Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

History of blood gas analysis. VI. Oximetry

Identifieur interne : 001195 ( Istex/Corpus ); précédent : 001194; suivant : 001196

History of blood gas analysis. VI. Oximetry

Auteurs : John W. Severinghaus ; Poul B. Astrup

Source :

RBID : ISTEX:ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870

English descriptors

Abstract

Abstract: Oximetry, the measurement of hemoglobin oxygen saturation in either blood or tissue, depends on the Lambert-Beer relationship between light transmission and optical density. Shortly after Bunsen and Kirchhoff invented the spectrometer in 1860, the oxygen transport function of hemoglobin was demonstrated by Stokes and Hoppe-Seyler, who showed color changes produced by aeration of hemoglobin solutions. In 1932 in Göttingen, Germany, Nicolai optically recorded the in vivo oxygen consumption of a hand after circulatory occlusion. Kramer showed that the Lambert-Beer law applied to hemoglobin solutions and approximately to whole blood, and measured saturation by the transmission of red light through unopened arteries. Matthes in Leipzig, Germany, built the first apparatus to measure ear oxygen saturation and introduced a second wavelength (green or infrared) insensitive to saturation to compensate for blood volume and tissue pigments. Millikan built a light-weight car “oximeter” during World War II to train pilots for military aviation. Wood added a pneumatic cuff to obtain a bloodless zero. Brinkman and Zijlstra in Groningen, The Netherlands, showed that red light reflected from the forehead could be used to measure oxygen saturation. Zijlstra initiated cuvette and catheter reflection oximetry. Instrumentation Laboratory used multiple wavelengths to measure blood carboxyhemoglobin and methemoglobin is cuvette oximeters. Shaw devised an eight-wavelength ear oximeter. Nakajima and coworkers invented the pulse oximeter, which avoids the need for calibration with only two wavelengths by responding only to the pulsatile changes in transmitted red and infrared light. Lübbers developed catheter tip and cuvette fiberoptic sensors for oxygen tension, carbon dioxide tension, and pH.

Url:
DOI: 10.1007/BF02851177

Links to Exploration step

ISTEX:ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">History of blood gas analysis. VI. Oximetry</title>
<author>
<name sortKey="Severinghaus, John W" sort="Severinghaus, John W" uniqKey="Severinghaus J" first="John W." last="Severinghaus">John W. Severinghaus</name>
<affiliation>
<mods:affiliation>Department of Anesthesia and Anesthesia Research Center, Cardiovascular Research Institute, University of California Medical Center, San Francisco, CA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Astrup, Poul B" sort="Astrup, Poul B" uniqKey="Astrup P" first="Poul B." last="Astrup">Poul B. Astrup</name>
<affiliation>
<mods:affiliation>Department of Clinical Chemistry, Rigshospital, University of Copenhagen, Copenhagen, Denmark</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870</idno>
<date when="1986" year="1986">1986</date>
<idno type="doi">10.1007/BF02851177</idno>
<idno type="url">https://api.istex.fr/document/ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001195</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001195</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">History of blood gas analysis. VI. Oximetry</title>
<author>
<name sortKey="Severinghaus, John W" sort="Severinghaus, John W" uniqKey="Severinghaus J" first="John W." last="Severinghaus">John W. Severinghaus</name>
<affiliation>
<mods:affiliation>Department of Anesthesia and Anesthesia Research Center, Cardiovascular Research Institute, University of California Medical Center, San Francisco, CA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Astrup, Poul B" sort="Astrup, Poul B" uniqKey="Astrup P" first="Poul B." last="Astrup">Poul B. Astrup</name>
<affiliation>
<mods:affiliation>Department of Clinical Chemistry, Rigshospital, University of Copenhagen, Copenhagen, Denmark</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Clinical Monitoring</title>
<title level="j" type="abbrev">J Clin Monitor Comput</title>
<idno type="ISSN">0748-1977</idno>
<idno type="eISSN">1573-2614</idno>
<imprint>
<publisher>Springer Netherlands</publisher>
<pubPlace>Dordrecht</pubPlace>
<date type="published" when="1986-10-01">1986-10-01</date>
<biblScope unit="volume">2</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="270">270</biblScope>
<biblScope unit="page" to="288">288</biblScope>
</imprint>
<idno type="ISSN">0748-1977</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0748-1977</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acta</term>
<term>Actual saturation</term>
<term>American council</term>
<term>Anesth analg</term>
<term>Anesthesia</term>
<term>Anesthesia research center</term>
<term>Anesthesiology</term>
<term>Appl</term>
<term>Appl physiol</term>
<term>Arterial blood</term>
<term>Arterial oxygen saturation</term>
<term>Astrup</term>
<term>Barrier layer photocell</term>
<term>Barrier layer photocells</term>
<term>Biochim biophys acta</term>
<term>Biol</term>
<term>Biol chem drabkin</term>
<term>Blood content</term>
<term>Brinkman</term>
<term>Bunsen</term>
<term>Capillary blood</term>
<term>Carboxyhemoglobin</term>
<term>Cardiovascular dynamics</term>
<term>Catheter</term>
<term>Chem</term>
<term>Clare</term>
<term>Clare millikan</term>
<term>Clin</term>
<term>Clin chem</term>
<term>Clinical chemistry</term>
<term>Clinical monitoring</term>
<term>Clinical surgery</term>
<term>Conduction band</term>
<term>Congenital heart disease</term>
<term>Constant temperature</term>
<term>Continuous measurement</term>
<term>Continuous monitoring</term>
<term>Continuous recording</term>
<term>Cuvette</term>
<term>Cuvette oximeter</term>
<term>Cuvette oximeters</term>
<term>Cuvette oximetry</term>
<term>Dissociation</term>
<term>Drabkin</term>
<term>Duke university</term>
<term>Earpiece</term>
<term>Fiberoptic</term>
<term>Glenn allan millikan</term>
<term>Green filter</term>
<term>Hemoglobin</term>
<term>Hemoglobin concentration</term>
<term>Hemoglobin pigments</term>
<term>Hemoglobin solutions</term>
<term>High altitude</term>
<term>Historical review</term>
<term>Incandescent light</term>
<term>Infrared light</term>
<term>Intracardiac oximetry</term>
<term>John pappenheimer</term>
<term>Karl matthes</term>
<term>Kramer</term>
<term>Kurt kramer</term>
<term>Leipzig</term>
<term>Lfibbers</term>
<term>Light absorption</term>
<term>Light intensity</term>
<term>Light path</term>
<term>Light source</term>
<term>Light transmission</term>
<term>Linear function</term>
<term>Lord adrian</term>
<term>Matthes</term>
<term>Mayo clinic</term>
<term>Measure oxygen saturation</term>
<term>Medical physics</term>
<term>Mercury vapor light</term>
<term>Military aviation</term>
<term>Millikan</term>
<term>Millikan oximeter</term>
<term>Multiple wavelengths</term>
<term>Neon light</term>
<term>Newborn infants</term>
<term>Nichtinvasive messung</term>
<term>Nicolai</term>
<term>October</term>
<term>Opitz</term>
<term>Optical density</term>
<term>Optical detection</term>
<term>Optical fibers</term>
<term>Optical path length</term>
<term>Other pigments</term>
<term>Oximeter</term>
<term>Oximetry</term>
<term>Oxygen consumption</term>
<term>Oxygen dissociation curve</term>
<term>Oxygen electrode</term>
<term>Oxygen saturation</term>
<term>Oxygen supply</term>
<term>Oxygen tension</term>
<term>Oxygen transport</term>
<term>Oxyhemoglobin</term>
<term>Path length</term>
<term>Pathol</term>
<term>Pathol pharmacol</term>
<term>Percentage oxygen saturation</term>
<term>Photocell</term>
<term>Photoelectric</term>
<term>Photoelectric cell</term>
<term>Photoelectric cells</term>
<term>Photometer</term>
<term>Photometry</term>
<term>Physiol</term>
<term>Physiol chem</term>
<term>Physiological chemistry</term>
<term>Physiology</term>
<term>Polanyi</term>
<term>Pulsatile changes</term>
<term>Pulse oximeter</term>
<term>Pulse oximeters</term>
<term>Pulse oximetry</term>
<term>Quantitative fluorescence photometry</term>
<term>Rapid reactions</term>
<term>Reflection oximeter</term>
<term>Respir physiol</term>
<term>Respiratory function</term>
<term>Robert brinkman</term>
<term>Saturation</term>
<term>Saturation values</term>
<term>Scientific biography</term>
<term>Severinghaus</term>
<term>Small amounts</term>
<term>Spectrophotometric</term>
<term>Spectrophotometric determination</term>
<term>Spectrophotometric measurement</term>
<term>Surgical anesthesia</term>
<term>Thesis research</term>
<term>Tissue oxygen consumption</term>
<term>Tissue pigments</term>
<term>Tissue thickness</term>
<term>Transcutaneous measurement</term>
<term>Unopened arteries</term>
<term>Untersuchungen fiber</term>
<term>Vacuum tube amplifier</term>
<term>Venous oxygen saturation</term>
<term>Wavelength</term>
<term>West germany</term>
<term>Whole blood</term>
<term>Year book</term>
<term>Zijlstra</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Oximetry, the measurement of hemoglobin oxygen saturation in either blood or tissue, depends on the Lambert-Beer relationship between light transmission and optical density. Shortly after Bunsen and Kirchhoff invented the spectrometer in 1860, the oxygen transport function of hemoglobin was demonstrated by Stokes and Hoppe-Seyler, who showed color changes produced by aeration of hemoglobin solutions. In 1932 in Göttingen, Germany, Nicolai optically recorded the in vivo oxygen consumption of a hand after circulatory occlusion. Kramer showed that the Lambert-Beer law applied to hemoglobin solutions and approximately to whole blood, and measured saturation by the transmission of red light through unopened arteries. Matthes in Leipzig, Germany, built the first apparatus to measure ear oxygen saturation and introduced a second wavelength (green or infrared) insensitive to saturation to compensate for blood volume and tissue pigments. Millikan built a light-weight car “oximeter” during World War II to train pilots for military aviation. Wood added a pneumatic cuff to obtain a bloodless zero. Brinkman and Zijlstra in Groningen, The Netherlands, showed that red light reflected from the forehead could be used to measure oxygen saturation. Zijlstra initiated cuvette and catheter reflection oximetry. Instrumentation Laboratory used multiple wavelengths to measure blood carboxyhemoglobin and methemoglobin is cuvette oximeters. Shaw devised an eight-wavelength ear oximeter. Nakajima and coworkers invented the pulse oximeter, which avoids the need for calibration with only two wavelengths by responding only to the pulsatile changes in transmitted red and infrared light. Lübbers developed catheter tip and cuvette fiberoptic sensors for oxygen tension, carbon dioxide tension, and pH.</div>
</front>
</TEI>
<istex>
<corpusName>springer</corpusName>
<keywords>
<teeft>
<json:string>oximeter</json:string>
<json:string>oximetry</json:string>
<json:string>oxygen saturation</json:string>
<json:string>millikan</json:string>
<json:string>cuvette</json:string>
<json:string>physiol</json:string>
<json:string>oxyhemoglobin</json:string>
<json:string>matthes</json:string>
<json:string>photoelectric</json:string>
<json:string>severinghaus</json:string>
<json:string>clin</json:string>
<json:string>zijlstra</json:string>
<json:string>astrup</json:string>
<json:string>photocell</json:string>
<json:string>kramer</json:string>
<json:string>whole blood</json:string>
<json:string>anesthesia</json:string>
<json:string>pulse oximetry</json:string>
<json:string>polanyi</json:string>
<json:string>biol</json:string>
<json:string>chem</json:string>
<json:string>brinkman</json:string>
<json:string>infrared light</json:string>
<json:string>drabkin</json:string>
<json:string>earpiece</json:string>
<json:string>clinical monitoring</json:string>
<json:string>nicolai</json:string>
<json:string>fiberoptic</json:string>
<json:string>photometer</json:string>
<json:string>saturation</json:string>
<json:string>october</json:string>
<json:string>lfibbers</json:string>
<json:string>acta</json:string>
<json:string>arterial blood</json:string>
<json:string>appl</json:string>
<json:string>oxygen tension</json:string>
<json:string>anesthesiology</json:string>
<json:string>photometry</json:string>
<json:string>carboxyhemoglobin</json:string>
<json:string>pathol</json:string>
<json:string>bunsen</json:string>
<json:string>opitz</json:string>
<json:string>leipzig</json:string>
<json:string>hemoglobin</json:string>
<json:string>arterial oxygen saturation</json:string>
<json:string>historical review</json:string>
<json:string>spectrophotometric</json:string>
<json:string>appl physiol</json:string>
<json:string>capillary blood</json:string>
<json:string>hemoglobin solutions</json:string>
<json:string>pathol pharmacol</json:string>
<json:string>physiology</json:string>
<json:string>american council</json:string>
<json:string>year book</json:string>
<json:string>karl matthes</json:string>
<json:string>oxygen dissociation curve</json:string>
<json:string>continuous recording</json:string>
<json:string>spectrophotometric determination</json:string>
<json:string>light absorption</json:string>
<json:string>scientific biography</json:string>
<json:string>clare</json:string>
<json:string>venous oxygen saturation</json:string>
<json:string>continuous monitoring</json:string>
<json:string>clare millikan</json:string>
<json:string>oxygen supply</json:string>
<json:string>kurt kramer</json:string>
<json:string>small amounts</json:string>
<json:string>light transmission</json:string>
<json:string>incandescent light</json:string>
<json:string>measure oxygen saturation</json:string>
<json:string>continuous measurement</json:string>
<json:string>path length</json:string>
<json:string>cuvette oximetry</json:string>
<json:string>oxygen consumption</json:string>
<json:string>john pappenheimer</json:string>
<json:string>catheter</json:string>
<json:string>wavelength</json:string>
<json:string>linear function</json:string>
<json:string>military aviation</json:string>
<json:string>multiple wavelengths</json:string>
<json:string>oxygen transport</json:string>
<json:string>tissue thickness</json:string>
<json:string>blood content</json:string>
<json:string>glenn allan millikan</json:string>
<json:string>photoelectric cells</json:string>
<json:string>anesthesia research center</json:string>
<json:string>millikan oximeter</json:string>
<json:string>clinical chemistry</json:string>
<json:string>rapid reactions</json:string>
<json:string>nichtinvasive messung</json:string>
<json:string>photoelectric cell</json:string>
<json:string>optical density</json:string>
<json:string>barrier layer photocells</json:string>
<json:string>lord adrian</json:string>
<json:string>green filter</json:string>
<json:string>surgical anesthesia</json:string>
<json:string>mayo clinic</json:string>
<json:string>vacuum tube amplifier</json:string>
<json:string>newborn infants</json:string>
<json:string>cuvette oximeter</json:string>
<json:string>clinical surgery</json:string>
<json:string>cardiovascular dynamics</json:string>
<json:string>optical detection</json:string>
<json:string>other pigments</json:string>
<json:string>conduction band</json:string>
<json:string>robert brinkman</json:string>
<json:string>neon light</json:string>
<json:string>thesis research</json:string>
<json:string>barrier layer photocell</json:string>
<json:string>cuvette oximeters</json:string>
<json:string>optical fibers</json:string>
<json:string>intracardiac oximetry</json:string>
<json:string>congenital heart disease</json:string>
<json:string>physiological chemistry</json:string>
<json:string>actual saturation</json:string>
<json:string>light source</json:string>
<json:string>pulse oximeters</json:string>
<json:string>hemoglobin concentration</json:string>
<json:string>west germany</json:string>
<json:string>transcutaneous measurement</json:string>
<json:string>tissue oxygen consumption</json:string>
<json:string>pulse oximeter</json:string>
<json:string>pulsatile changes</json:string>
<json:string>tissue pigments</json:string>
<json:string>saturation values</json:string>
<json:string>physiol chem</json:string>
<json:string>respiratory function</json:string>
<json:string>high altitude</json:string>
<json:string>biol chem drabkin</json:string>
<json:string>medical physics</json:string>
<json:string>duke university</json:string>
<json:string>untersuchungen fiber</json:string>
<json:string>spectrophotometric measurement</json:string>
<json:string>mercury vapor light</json:string>
<json:string>oxygen electrode</json:string>
<json:string>optical path length</json:string>
<json:string>hemoglobin pigments</json:string>
<json:string>constant temperature</json:string>
<json:string>respir physiol</json:string>
<json:string>quantitative fluorescence photometry</json:string>
<json:string>biochim biophys acta</json:string>
<json:string>clin chem</json:string>
<json:string>percentage oxygen saturation</json:string>
<json:string>light intensity</json:string>
<json:string>reflection oximeter</json:string>
<json:string>unopened arteries</json:string>
<json:string>anesth analg</json:string>
<json:string>light path</json:string>
<json:string>dissociation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>John W. Severinghaus MD</name>
<affiliations>
<json:string>Department of Anesthesia and Anesthesia Research Center, Cardiovascular Research Institute, University of California Medical Center, San Francisco, CA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Poul B. Astrup</name>
<affiliations>
<json:string>Department of Clinical Chemistry, Rigshospital, University of Copenhagen, Copenhagen, Denmark</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>BF02851177</json:string>
<json:string>Art10</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>ReviewPaper</json:string>
</originalGenre>
<abstract>Abstract: Oximetry, the measurement of hemoglobin oxygen saturation in either blood or tissue, depends on the Lambert-Beer relationship between light transmission and optical density. Shortly after Bunsen and Kirchhoff invented the spectrometer in 1860, the oxygen transport function of hemoglobin was demonstrated by Stokes and Hoppe-Seyler, who showed color changes produced by aeration of hemoglobin solutions. In 1932 in Göttingen, Germany, Nicolai optically recorded the in vivo oxygen consumption of a hand after circulatory occlusion. Kramer showed that the Lambert-Beer law applied to hemoglobin solutions and approximately to whole blood, and measured saturation by the transmission of red light through unopened arteries. Matthes in Leipzig, Germany, built the first apparatus to measure ear oxygen saturation and introduced a second wavelength (green or infrared) insensitive to saturation to compensate for blood volume and tissue pigments. Millikan built a light-weight car “oximeter” during World War II to train pilots for military aviation. Wood added a pneumatic cuff to obtain a bloodless zero. Brinkman and Zijlstra in Groningen, The Netherlands, showed that red light reflected from the forehead could be used to measure oxygen saturation. Zijlstra initiated cuvette and catheter reflection oximetry. Instrumentation Laboratory used multiple wavelengths to measure blood carboxyhemoglobin and methemoglobin is cuvette oximeters. Shaw devised an eight-wavelength ear oximeter. Nakajima and coworkers invented the pulse oximeter, which avoids the need for calibration with only two wavelengths by responding only to the pulsatile changes in transmitted red and infrared light. Lübbers developed catheter tip and cuvette fiberoptic sensors for oxygen tension, carbon dioxide tension, and pH.</abstract>
<qualityIndicators>
<score>8</score>
<pdfWordCount>12079</pdfWordCount>
<pdfCharCount>69692</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>19</pdfPageCount>
<pdfPageSize>540 x 756 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>255</abstractWordCount>
<abstractCharCount>1808</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>History of blood gas analysis. VI. Oximetry</title>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<title>Journal of Clinical Monitoring</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1986</publicationDate>
<copyrightDate>1986</copyrightDate>
<issn>
<json:string>0748-1977</json:string>
</issn>
<eissn>
<json:string>1573-2614</json:string>
</eissn>
<journalId>
<json:string>10877</json:string>
</journalId>
<volume>2</volume>
<issue>4</issue>
<pages>
<first>270</first>
<last>288</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Medicine & Public Health</value>
</json:item>
<json:item>
<value>Anesthesiology</value>
</json:item>
<json:item>
<value>Intensive / Critical Care Medicine</value>
</json:item>
<json:item>
<value>Statistics for Life Sciences, Medicine, Health Sciences</value>
</json:item>
</subject>
</host>
<categories>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences medicales</json:string>
<json:string>otorhinolaryngologie. stomatologie</json:string>
</inist>
</categories>
<publicationDate>1986</publicationDate>
<copyrightDate>1986</copyrightDate>
<doi>
<json:string>10.1007/BF02851177</json:string>
</doi>
<id>ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">History of blood gas analysis. VI. Oximetry</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Springer Netherlands</publisher>
<pubPlace>Dordrecht</pubPlace>
<availability>
<p>Springer, 1986</p>
</availability>
<date>1986</date>
</publicationStmt>
<notesStmt>
<note>Historical Review</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">History of blood gas analysis. VI. Oximetry</title>
<author xml:id="author-0000" corresp="yes">
<persName>
<forename type="first">John</forename>
<surname>Severinghaus</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>Department of Anesthesia and Anesthesia Research Center, Cardiovascular Research Institute, University of California Medical Center, San Francisco, CA</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Poul</forename>
<surname>Astrup</surname>
</persName>
<note type="biography">Dr med, Professor Emeritus</note>
<affiliation>Dr med, Professor Emeritus</affiliation>
<affiliation>Department of Clinical Chemistry, Rigshospital, University of Copenhagen, Copenhagen, Denmark</affiliation>
</author>
<idno type="istex">ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870</idno>
<idno type="DOI">10.1007/BF02851177</idno>
<idno type="ArticleID">BF02851177</idno>
<idno type="ArticleID">Art10</idno>
</analytic>
<monogr>
<title level="j">Journal of Clinical Monitoring</title>
<title level="j" type="abbrev">J Clin Monitor Comput</title>
<idno type="pISSN">0748-1977</idno>
<idno type="eISSN">1573-2614</idno>
<idno type="journal-ID">true</idno>
<idno type="issue-article-count">13</idno>
<idno type="volume-issue-count">4</idno>
<imprint>
<publisher>Springer Netherlands</publisher>
<pubPlace>Dordrecht</pubPlace>
<date type="published" when="1986-10-01"></date>
<biblScope unit="volume">2</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="270">270</biblScope>
<biblScope unit="page" to="288">288</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1986</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Oximetry, the measurement of hemoglobin oxygen saturation in either blood or tissue, depends on the Lambert-Beer relationship between light transmission and optical density. Shortly after Bunsen and Kirchhoff invented the spectrometer in 1860, the oxygen transport function of hemoglobin was demonstrated by Stokes and Hoppe-Seyler, who showed color changes produced by aeration of hemoglobin solutions. In 1932 in Göttingen, Germany, Nicolai optically recorded the in vivo oxygen consumption of a hand after circulatory occlusion. Kramer showed that the Lambert-Beer law applied to hemoglobin solutions and approximately to whole blood, and measured saturation by the transmission of red light through unopened arteries. Matthes in Leipzig, Germany, built the first apparatus to measure ear oxygen saturation and introduced a second wavelength (green or infrared) insensitive to saturation to compensate for blood volume and tissue pigments. Millikan built a light-weight car “oximeter” during World War II to train pilots for military aviation. Wood added a pneumatic cuff to obtain a bloodless zero. Brinkman and Zijlstra in Groningen, The Netherlands, showed that red light reflected from the forehead could be used to measure oxygen saturation. Zijlstra initiated cuvette and catheter reflection oximetry. Instrumentation Laboratory used multiple wavelengths to measure blood carboxyhemoglobin and methemoglobin is cuvette oximeters. Shaw devised an eight-wavelength ear oximeter. Nakajima and coworkers invented the pulse oximeter, which avoids the need for calibration with only two wavelengths by responding only to the pulsatile changes in transmitted red and infrared light. Lübbers developed catheter tip and cuvette fiberoptic sensors for oxygen tension, carbon dioxide tension, and pH.</p>
</abstract>
<textClass>
<keywords scheme="Journal-Subject-Group">
<list>
<label>H</label>
<item>
<term>Medicine & Public Health</term>
</item>
<label>H13001</label>
<item>
<term>Anesthesiology</term>
</item>
<label>H3100X</label>
<item>
<term>Intensive / Critical Care Medicine</term>
</item>
<label>S15007</label>
<item>
<term>Statistics for Life Sciences, Medicine, Health Sciences</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1986-10-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Springer, Publisher found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer Netherlands</PublisherName>
<PublisherLocation>Dordrecht</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>10877</JournalID>
<JournalPrintISSN>0748-1977</JournalPrintISSN>
<JournalElectronicISSN>1573-2614</JournalElectronicISSN>
<JournalTitle>Journal of Clinical Monitoring</JournalTitle>
<JournalAbbreviatedTitle>J Clin Monitor Comput</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Code="H" Type="Primary">Medicine & Public Health</JournalSubject>
<JournalSubject Code="H13001" Priority="1" Type="Secondary">Anesthesiology</JournalSubject>
<JournalSubject Code="H3100X" Priority="2" Type="Secondary">Intensive / Critical Care Medicine</JournalSubject>
<JournalSubject Code="S15007" Priority="3" Type="Secondary">Statistics for Life Sciences, Medicine, Health Sciences</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo TocLevels="0" VolumeType="Regular">
<VolumeIDStart>2</VolumeIDStart>
<VolumeIDEnd>2</VolumeIDEnd>
<VolumeIssueCount>4</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular">
<IssueInfo TocLevels="0">
<IssueIDStart>4</IssueIDStart>
<IssueIDEnd>4</IssueIDEnd>
<IssueArticleCount>13</IssueArticleCount>
<IssueHistory>
<CoverDate>
<Year>1986</Year>
<Month>10</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Springer</CopyrightHolderName>
<CopyrightYear>1986</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="Art10">
<ArticleInfo ArticleType="ReviewPaper" ContainsESM="No" Language="En" NumberingStyle="Unnumbered" TocLevels="0">
<ArticleID>BF02851177</ArticleID>
<ArticleDOI>10.1007/BF02851177</ArticleDOI>
<ArticleSequenceNumber>10</ArticleSequenceNumber>
<ArticleTitle Language="En">History of blood gas analysis. VI. Oximetry</ArticleTitle>
<ArticleCategory>Historical Review</ArticleCategory>
<ArticleFirstPage>270</ArticleFirstPage>
<ArticleLastPage>288</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2008</Year>
<Month>2</Month>
<Day>28</Day>
</RegistrationDate>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Springer</CopyrightHolderName>
<CopyrightYear>1986</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
<ArticleContext>
<JournalID>10877</JournalID>
<VolumeIDStart>2</VolumeIDStart>
<VolumeIDEnd>2</VolumeIDEnd>
<IssueIDStart>4</IssueIDStart>
<IssueIDEnd>4</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1" CorrespondingAffiliationID="Aff2">
<AuthorName DisplayOrder="Western">
<GivenName>John</GivenName>
<GivenName>W.</GivenName>
<FamilyName>Severinghaus</FamilyName>
<Degrees>MD</Degrees>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff3">
<AuthorName DisplayOrder="Western">
<GivenName>Poul</GivenName>
<GivenName>B.</GivenName>
<FamilyName>Astrup</FamilyName>
</AuthorName>
<Role>Dr med, Professor Emeritus</Role>
</Author>
<Affiliation ID="Aff1">
<OrgDivision>Department of Anesthesia and Anesthesia Research Center, Cardiovascular Research Institute</OrgDivision>
<OrgName>University of California Medical Center</OrgName>
<OrgAddress>
<City>San Francisco</City>
<State>CA</State>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff3">
<OrgDivision>Department of Clinical Chemistry</OrgDivision>
<OrgName>Rigshospital, University of Copenhagen</OrgName>
<OrgAddress>
<City>Copenhagen</City>
<Country>Denmark</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgDivision>Anesthesia Research Center</OrgDivision>
<OrgName>1386 HSE, University of California Medical Center</OrgName>
<OrgAddress>
<Postcode>94143</Postcode>
<City>San Francisco</City>
<State>CA</State>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>Oximetry, the measurement of hemoglobin oxygen saturation in either blood or tissue, depends on the Lambert-Beer relationship between light transmission and optical density. Shortly after Bunsen and Kirchhoff invented the spectrometer in 1860, the oxygen transport function of hemoglobin was demonstrated by Stokes and Hoppe-Seyler, who showed color changes produced by aeration of hemoglobin solutions. In 1932 in Göttingen, Germany, Nicolai optically recorded the in vivo oxygen consumption of a hand after circulatory occlusion. Kramer showed that the Lambert-Beer law applied to hemoglobin solutions and approximately to whole blood, and measured saturation by the transmission of red light through unopened arteries. Matthes in Leipzig, Germany, built the first apparatus to measure ear oxygen saturation and introduced a second wavelength (green or infrared) insensitive to saturation to compensate for blood volume and tissue pigments. Millikan built a light-weight car “oximeter” during World War II to train pilots for military aviation. Wood added a pneumatic cuff to obtain a bloodless zero. Brinkman and Zijlstra in Groningen, The Netherlands, showed that red light reflected from the forehead could be used to measure oxygen saturation. Zijlstra initiated cuvette and catheter reflection oximetry. Instrumentation Laboratory used multiple wavelengths to measure blood carboxyhemoglobin and methemoglobin is cuvette oximeters. Shaw devised an eight-wavelength ear oximeter. Nakajima and coworkers invented the pulse oximeter, which avoids the need for calibration with only two wavelengths by responding only to the pulsatile changes in transmitted red and infrared light. Lübbers developed catheter tip and cuvette fiberoptic sensors for oxygen tension, carbon dioxide tension, and pH.</Para>
</Abstract>
<KeywordGroup Language="En">
<Heading>Key Words</Heading>
<Keyword>Oxygen: saturation</Keyword>
<Keyword>Measurement techniques: oximetry</Keyword>
<Keyword>spectrophotometry</Keyword>
<Keyword>photocells</Keyword>
<Keyword>optodes</Keyword>
<Keyword>Blood: gas analysis, history</Keyword>
</KeywordGroup>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>History of blood gas analysis. VI. Oximetry</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>History of blood gas analysis. VI. Oximetry</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="given">John</namePart>
<namePart type="given">W.</namePart>
<namePart type="family">Severinghaus</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>Department of Anesthesia and Anesthesia Research Center, Cardiovascular Research Institute, University of California Medical Center, San Francisco, CA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Poul</namePart>
<namePart type="given">B.</namePart>
<namePart type="family">Astrup</namePart>
<affiliation>Department of Clinical Chemistry, Rigshospital, University of Copenhagen, Copenhagen, Denmark</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
<description>Dr med, Professor Emeritus</description>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="ReviewPaper"></genre>
<originInfo>
<publisher>Springer Netherlands</publisher>
<place>
<placeTerm type="text">Dordrecht</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1986-10-01</dateIssued>
<copyrightDate encoding="w3cdtf">1986</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Abstract: Oximetry, the measurement of hemoglobin oxygen saturation in either blood or tissue, depends on the Lambert-Beer relationship between light transmission and optical density. Shortly after Bunsen and Kirchhoff invented the spectrometer in 1860, the oxygen transport function of hemoglobin was demonstrated by Stokes and Hoppe-Seyler, who showed color changes produced by aeration of hemoglobin solutions. In 1932 in Göttingen, Germany, Nicolai optically recorded the in vivo oxygen consumption of a hand after circulatory occlusion. Kramer showed that the Lambert-Beer law applied to hemoglobin solutions and approximately to whole blood, and measured saturation by the transmission of red light through unopened arteries. Matthes in Leipzig, Germany, built the first apparatus to measure ear oxygen saturation and introduced a second wavelength (green or infrared) insensitive to saturation to compensate for blood volume and tissue pigments. Millikan built a light-weight car “oximeter” during World War II to train pilots for military aviation. Wood added a pneumatic cuff to obtain a bloodless zero. Brinkman and Zijlstra in Groningen, The Netherlands, showed that red light reflected from the forehead could be used to measure oxygen saturation. Zijlstra initiated cuvette and catheter reflection oximetry. Instrumentation Laboratory used multiple wavelengths to measure blood carboxyhemoglobin and methemoglobin is cuvette oximeters. Shaw devised an eight-wavelength ear oximeter. Nakajima and coworkers invented the pulse oximeter, which avoids the need for calibration with only two wavelengths by responding only to the pulsatile changes in transmitted red and infrared light. Lübbers developed catheter tip and cuvette fiberoptic sensors for oxygen tension, carbon dioxide tension, and pH.</abstract>
<note>Historical Review</note>
<relatedItem type="host">
<titleInfo>
<title>Journal of Clinical Monitoring</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J Clin Monitor Comput</title>
</titleInfo>
<genre type="journal" displayLabel="Archive Journal"></genre>
<originInfo>
<dateIssued encoding="w3cdtf">1986-10-01</dateIssued>
<copyrightDate encoding="w3cdtf">1986</copyrightDate>
</originInfo>
<subject>
<genre>Journal-Subject-Group</genre>
<topic authority="SpringerSubjectCodes" authorityURI="H">Medicine & Public Health</topic>
<topic authority="SpringerSubjectCodes" authorityURI="H13001">Anesthesiology</topic>
<topic authority="SpringerSubjectCodes" authorityURI="H3100X">Intensive / Critical Care Medicine</topic>
<topic authority="SpringerSubjectCodes" authorityURI="S15007">Statistics for Life Sciences, Medicine, Health Sciences</topic>
</subject>
<identifier type="ISSN">0748-1977</identifier>
<identifier type="eISSN">1573-2614</identifier>
<identifier type="JournalID">10877</identifier>
<identifier type="IssueArticleCount">13</identifier>
<identifier type="VolumeIssueCount">4</identifier>
<part>
<date>1986</date>
<detail type="volume">
<number>2</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>270</start>
<end>288</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer, 1986</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870</identifier>
<identifier type="DOI">10.1007/BF02851177</identifier>
<identifier type="ArticleID">BF02851177</identifier>
<identifier type="ArticleID">Art10</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer, 1986</accessCondition>
<recordInfo>
<recordContentSource>SPRINGER</recordContentSource>
<recordOrigin>Springer, 1986</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001195 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001195 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:ABA1644128D9FA3EF9FFDA51E85D97FC52CE8870
   |texte=   History of blood gas analysis. VI. Oximetry
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024