Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism

Identifieur interne : 000795 ( Istex/Corpus ); précédent : 000794; suivant : 000796

Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism

Auteurs : Graham Noctor ; Christelle Dutilleul ; Rosine De Paepe ; Christine H. Foyer

Source :

RBID : ISTEX:4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3

English descriptors

Abstract

Primary leaf metabolism requires the co‐ordinated production and use of carbon skeletons and redox equivalents in several subcellular compartments. The role of the mitochondria in leaf metabolism has long been recognized, but it is only recently that molecular tools and mutants have become available to evaluate cause‐and‐effect relationships. In particular, analysis of the CMSII mutant of Nicotiana sylvestris, which lacks functional complex I, has provided information on the role of mitochondrial electron transport in leaf function. The essential feature of CMSII is the absence of a major NADH sink, i.e. complex I. This necessitates re‐adjustment of whole‐cell redox homeostasis, gene expression, and also influences metabolic pathways that use pyridine nucleotides. In air, CMSII is not able to use its photosynthetic capacity as well as the wild type. The mutant shows up‐regulation of the leaf antioxidant system, lower leaf contents of reactive oxygen species, and enhanced stress resistance. Lastly, the loss of a major mitochondrial dehydrogenase has important repercussions for the integration of primary carbon and nitrogen metabolism, causing distinct changes in leaf organic acid profiles, and also affecting downstream processes such as the biosynthesis of the spectrum of leaf amino acids.

Url:
DOI: 10.1093/jxb/erh021

Links to Exploration step

ISTEX:4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism</title>
<author>
<name sortKey="Noctor, Graham" sort="Noctor, Graham" uniqKey="Noctor G" first="Graham" last="Noctor">Graham Noctor</name>
<affiliation>
<mods:affiliation>Laboratoire Signalisation Redox, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI,F‐91405 Orsay cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dutilleul, Christelle" sort="Dutilleul, Christelle" uniqKey="Dutilleul C" first="Christelle" last="Dutilleul">Christelle Dutilleul</name>
<affiliation>
<mods:affiliation>Laboratoire Mitochondries et Métabolisme, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI, F‐91405 Orsay cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Paepe, Rosine" sort="De Paepe, Rosine" uniqKey="De Paepe R" first="Rosine" last="De Paepe">Rosine De Paepe</name>
<affiliation>
<mods:affiliation>Laboratoire Mitochondries et Métabolisme, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI, F‐91405 Orsay cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Foyer, Christine H" sort="Foyer, Christine H" uniqKey="Foyer C" first="Christine H." last="Foyer">Christine H. Foyer</name>
<affiliation>
<mods:affiliation>Crop Performance and Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1093/jxb/erh021</idno>
<idno type="url">https://api.istex.fr/document/4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000795</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000795</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism</title>
<author>
<name sortKey="Noctor, Graham" sort="Noctor, Graham" uniqKey="Noctor G" first="Graham" last="Noctor">Graham Noctor</name>
<affiliation>
<mods:affiliation>Laboratoire Signalisation Redox, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI,F‐91405 Orsay cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dutilleul, Christelle" sort="Dutilleul, Christelle" uniqKey="Dutilleul C" first="Christelle" last="Dutilleul">Christelle Dutilleul</name>
<affiliation>
<mods:affiliation>Laboratoire Mitochondries et Métabolisme, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI, F‐91405 Orsay cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Paepe, Rosine" sort="De Paepe, Rosine" uniqKey="De Paepe R" first="Rosine" last="De Paepe">Rosine De Paepe</name>
<affiliation>
<mods:affiliation>Laboratoire Mitochondries et Métabolisme, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI, F‐91405 Orsay cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Foyer, Christine H" sort="Foyer, Christine H" uniqKey="Foyer C" first="Christine H." last="Foyer">Christine H. Foyer</name>
<affiliation>
<mods:affiliation>Crop Performance and Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Experimental Botany</title>
<title level="j" type="abbrev">J. Exp. Bot.</title>
<idno type="ISSN">0022-0957</idno>
<idno type="eISSN">1460-2431</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2004-01-01">2004-01-01</date>
<biblScope unit="volume">55</biblScope>
<biblScope unit="issue">394</biblScope>
<biblScope unit="page" from="49">49</biblScope>
<biblScope unit="page" to="57">57</biblScope>
</imprint>
<idno type="ISSN">0022-0957</idno>
</series>
<idno type="istex">4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3</idno>
<idno type="DOI">10.1093/jxb/erh021</idno>
<idno type="local">erh021</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-0957</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>C/N metabolism, complex I, mitochondrial electron transport mutants, photosynthesis, redox state, stress tolerance.</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Alternative oxidase</term>
<term>Amino</term>
<term>Amino acids</term>
<term>Ammonia</term>
<term>Annual review</term>
<term>Chloroplast</term>
<term>Cmsii</term>
<term>Cmsii mitochondria</term>
<term>Cycle activity</term>
<term>Dehydrogenase</term>
<term>Dutilleul</term>
<term>Electron transport chain</term>
<term>Experimental botany</term>
<term>Foyer</term>
<term>Gene expression</term>
<term>Kromer</term>
<term>Leaf metabolism</term>
<term>Leaf mitochondria</term>
<term>Major nadh</term>
<term>Malate</term>
<term>Metabolism</term>
<term>Mitochondrial</term>
<term>Mitochondrial electron transport</term>
<term>Mitochondrial electron transport chain</term>
<term>Mitochondrial redox state</term>
<term>Mitochondrion</term>
<term>Mutant</term>
<term>Nadh</term>
<term>National academy</term>
<term>Ndin</term>
<term>Nicotiana</term>
<term>Nicotiana sylvestris</term>
<term>Nitrogen assimilation</term>
<term>Nitrogen metabolism</term>
<term>Noctor</term>
<term>Nuclear gene expression</term>
<term>Other components</term>
<term>Oxidative</term>
<term>Pathway</term>
<term>Photorespiration</term>
<term>Photorespiratory</term>
<term>Photosynthesis</term>
<term>Photosynthetic</term>
<term>Photosynthetic capacity</term>
<term>Physiologia plantarum</term>
<term>Physiology</term>
<term>Plant physiology</term>
<term>Plant science</term>
<term>Reactive oxygen species</term>
<term>Redox</term>
<term>Redox interactions</term>
<term>Redox state</term>
<term>Reductant</term>
<term>Reduction state</term>
<term>Respiration</term>
<term>Sabar</term>
<term>Stress resistance</term>
<term>Stress tolerance</term>
<term>Sucrose synthesis</term>
<term>Sylvestris</term>
<term>Unpublished results</term>
<term>Wild type</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Primary leaf metabolism requires the co‐ordinated production and use of carbon skeletons and redox equivalents in several subcellular compartments. The role of the mitochondria in leaf metabolism has long been recognized, but it is only recently that molecular tools and mutants have become available to evaluate cause‐and‐effect relationships. In particular, analysis of the CMSII mutant of Nicotiana sylvestris, which lacks functional complex I, has provided information on the role of mitochondrial electron transport in leaf function. The essential feature of CMSII is the absence of a major NADH sink, i.e. complex I. This necessitates re‐adjustment of whole‐cell redox homeostasis, gene expression, and also influences metabolic pathways that use pyridine nucleotides. In air, CMSII is not able to use its photosynthetic capacity as well as the wild type. The mutant shows up‐regulation of the leaf antioxidant system, lower leaf contents of reactive oxygen species, and enhanced stress resistance. Lastly, the loss of a major mitochondrial dehydrogenase has important repercussions for the integration of primary carbon and nitrogen metabolism, causing distinct changes in leaf organic acid profiles, and also affecting downstream processes such as the biosynthesis of the spectrum of leaf amino acids.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<keywords>
<teeft>
<json:string>mitochondrial</json:string>
<json:string>redox</json:string>
<json:string>cmsii</json:string>
<json:string>photosynthesis</json:string>
<json:string>mutant</json:string>
<json:string>mitochondrion</json:string>
<json:string>photosynthetic</json:string>
<json:string>noctor</json:string>
<json:string>dutilleul</json:string>
<json:string>plant physiology</json:string>
<json:string>reductant</json:string>
<json:string>chloroplast</json:string>
<json:string>dehydrogenase</json:string>
<json:string>pathway</json:string>
<json:string>mitochondrial electron transport chain</json:string>
<json:string>photorespiratory</json:string>
<json:string>ammonia</json:string>
<json:string>nadh</json:string>
<json:string>sylvestris</json:string>
<json:string>kromer</json:string>
<json:string>metabolism</json:string>
<json:string>nicotiana</json:string>
<json:string>experimental botany</json:string>
<json:string>photorespiration</json:string>
<json:string>ndin</json:string>
<json:string>sabar</json:string>
<json:string>oxidative</json:string>
<json:string>malate</json:string>
<json:string>mitochondrial electron transport</json:string>
<json:string>nicotiana sylvestris</json:string>
<json:string>leaf metabolism</json:string>
<json:string>redox state</json:string>
<json:string>gene expression</json:string>
<json:string>reactive oxygen species</json:string>
<json:string>leaf mitochondria</json:string>
<json:string>amino acids</json:string>
<json:string>mitochondrial redox state</json:string>
<json:string>unpublished results</json:string>
<json:string>physiology</json:string>
<json:string>redox interactions</json:string>
<json:string>alternative oxidase</json:string>
<json:string>sucrose synthesis</json:string>
<json:string>amino</json:string>
<json:string>respiration</json:string>
<json:string>annual review</json:string>
<json:string>nitrogen assimilation</json:string>
<json:string>reduction state</json:string>
<json:string>nitrogen metabolism</json:string>
<json:string>electron transport chain</json:string>
<json:string>stress resistance</json:string>
<json:string>cycle activity</json:string>
<json:string>cmsii mitochondria</json:string>
<json:string>other components</json:string>
<json:string>photosynthetic capacity</json:string>
<json:string>nuclear gene expression</json:string>
<json:string>national academy</json:string>
<json:string>major nadh</json:string>
<json:string>stress tolerance</json:string>
<json:string>physiologia plantarum</json:string>
<json:string>plant science</json:string>
<json:string>wild type</json:string>
<json:string>foyer</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Graham Noctor</name>
<affiliations>
<json:string>Laboratoire Signalisation Redox, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI,F‐91405 Orsay cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christelle Dutilleul</name>
<affiliations>
<json:string>Laboratoire Mitochondries et Métabolisme, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI, F‐91405 Orsay cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Rosine De Paepe</name>
<affiliations>
<json:string>Laboratoire Mitochondries et Métabolisme, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI, F‐91405 Orsay cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christine H. Foyer</name>
<affiliations>
<json:string>Crop Performance and Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>C/N metabolism, complex I, mitochondrial electron transport mutants, photosynthesis, redox state, stress tolerance.</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Primary leaf metabolism requires the co‐ordinated production and use of carbon skeletons and redox equivalents in several subcellular compartments. The role of the mitochondria in leaf metabolism has long been recognized, but it is only recently that molecular tools and mutants have become available to evaluate cause‐and‐effect relationships. In particular, analysis of the CMSII mutant of Nicotiana sylvestris, which lacks functional complex I, has provided information on the role of mitochondrial electron transport in leaf function. The essential feature of CMSII is the absence of a major NADH sink, i.e. complex I. This necessitates re‐adjustment of whole‐cell redox homeostasis, gene expression, and also influences metabolic pathways that use pyridine nucleotides. In air, CMSII is not able to use its photosynthetic capacity as well as the wild type. The mutant shows up‐regulation of the leaf antioxidant system, lower leaf contents of reactive oxygen species, and enhanced stress resistance. Lastly, the loss of a major mitochondrial dehydrogenase has important repercussions for the integration of primary carbon and nitrogen metabolism, causing distinct changes in leaf organic acid profiles, and also affecting downstream processes such as the biosynthesis of the spectrum of leaf amino acids.</abstract>
<qualityIndicators>
<score>9.292</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>611 x 791 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>1</keywordCount>
<abstractCharCount>1309</abstractCharCount>
<pdfWordCount>5337</pdfWordCount>
<pdfCharCount>35310</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>191</abstractWordCount>
</qualityIndicators>
<title>Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Experimental Botany</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0022-0957</json:string>
</issn>
<eissn>
<json:string>1460-2431</json:string>
</eissn>
<publisherId>
<json:string>exbotj</json:string>
</publisherId>
<volume>55</volume>
<issue>394</issue>
<pages>
<first>49</first>
<last>57</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>plant sciences</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>plant biology & botany</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1093/jxb/erh021</json:string>
</doi>
<id>4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<p>Society for Experimental Biology</p>
</availability>
<date>2004</date>
</publicationStmt>
<notesStmt>
<note>Received 18 June 2003; Accepted 3 October 2003</note>
<note>* To whom correspondence should be addressed. Fax: +33 1 69 15 34 25. E‐mail: noctor@ibp.u‐psud.fr
 Abbreviations: AOX, alternative oxidase; APX, ascorbate peroxidase; Ci, leaf intercellular CO2 concentration; CMS, cytoplasmic male sterile; GDC, glycine decarboxylase; NDin, mitochondrial internal alternative NADH dehydrogenase; NR, nitrate reductase; 2‐OG, 2‐oxoglutarate; ROS, reactive oxygen species; TCA, tricarboxylic acid; WT, wild type.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism</title>
<author xml:id="author-1">
<persName>
<forename type="first">Graham</forename>
<surname>Noctor</surname>
</persName>
<affiliation>Laboratoire Signalisation Redox, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI,F‐91405 Orsay cedex, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Christelle</forename>
<surname>Dutilleul</surname>
</persName>
<affiliation>Laboratoire Mitochondries et Métabolisme, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI, F‐91405 Orsay cedex, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Rosine</forename>
<surname>De Paepe</surname>
</persName>
<affiliation>Laboratoire Mitochondries et Métabolisme, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI, F‐91405 Orsay cedex, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Christine H.</forename>
<surname>Foyer</surname>
</persName>
<affiliation>Crop Performance and Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Experimental Botany</title>
<title level="j" type="abbrev">J. Exp. Bot.</title>
<idno type="pISSN">0022-0957</idno>
<idno type="eISSN">1460-2431</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2004-01-01"></date>
<biblScope unit="volume">55</biblScope>
<biblScope unit="issue">394</biblScope>
<biblScope unit="page" from="49">49</biblScope>
<biblScope unit="page" to="57">57</biblScope>
</imprint>
</monogr>
<idno type="istex">4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3</idno>
<idno type="DOI">10.1093/jxb/erh021</idno>
<idno type="local">erh021</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Primary leaf metabolism requires the co‐ordinated production and use of carbon skeletons and redox equivalents in several subcellular compartments. The role of the mitochondria in leaf metabolism has long been recognized, but it is only recently that molecular tools and mutants have become available to evaluate cause‐and‐effect relationships. In particular, analysis of the CMSII mutant of Nicotiana sylvestris, which lacks functional complex I, has provided information on the role of mitochondrial electron transport in leaf function. The essential feature of CMSII is the absence of a major NADH sink, i.e. complex I. This necessitates re‐adjustment of whole‐cell redox homeostasis, gene expression, and also influences metabolic pathways that use pyridine nucleotides. In air, CMSII is not able to use its photosynthetic capacity as well as the wild type. The mutant shows up‐regulation of the leaf antioxidant system, lower leaf contents of reactive oxygen species, and enhanced stress resistance. Lastly, the loss of a major mitochondrial dehydrogenase has important repercussions for the integration of primary carbon and nitrogen metabolism, causing distinct changes in leaf organic acid profiles, and also affecting downstream processes such as the biosynthesis of the spectrum of leaf amino acids.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>KWD</head>
<item>
<term>C/N metabolism, complex I, mitochondrial electron transport mutants, photosynthesis, redox state, stress tolerance.</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2004-01-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-12-22">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="US-ASCII"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article xml:lang="en" article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">jexbot</journal-id>
<journal-id journal-id-type="nlm-ta">J Exp Bot</journal-id>
<journal-id journal-id-type="publisher-id">exbotj</journal-id>
<journal-title>Journal of Experimental Botany</journal-title>
<abbrev-journal-title abbrev-type="publisher">J. Exp. Bot.</abbrev-journal-title>
<issn pub-type="ppub">0022-0957</issn>
<issn pub-type="epub">1460-2431</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="other">erh021</article-id>
<article-id pub-id-type="doi">10.1093/jxb/erh021</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Plant Carbon-Nitrogen Interactions from Rhizospheres to Planet</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Noctor</surname>
<given-names>Graham</given-names>
</name>
<xref rid="ERH021A1">1</xref>
<xref rid="COR1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dutilleul</surname>
<given-names>Christelle</given-names>
</name>
<xref rid="ERH021A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>De Paepe</surname>
<given-names>Rosine</given-names>
</name>
<xref rid="ERH021A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Foyer</surname>
<given-names>Christine H.</given-names>
</name>
<xref rid="ERH021A3">3</xref>
</contrib>
<aff id="ERH021A1">
<label>1</label>
Laboratoire Signalisation Redox, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI,F‐91405 Orsay cedex, France</aff>
<aff id="ERH021A2">
<label>2</label>
Laboratoire Mitochondries et Métabolisme, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI, F‐91405 Orsay cedex, France</aff>
<aff id="ERH021A3">
<label>3</label>
Crop Performance and Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK</aff>
</contrib-group>
<author-notes>
<corresp id="COR1">* To whom correspondence should be addressed. Fax: +33 1 69 15 34 25. E‐mail:
<ext-link xlink:href="noctor@ibp.u-psud.fr" ext-link-type="email">noctor@ibp.u‐psud.fr</ext-link>

 Abbreviations: AOX, alternative oxidase; APX, ascorbate peroxidase;
<italic>C</italic>
<sub>i</sub>
, leaf intercellular CO
<sub>2</sub>
concentration; CMS, cytoplasmic male sterile; GDC, glycine decarboxylase; NDin, mitochondrial internal alternative NADH dehydrogenase; NR, nitrate reductase; 2‐OG, 2‐oxoglutarate; ROS, reactive oxygen species; TCA, tricarboxylic acid; WT, wild type.</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>01</day>
<month>01</month>
<year>2004</year>
</pub-date>
<volume>55</volume>
<issue>394</issue>
<fpage>49</fpage>
<lpage>57</lpage>
<permissions>
<copyright-statement>Society for Experimental Biology</copyright-statement>
<copyright-year>2004</copyright-year>
</permissions>
<abstract xml:lang="en">
<p>Primary leaf metabolism requires the co‐ordinated production and use of carbon skeletons and redox equivalents in several subcellular compartments. The role of the mitochondria in leaf metabolism has long been recognized, but it is only recently that molecular tools and mutants have become available to evaluate cause‐and‐effect relationships. In particular, analysis of the CMSII mutant of
<italic>Nicotiana sylvestris</italic>
, which lacks functional complex I, has provided information on the role of mitochondrial electron transport in leaf function. The essential feature of CMSII is the absence of a major NADH sink, i.e. complex I. This necessitates re‐adjustment of whole‐cell redox homeostasis, gene expression, and also influences metabolic pathways that use pyridine nucleotides. In air, CMSII is not able to use its photosynthetic capacity as well as the wild type. The mutant shows up‐regulation of the leaf antioxidant system, lower leaf contents of reactive oxygen species, and enhanced stress resistance. Lastly, the loss of a major mitochondrial dehydrogenase has important repercussions for the integration of primary carbon and nitrogen metabolism, causing distinct changes in leaf organic acid profiles, and also affecting downstream processes such as the biosynthesis of the spectrum of leaf amino acids.</p>
</abstract>
<kwd-group kwd-group-type="KWD" xml:lang="en">
<kwd>C/N metabolism, complex I, mitochondrial electron transport mutants, photosynthesis, redox state, stress tolerance.</kwd>
</kwd-group>
<custom-meta-wrap>
<custom-meta>
<meta-name>hwp-legacy-fpage</meta-name>
<meta-value>49</meta-value>
</custom-meta>
<custom-meta>
<meta-name>hwp-legacy-dochead</meta-name>
<meta-value>Article</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
<notes>
<p content-type="arthw-misc">Received 18 June 2003; Accepted 3 October 2003</p>
</notes>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Noctor</namePart>
<affiliation>Laboratoire Signalisation Redox, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI,F‐91405 Orsay cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christelle</namePart>
<namePart type="family">Dutilleul</namePart>
<affiliation>Laboratoire Mitochondries et Métabolisme, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI, F‐91405 Orsay cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rosine</namePart>
<namePart type="family">De Paepe</namePart>
<affiliation>Laboratoire Mitochondries et Métabolisme, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris XI, F‐91405 Orsay cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine H.</namePart>
<namePart type="family">Foyer</namePart>
<affiliation>Crop Performance and Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">2004-01-01</dateIssued>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Primary leaf metabolism requires the co‐ordinated production and use of carbon skeletons and redox equivalents in several subcellular compartments. The role of the mitochondria in leaf metabolism has long been recognized, but it is only recently that molecular tools and mutants have become available to evaluate cause‐and‐effect relationships. In particular, analysis of the CMSII mutant of Nicotiana sylvestris, which lacks functional complex I, has provided information on the role of mitochondrial electron transport in leaf function. The essential feature of CMSII is the absence of a major NADH sink, i.e. complex I. This necessitates re‐adjustment of whole‐cell redox homeostasis, gene expression, and also influences metabolic pathways that use pyridine nucleotides. In air, CMSII is not able to use its photosynthetic capacity as well as the wild type. The mutant shows up‐regulation of the leaf antioxidant system, lower leaf contents of reactive oxygen species, and enhanced stress resistance. Lastly, the loss of a major mitochondrial dehydrogenase has important repercussions for the integration of primary carbon and nitrogen metabolism, causing distinct changes in leaf organic acid profiles, and also affecting downstream processes such as the biosynthesis of the spectrum of leaf amino acids.</abstract>
<note>Received 18 June 2003; Accepted 3 October 2003</note>
<note type="author-notes">* To whom correspondence should be addressed. Fax: +33 1 69 15 34 25. E‐mail: noctor@ibp.u‐psud.fr
 Abbreviations: AOX, alternative oxidase; APX, ascorbate peroxidase; Ci, leaf intercellular CO2 concentration; CMS, cytoplasmic male sterile; GDC, glycine decarboxylase; NDin, mitochondrial internal alternative NADH dehydrogenase; NR, nitrate reductase; 2‐OG, 2‐oxoglutarate; ROS, reactive oxygen species; TCA, tricarboxylic acid; WT, wild type.</note>
<subject lang="en">
<genre>KWD</genre>
<topic>C/N metabolism, complex I, mitochondrial electron transport mutants, photosynthesis, redox state, stress tolerance.</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Experimental Botany</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Exp. Bot.</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0022-0957</identifier>
<identifier type="eISSN">1460-2431</identifier>
<identifier type="PublisherID">exbotj</identifier>
<identifier type="PublisherID-hwp">jexbot</identifier>
<identifier type="PublisherID-nlm-ta">J Exp Bot</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>55</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>394</number>
</detail>
<extent unit="pages">
<start>49</start>
<end>57</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3</identifier>
<identifier type="DOI">10.1093/jxb/erh021</identifier>
<identifier type="local">erh021</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Society for Experimental Biology</accessCondition>
<recordInfo>
<recordContentSource>OUP</recordContentSource>
</recordInfo>
</mods>
</metadata>
<annexes>
<json:item>
<extension>jpeg</extension>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<uri>https://api.istex.fr/document/4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3/annexes/jpeg</uri>
</json:item>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/document/4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3/annexes/gif</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000795 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000795 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4B8A4F4810DA97C96090A46DD6528B9D58CE1BE3
   |texte=   Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024