology, City College of New York, City University of New York, New York, NY, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gahr, Manfred" sort="Gahr, Manfred" uniqKey="Gahr M" first="Manfred" last="Gahr">Manfred Gahr</name>
<affiliation>
<mods:affiliation>Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D239D50F7442A431A512C23BE9A1FB04E3BB926D</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1111/j.1600-079X.2012.00993.x</idno>
<idno type="url">https://api.istex.fr/document/D239D50F7442A431A512C23BE9A1FB04E3BB926D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001552</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001552</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Melatonin affects the temporal pattern of vocal signatures in birds</title>
<author>
<name sortKey="Deregnaucourt, Sebastien" sort="Deregnaucourt, Sebastien" uniqKey="Deregnaucourt S" first="Sébastien" last="Derégnaucourt">Sébastien Derégnaucourt</name>
<affiliation>
<mods:affiliation>Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Saar, Sigal" sort="Saar, Sigal" uniqKey="Saar S" first="Sigal" last="Saar">Sigal Saar</name>
<affiliation>
<mods:affiliation>Department of Biology, City College of New York, City University of New York, New York, NY, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gahr, Manfred" sort="Gahr, Manfred" uniqKey="Gahr M" first="Manfred" last="Gahr">Manfred Gahr</name>
<affiliation>
<mods:affiliation>Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Pineal Research</title>
<idno type="ISSN">0742-3098</idno>
<idno type="eISSN">1600-079X</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-10">2012-10</date>
<biblScope unit="volume">53</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="245">245</biblScope>
<biblScope unit="page" to="258">258</biblScope>
</imprint>
<idno type="ISSN">0742-3098</idno>
</series>
<idno type="istex">D239D50F7442A431A512C23BE9A1FB04E3BB926D</idno>
<idno type="DOI">10.1111/j.1600-079X.2012.00993.x</idno>
<idno type="ArticleID">JPI993</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0742-3098</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Japanese quail</term>
<term>Zebra finch</term>
<term>birdsong</term>
<term>learning</term>
<term>melatonin</term>
<term>motor control</term>
<term>pinealectomy</term>
<term>timing</term>
<term>vocalization</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absolute values</term>
<term>Accuracy score</term>
<term>Acoustic</term>
<term>Acoustic features</term>
<term>Additional month</term>
<term>Adult birds</term>
<term>Adult tutor parents mother isolation</term>
<term>Adult zebra</term>
<term>Alar vein</term>
<term>Auditory feedback</term>
<term>Best pupil</term>
<term>Biol rhythms</term>
<term>Bird song</term>
<term>Birdsong</term>
<term>Brain areas</term>
<term>Brain plasticity</term>
<term>Canonical motif</term>
<term>Central pattern generator</term>
<term>Circadian</term>
<term>Circadian rhythmicity</term>
<term>Circadian rhythms</term>
<term>Columba livia</term>
<term>Comp neurol</term>
<term>Comp physiol</term>
<term>Constant light</term>
<term>Control birds</term>
<term>Control regions</term>
<term>Coturnix</term>
<term>Coturnix japonica</term>
<term>Crow</term>
<term>Crow duration</term>
<term>Crows quail</term>
<term>Daily number</term>
<term>Direct evidence</term>
<term>Domestic japanese quail</term>
<term>Duration</term>
<term>Entire experiment</term>
<term>Experimental procedure</term>
<term>Experimental procedures</term>
<term>Forebrain</term>
<term>Forebrain nuclei</term>
<term>Gonadal steroids</term>
<term>Highest probability</term>
<term>Individual signatures</term>
<term>Introductory notes</term>
<term>Japanese quail</term>
<term>Japanese quail crow</term>
<term>Light intensity</term>
<term>Longest motif</term>
<term>Many oscines</term>
<term>Melatonin</term>
<term>Melatonin administration</term>
<term>Melatonin cream</term>
<term>Melatonin levels</term>
<term>Melatonin production</term>
<term>Melatonin receptors</term>
<term>Melatonin treatment</term>
<term>Midbrain</term>
<term>Motif</term>
<term>Motif duration</term>
<term>Motif onsets</term>
<term>Motor timing</term>
<term>Nches</term>
<term>Neurosci</term>
<term>Neurosci lett</term>
<term>Notes durations</term>
<term>Periodic component</term>
<term>Periodogram analysis</term>
<term>Photoperiod</term>
<term>Pineal</term>
<term>Pineal attrition</term>
<term>Pineal gland</term>
<term>Pinealectomized</term>
<term>Pinealectomy</term>
<term>Pinx</term>
<term>Pinx bird</term>
<term>Pinx birds</term>
<term>Pitch goodness</term>
<term>Placebo cream</term>
<term>Proc natl acad</term>
<term>Quail</term>
<term>Raster plot analysis</term>
<term>Receptor</term>
<term>Respective tutor</term>
<term>Rhythm change</term>
<term>Rhythm changes</term>
<term>Rhythm spectrogram</term>
<term>Sampling time</term>
<term>Second transfer</term>
<term>Sensitive period</term>
<term>Sensitive phase</term>
<term>Sham</term>
<term>Sham birds</term>
<term>Signal duration</term>
<term>Silence durations</term>
<term>Silence gaps</term>
<term>Similarity frequency</term>
<term>Similarity score</term>
<term>Similarity segments</term>
<term>Skin application</term>
<term>Song accuracy</term>
<term>Song activity</term>
<term>Song bout</term>
<term>Song bouts</term>
<term>Song consistency</term>
<term>Song control</term>
<term>Song control system</term>
<term>Song duration</term>
<term>Song motif</term>
<term>Song motif duration</term>
<term>Song motifs</term>
<term>Song production</term>
<term>Song similarity</term>
<term>Song structure</term>
<term>Song syntax stereotypy</term>
<term>Song tempo</term>
<term>Song timing</term>
<term>Songbird</term>
<term>Sound analysis</term>
<term>Sound density</term>
<term>Spectral features</term>
<term>Spectrogram</term>
<term>Stereotyped sequence</term>
<term>Stereotyped song</term>
<term>Syllable</term>
<term>Syllable durations</term>
<term>Syllable onset intervals</term>
<term>Syllable types</term>
<term>Taeniopygia guttata</term>
<term>Temporal</term>
<term>Temporal organization</term>
<term>Temporal pattern</term>
<term>Temporal sequence</term>
<term>Temporal structure</term>
<term>Time point</term>
<term>Tutor</term>
<term>Tutor motif</term>
<term>Tutor song</term>
<term>Undirected song</term>
<term>Variance</term>
<term>Variance entropy variance pitch goodness</term>
<term>Variance pitch</term>
<term>Vocal activity</term>
<term>Vocal changes</term>
<term>Vocal learner</term>
<term>Vocal nonlearner species</term>
<term>Vocal plasticity</term>
<term>Vocal signatures</term>
<term>Vocalization</term>
<term>Whole experiment</term>
<term>Wiener entropy</term>
<term>Wilcoxon test</term>
<term>Young males</term>
<term>Zebra</term>
<term>Zebra finch</term>
<term>Zeit tierpsychol</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Abstract:  In humans and other animals, melatonin is involved in the control of circadian biological rhythms. Here, we show that melatonin affects the temporal pattern of behavioral sequences in a noncircadian manner. The zebra finch (Taeniopygia guttata) song and the crow of the Japanese quail (Coturnix japonica) are courtship vocalizations composed of a stereotyped sequence of syllables. The zebra finch song is learned from conspecifics during infancy, whereas the Japanese quail crow develops normally without auditory input. We recorded and analyzed the complete vocal activity of adult birds of both species kept in social isolation for several weeks. In both species, we observed a shortening of signal duration following the transfer from a light–dark (LD) cycle to constant light (LL), a condition known to abolish melatonin production and to disrupt circadian rhythmicity. This effect was reversible because signal duration increased when the photoperiod was returned to the previous LD schedule. We then tested whether this effect was directly related to melatonin by removal of the pineal gland, which is the main production site of circulating melatonin. A shortening of the song duration was observed following pinealectomy in LD. Likewise, melatonin treatment induced changes in the temporal structure of the song. In a song learning experiment, young pinealectomized finches and young finches raised in LL failed to copy the temporal pattern of their tutor’s song. Taken together, these results suggest that melatonin is involved in the control of motor timing of noncircadian behavioral sequences through an evolutionary conserved neuroendocrine pathway.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>melatonin</json:string>
<json:string>quail</json:string>
<json:string>nches</json:string>
<json:string>pinealectomy</json:string>
<json:string>pinx</json:string>
<json:string>syllable</json:string>
<json:string>zebra</json:string>
<json:string>temporal pattern</json:string>
<json:string>constant light</json:string>
<json:string>birdsong</json:string>
<json:string>neurosci</json:string>
<json:string>spectrogram</json:string>
<json:string>motif duration</json:string>
<json:string>photoperiod</json:string>
<json:string>crow</json:string>
<json:string>sham</json:string>
<json:string>pineal</json:string>
<json:string>japanese quail</json:string>
<json:string>forebrain</json:string>
<json:string>songbird</json:string>
<json:string>receptor</json:string>
<json:string>coturnix</json:string>
<json:string>circadian</json:string>
<json:string>silence gaps</json:string>
<json:string>song motif</json:string>
<json:string>pinealectomized</json:string>
<json:string>variance</json:string>
<json:string>melatonin receptors</json:string>
<json:string>control birds</json:string>
<json:string>midbrain</json:string>
<json:string>rhythm spectrogram</json:string>
<json:string>song motifs</json:string>
<json:string>pinx birds</json:string>
<json:string>vocalization</json:string>
<json:string>sound density</json:string>
<json:string>temporal structure</json:string>
<json:string>crows quail</json:string>
<json:string>wilcoxon test</json:string>
<json:string>melatonin production</json:string>
<json:string>japanese quail crow</json:string>
<json:string>sham birds</json:string>
<json:string>taeniopygia guttata</json:string>
<json:string>song consistency</json:string>
<json:string>motif</json:string>
<json:string>adult zebra</json:string>
<json:string>melatonin treatment</json:string>
<json:string>spectral features</json:string>
<json:string>song syntax stereotypy</json:string>
<json:string>experimental procedures</json:string>
<json:string>syllable durations</json:string>
<json:string>syllable types</json:string>
<json:string>song production</json:string>
<json:string>coturnix japonica</json:string>
<json:string>song structure</json:string>
<json:string>auditory feedback</json:string>
<json:string>acoustic features</json:string>
<json:string>vocal activity</json:string>
<json:string>pineal gland</json:string>
<json:string>tutor song</json:string>
<json:string>rhythm change</json:string>
<json:string>tutor</json:string>
<json:string>acoustic</json:string>
<json:string>melatonin cream</json:string>
<json:string>brain plasticity</json:string>
<json:string>whole experiment</json:string>
<json:string>forebrain nuclei</json:string>
<json:string>control regions</json:string>
<json:string>song similarity</json:string>
<json:string>sound analysis</json:string>
<json:string>respective tutor</json:string>
<json:string>signal duration</json:string>
<json:string>neurosci lett</json:string>
<json:string>motor timing</json:string>
<json:string>periodogram analysis</json:string>
<json:string>additional month</json:string>
<json:string>young males</json:string>
<json:string>comp neurol</json:string>
<json:string>vocal changes</json:string>
<json:string>vocal nonlearner species</json:string>
<json:string>pitch goodness</json:string>
<json:string>canonical motif</json:string>
<json:string>highest probability</json:string>
<json:string>similarity segments</json:string>
<json:string>temporal organization</json:string>
<json:string>accuracy score</json:string>
<json:string>song bout</json:string>
<json:string>temporal</json:string>
<json:string>duration</json:string>
<json:string>sensitive phase</json:string>
<json:string>many oscines</json:string>
<json:string>tutor motif</json:string>
<json:string>variance entropy variance pitch goodness</json:string>
<json:string>sensitive period</json:string>
<json:string>song control system</json:string>
<json:string>variance pitch</json:string>
<json:string>stereotyped song</json:string>
<json:string>song control</json:string>
<json:string>silence durations</json:string>
<json:string>raster plot analysis</json:string>
<json:string>motif onsets</json:string>
<json:string>sampling time</json:string>
<json:string>syllable onset intervals</json:string>
<json:string>experimental procedure</json:string>
<json:string>song timing</json:string>
<json:string>song activity</json:string>
<json:string>periodic component</json:string>
<json:string>daily number</json:string>
<json:string>song tempo</json:string>
<json:string>melatonin administration</json:string>
<json:string>gonadal steroids</json:string>
<json:string>song motif duration</json:string>
<json:string>song duration</json:string>
<json:string>rhythm changes</json:string>
<json:string>domestic japanese quail</json:string>
<json:string>second transfer</json:string>
<json:string>brain areas</json:string>
<json:string>crow duration</json:string>
<json:string>zebra finch</json:string>
<json:string>circadian rhythmicity</json:string>
<json:string>wiener entropy</json:string>
<json:string>placebo cream</json:string>
<json:string>introductory notes</json:string>
<json:string>adult tutor parents mother isolation</json:string>
<json:string>song bouts</json:string>
<json:string>temporal sequence</json:string>
<json:string>time point</json:string>
<json:string>individual signatures</json:string>
<json:string>skin application</json:string>
<json:string>similarity frequency</json:string>
<json:string>best pupil</json:string>
<json:string>entire experiment</json:string>
<json:string>song accuracy</json:string>
<json:string>notes durations</json:string>
<json:string>absolute values</json:string>
<json:string>longest motif</json:string>
<json:string>vocal learner</json:string>
<json:string>central pattern generator</json:string>
<json:string>adult birds</json:string>
<json:string>light intensity</json:string>
<json:string>stereotyped sequence</json:string>
<json:string>pinx bird</json:string>
<json:string>direct evidence</json:string>
<json:string>melatonin levels</json:string>
<json:string>pineal attrition</json:string>
<json:string>alar vein</json:string>
<json:string>vocal signatures</json:string>
<json:string>similarity score</json:string>
<json:string>undirected song</json:string>
<json:string>zeit tierpsychol</json:string>
<json:string>proc natl acad</json:string>
<json:string>circadian rhythms</json:string>
<json:string>columba livia</json:string>
<json:string>comp physiol</json:string>
<json:string>biol rhythms</json:string>
<json:string>bird song</json:string>
<json:string>vocal plasticity</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Sébastien Derégnaucourt</name>
<affiliations>
<json:string>Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Sigal Saar</name>
<affiliations>
<json:string>Department of Biology, City College of New York, City University of New York, New York, NY, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Manfred Gahr</name>
<affiliations>
<json:string>Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>birdsong</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Japanese quail</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>learning</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>melatonin</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>motor control</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pinealectomy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>timing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>vocalization</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Zebra finch</value>
</json:item>
</subject>
<articleId>
<json:string>JPI993</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Abstract:  In humans and other animals, melatonin is involved in the control of circadian biological rhythms. Here, we show that melatonin affects the temporal pattern of behavioral sequences in a noncircadian manner. The zebra finch (Taeniopygia guttata) song and the crow of the Japanese quail (Coturnix japonica) are courtship vocalizations composed of a stereotyped sequence of syllables. The zebra finch song is learned from conspecifics during infancy, whereas the Japanese quail crow develops normally without auditory input. We recorded and analyzed the complete vocal activity of adult birds of both species kept in social isolation for several weeks. In both species, we observed a shortening of signal duration following the transfer from a light–dark (LD) cycle to constant light (LL), a condition known to abolish melatonin production and to disrupt circadian rhythmicity. This effect was reversible because signal duration increased when the photoperiod was returned to the previous LD schedule. We then tested whether this effect was directly related to melatonin by removal of the pineal gland, which is the main production site of circulating melatonin. A shortening of the song duration was observed following pinealectomy in LD. Likewise, melatonin treatment induced changes in the temporal structure of the song. In a song learning experiment, young pinealectomized finches and young finches raised in LL failed to copy the temporal pattern of their tutor’s song. Taken together, these results suggest that melatonin is involved in the control of motor timing of noncircadian behavioral sequences through an evolutionary conserved neuroendocrine pathway.</abstract>
<qualityIndicators>
<score>9.988</score>
<pdfVersion>1.7</pdfVersion>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1674</abstractCharCount>
<pdfWordCount>8044</pdfWordCount>
<pdfCharCount>49517</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>249</abstractWordCount>
</qualityIndicators>
<title>Melatonin affects the temporal pattern of vocal signatures in birds</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Pineal Research</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1600-079X</json:string>
</doi>
<issn>
<json:string>0742-3098</json:string>
</issn>
<eissn>
<json:string>1600-079X</json:string>
</eissn>
<publisherId>
<json:string>JPI</json:string>
</publisherId>
<volume>53</volume>
<issue>3</issue>
<pages>
<first>245</first>
<last>258</last>
<total>14</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>physiology</json:string>
<json:string>neurosciences</json:string>
<json:string>endocrinology & metabolism</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1111/j.1600-079X.2012.00993.x</json:string>
</doi>
<id>D239D50F7442A431A512C23BE9A1FB04E3BB926D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D239D50F7442A431A512C23BE9A1FB04E3BB926D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D239D50F7442A431A512C23BE9A1FB04E3BB926D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D239D50F7442A431A512C23BE9A1FB04E3BB926D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Melatonin affects the temporal pattern of vocal signatures in birds</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>© 2012 John Wiley & Sons A/S</p>
</availability>
<date>2012</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Melatonin affects the temporal pattern of vocal signatures in birds</title>
<author xml:id="author-1">
<persName>
<forename type="first">Sébastien</forename>
<surname>Derégnaucourt</surname>
</persName>
<affiliation>Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Sigal</forename>
<surname>Saar</surname>
</persName>
<affiliation>Department of Biology, City College of New York, City University of New York, New York, NY, USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Manfred</forename>
<surname>Gahr</surname>
</persName>
<affiliation>Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Pineal Research</title>
<idno type="pISSN">0742-3098</idno>
<idno type="eISSN">1600-079X</idno>
<idno type="DOI">10.1111/(ISSN)1600-079X</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-10"></date>
<biblScope unit="volume">53</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="245">245</biblScope>
<biblScope unit="page" to="258">258</biblScope>
</imprint>
</monogr>
<idno type="istex">D239D50F7442A431A512C23BE9A1FB04E3BB926D</idno>
<idno type="DOI">10.1111/j.1600-079X.2012.00993.x</idno>
<idno type="ArticleID">JPI993</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Abstract:  In humans and other animals, melatonin is involved in the control of circadian biological rhythms. Here, we show that melatonin affects the temporal pattern of behavioral sequences in a noncircadian manner. The zebra finch (Taeniopygia guttata) song and the crow of the Japanese quail (Coturnix japonica) are courtship vocalizations composed of a stereotyped sequence of syllables. The zebra finch song is learned from conspecifics during infancy, whereas the Japanese quail crow develops normally without auditory input. We recorded and analyzed the complete vocal activity of adult birds of both species kept in social isolation for several weeks. In both species, we observed a shortening of signal duration following the transfer from a light–dark (LD) cycle to constant light (LL), a condition known to abolish melatonin production and to disrupt circadian rhythmicity. This effect was reversible because signal duration increased when the photoperiod was returned to the previous LD schedule. We then tested whether this effect was directly related to melatonin by removal of the pineal gland, which is the main production site of circulating melatonin. A shortening of the song duration was observed following pinealectomy in LD. Likewise, melatonin treatment induced changes in the temporal structure of the song. In a song learning experiment, young pinealectomized finches and young finches raised in LL failed to copy the temporal pattern of their tutor’s song. Taken together, these results suggest that melatonin is involved in the control of motor timing of noncircadian behavioral sequences through an evolutionary conserved neuroendocrine pathway.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>birdsong</term>
</item>
<item>
<term>Japanese quail</term>
</item>
<item>
<term>learning</term>
</item>
<item>
<term>melatonin</term>
</item>
<item>
<term>motor control</term>
</item>
<item>
<term>pinealectomy</term>
</item>
<item>
<term>timing</term>
</item>
<item>
<term>vocalization</term>
</item>
<item>
<term>Zebra finch</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D239D50F7442A431A512C23BE9A1FB04E3BB926D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1600-079X</doi>
<issn type="print">0742-3098</issn>
<issn type="electronic">1600-079X</issn>
<idGroup>
<id type="product" value="JPI"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF PINEAL RESEARCH">Journal of Pineal Research</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10103">
<doi origin="wiley">10.1111/jpi.2012.53.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="53">53</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="2012-10">October 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="5" status="forIssue">
<doi origin="wiley">10.1111/j.1600-079X.2012.00993.x</doi>
<idGroup>
<id type="unit" value="JPI993"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<copyright>© 2012 John Wiley & Sons A/S</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:3.1.6 mode:FullText" date="2012-09-10"></event>
<event type="publishedOnlineAccepted" date="2012-03-19"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2012-04-17"></event>
<event type="firstOnline" date="2012-04-17"></event>
<event type="publishedOnlineFinalForm" date="2012-09-10"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-01"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-25"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="245">245</numbering>
<numbering type="pageLast" number="258">258</numbering>
</numberingGroup>
<correspondenceTo>Address reprint requests to Sébastien Derégnaucourt, Laboratoire d’Éthologie et Cognition Comparées, Université Paris Ouest Nanterre La Défense, 200 avenue de la République, F92001 Nanterre Cedex, France. E‐mail:
<email normalForm="sebastien.deregnaucourt@u-paris10.fr">sebastien.deregnaucourt@u‐paris10.fr</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JPI.JPI993.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received January 23, 2012; Accepted March 12, 2012.</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="8"></count>
<count type="tableTotal" number="5"></count>
</countGroup>
<titleGroup>
<title type="main">Melatonin affects the temporal pattern of vocal signatures in birds</title>
<title type="shortAuthors">
<i>Derégnaucourt et al.</i>
</title>
<title type="short">
<i>Melatonin and birdsong</i>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>Sébastien</givenNames>
<familyName>Derégnaucourt</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>Sigal</givenNames>
<familyName>Saar</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>Manfred</givenNames>
<familyName>Gahr</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="DE">
<unparsedAffiliation>Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="US">
<unparsedAffiliation>Department of Biology, City College of New York, City University of New York, New York, NY, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">birdsong</keyword>
<keyword xml:id="k2">Japanese quail</keyword>
<keyword xml:id="k3">learning</keyword>
<keyword xml:id="k4">melatonin</keyword>
<keyword xml:id="k5">motor control</keyword>
<keyword xml:id="k6">pinealectomy</keyword>
<keyword xml:id="k7">timing</keyword>
<keyword xml:id="k8">vocalization</keyword>
<keyword xml:id="k9">Zebra finch</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>
<b>Abstract: </b>
In humans and other animals, melatonin is involved in the control of circadian biological rhythms. Here, we show that melatonin affects the temporal pattern of behavioral sequences in a noncircadian manner. The zebra finch (
<i>Taeniopygia guttata</i>
) song and the crow of the Japanese quail (
<i>Coturnix japonica</i>
) are courtship vocalizations composed of a stereotyped sequence of syllables. The zebra finch song is learned from conspecifics during infancy, whereas the Japanese quail crow develops normally without auditory input. We recorded and analyzed the complete vocal activity of adult birds of both species kept in social isolation for several weeks. In both species, we observed a shortening of signal duration following the transfer from a light–dark (LD) cycle to constant light (LL), a condition known to abolish melatonin production and to disrupt circadian rhythmicity. This effect was reversible because signal duration increased when the photoperiod was returned to the previous LD schedule. We then tested whether this effect was directly related to melatonin by removal of the pineal gland, which is the main production site of circulating melatonin. A shortening of the song duration was observed following pinealectomy in LD. Likewise, melatonin treatment induced changes in the temporal structure of the song. In a song learning experiment, young pinealectomized finches and young finches raised in LL failed to copy the temporal pattern of their tutor’s song. Taken together, these results suggest that melatonin is involved in the control of motor timing of noncircadian behavioral sequences through an evolutionary conserved neuroendocrine pathway.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Melatonin affects the temporal pattern of vocal signatures in birds</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Melatonin and birdsong</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Melatonin affects the temporal pattern of vocal signatures in birds</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sébastien</namePart>
<namePart type="family">Derégnaucourt</namePart>
<affiliation>Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sigal</namePart>
<namePart type="family">Saar</namePart>
<affiliation>Department of Biology, City College of New York, City University of New York, New York, NY, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Gahr</namePart>
<affiliation>Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-10</dateIssued>
<edition>Received January 23, 2012; Accepted March 12, 2012.</edition>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">8</extent>
<extent unit="tables">5</extent>
</physicalDescription>
<abstract>Abstract:  In humans and other animals, melatonin is involved in the control of circadian biological rhythms. Here, we show that melatonin affects the temporal pattern of behavioral sequences in a noncircadian manner. The zebra finch (Taeniopygia guttata) song and the crow of the Japanese quail (Coturnix japonica) are courtship vocalizations composed of a stereotyped sequence of syllables. The zebra finch song is learned from conspecifics during infancy, whereas the Japanese quail crow develops normally without auditory input. We recorded and analyzed the complete vocal activity of adult birds of both species kept in social isolation for several weeks. In both species, we observed a shortening of signal duration following the transfer from a light–dark (LD) cycle to constant light (LL), a condition known to abolish melatonin production and to disrupt circadian rhythmicity. This effect was reversible because signal duration increased when the photoperiod was returned to the previous LD schedule. We then tested whether this effect was directly related to melatonin by removal of the pineal gland, which is the main production site of circulating melatonin. A shortening of the song duration was observed following pinealectomy in LD. Likewise, melatonin treatment induced changes in the temporal structure of the song. In a song learning experiment, young pinealectomized finches and young finches raised in LL failed to copy the temporal pattern of their tutor’s song. Taken together, these results suggest that melatonin is involved in the control of motor timing of noncircadian behavioral sequences through an evolutionary conserved neuroendocrine pathway.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>birdsong</topic>
<topic>Japanese quail</topic>
<topic>learning</topic>
<topic>melatonin</topic>
<topic>motor control</topic>
<topic>pinealectomy</topic>
<topic>timing</topic>
<topic>vocalization</topic>
<topic>Zebra finch</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Pineal Research</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0742-3098</identifier>
<identifier type="eISSN">1600-079X</identifier>
<identifier type="DOI">10.1111/(ISSN)1600-079X</identifier>
<identifier type="PublisherID">JPI</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>53</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>245</start>
<end>258</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">D239D50F7442A431A512C23BE9A1FB04E3BB926D</identifier>
<identifier type="DOI">10.1111/j.1600-079X.2012.00993.x</identifier>
<identifier type="ArticleID">JPI993</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2012 John Wiley & Sons A/S</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001552 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001552 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D239D50F7442A431A512C23BE9A1FB04E3BB926D
   |texte=   Melatonin affects the temporal pattern of vocal signatures in birds
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024