Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of MC1R signalling by G‐protein‐coupled receptor kinases

Identifieur interne : 000683 ( Istex/Corpus ); précédent : 000682; suivant : 000684

Regulation of MC1R signalling by G‐protein‐coupled receptor kinases

Auteurs : J. C. García-Borr N

Source :

RBID : ISTEX:4139881425E46EEA8FC6D1946AFE9E987FC56FA7

English descriptors

Abstract

The melanocortin 1 receptor (MC1R) is a key regulator of melanocyte proliferation and differentiation and a major determinant of human skin phototype and skin cancer risk. Although the regulation of MC1R gene expression is fairly well understood, little is known about regulatory mechanisms acting at the protein level. In particular, no information is available on homologous desensitization of MC1R signalling. We studied MC1R and Mc1r desensitization and found that: 1) MC1R and Mc1r in melanoma cells undergo homologous desensitization, demonstrated by decreases in cAMP contents upon continuous exposure to agonists, 2) desensitization is not dependent on PKA, PKC, calcium mobilization or MAPKs but is agonist dose dependent, suggesting a role of receptor occupancy, 3) melanoma cells express two members of the GRK family of serine/threonine kinases, GRK2 and GRK6, 4. These kinases are expressed in normal melanocytes, 5) in cotransfection experiments performed with HEK 293T cells, GRK2 strongly impairs agonist‐dependent signalling by MC1R or Mc1r, 6) expression of a dominant negative GRK2 mutant in melanoma cells increases their cAMP response to MC1R agonists, 7) cotransfection of HEK 293T cells with GRK6 and MC1R inhibits both basal and agonist‐dependent signalling, and 8) cAMP production in agonist‐stimulated melanoma cells is strongly impaired by enrichment with GRK6 following stable transfection. Therefore, GRK2 and GRK6 are key regulators of MC1R signalling and may be important determinants of normal and pathological skin pigmentation.

Url:
DOI: 10.1111/j.0906-6705.2004.00212f.x

Links to Exploration step

ISTEX:4139881425E46EEA8FC6D1946AFE9E987FC56FA7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of MC1R signalling by G‐protein‐coupled receptor kinases</title>
<author>
<name sortKey="Garcia Orr N, J C" sort="Garcia Orr N, J C" uniqKey="Garcia Orr N J" first="J. C." last="García-Borr N">J. C. García-Borr N</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4139881425E46EEA8FC6D1946AFE9E987FC56FA7</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1111/j.0906-6705.2004.00212f.x</idno>
<idno type="url">https://api.istex.fr/document/4139881425E46EEA8FC6D1946AFE9E987FC56FA7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000683</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000683</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Regulation of MC1R signalling by G‐protein‐coupled receptor kinases</title>
<author>
<name sortKey="Garcia Orr N, J C" sort="Garcia Orr N, J C" uniqKey="Garcia Orr N J" first="J. C." last="García-Borr N">J. C. García-Borr N</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Experimental Dermatology</title>
<idno type="ISSN">0906-6705</idno>
<idno type="eISSN">1600-0625</idno>
<imprint>
<publisher>Blackwell Publishing Ltd/Inc.</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2004-09">2004-09</date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="568">568</biblScope>
<biblScope unit="page" to="568">568</biblScope>
</imprint>
<idno type="ISSN">0906-6705</idno>
</series>
<idno type="istex">4139881425E46EEA8FC6D1946AFE9E987FC56FA7</idno>
<idno type="DOI">10.1111/j.0906-6705.2004.00212f.x</idno>
<idno type="ArticleID">EXD212F</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0906-6705</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>2department</term>
<term>3department</term>
<term>Acth</term>
<term>Activates</term>
<term>Adhesion</term>
<term>Adrenomedullin</term>
<term>Agonist</term>
<term>Allergic dermatitis</term>
<term>Anagen</term>
<term>Antimicrobial</term>
<term>Antioxidant</term>
<term>Apoptosis</term>
<term>Apoptotic</term>
<term>Atopic</term>
<term>Atopic dermatitis</term>
<term>Autoimmune</term>
<term>Basal</term>
<term>Bdnf</term>
<term>Biomedical</term>
<term>Biomedical sciences</term>
<term>Bmdcs</term>
<term>Bohm1</term>
<term>Boltzmann</term>
<term>Calcitonin</term>
<term>Calcitonin peptide</term>
<term>Capsaicin</term>
<term>Cell biology</term>
<term>Cgrp</term>
<term>Charite</term>
<term>Costimulatory molecules</term>
<term>Cutaneous</term>
<term>Cutaneous inflammation</term>
<term>Cytokine</term>
<term>Cytotoxicity</term>
<term>Dendricity</term>
<term>Dendritic</term>
<term>Dendritic cells</term>
<term>Dermal</term>
<term>Dermal microvascular</term>
<term>Dermatitis</term>
<term>Dermatology</term>
<term>Endocrine</term>
<term>Endogenous</term>
<term>Endothelial</term>
<term>Endothelial cells</term>
<term>Eosinophil</term>
<term>Epidermal</term>
<term>Epithelial</term>
<term>Extracellular</term>
<term>Fibre</term>
<term>Fibroblast</term>
<term>Follicle</term>
<term>Functional role</term>
<term>Glutamine</term>
<term>Hacat</term>
<term>Hacat cells</term>
<term>Hair follicle</term>
<term>Hair follicles</term>
<term>Hair growth</term>
<term>Hamburg</term>
<term>Hdmec</term>
<term>Healthy subjects</term>
<term>Homeostasis</term>
<term>Human hair follicle</term>
<term>Human sebocytes</term>
<term>Human skin</term>
<term>Hyperalgesia</term>
<term>Immune</term>
<term>Immune cells</term>
<term>Immune response</term>
<term>Immune system</term>
<term>Immunobiology</term>
<term>Immunohistochemistry</term>
<term>Immunomodulatory</term>
<term>Immunoreactivity</term>
<term>Important role</term>
<term>Inflammation</term>
<term>Inflammatory</term>
<term>Insr</term>
<term>Internal medicine</term>
<term>Intracellular</term>
<term>Intracellular calcium concentration</term>
<term>Keratinocyte</term>
<term>Keratinocytes</term>
<term>Kinase</term>
<term>Ligand</term>
<term>Ludwig boltzmann institute</term>
<term>Luger1</term>
<term>Lymphocyte</term>
<term>Mast cells</term>
<term>Mc1r</term>
<term>Mediator</term>
<term>Melanin</term>
<term>Melanocortin</term>
<term>Melanocortin receptors</term>
<term>Melanocyte</term>
<term>Melanogenesis</term>
<term>Melanoma</term>
<term>Melanoma cells</term>
<term>Melatonin</term>
<term>Microvascular</term>
<term>Mitf</term>
<term>Modulators</term>
<term>Mrna</term>
<term>Msc</term>
<term>Munster</term>
<term>Murine</term>
<term>Naltrexone</term>
<term>Nerve fibers</term>
<term>Nerve fibres</term>
<term>Nerve growth factor</term>
<term>Nervous system</term>
<term>Neuroendocrine</term>
<term>Neurogenic</term>
<term>Neurogenic inflammation</term>
<term>Neuron</term>
<term>Neuropeptide</term>
<term>Neuropeptides</term>
<term>Neurotrophic</term>
<term>Neurotrophic factor</term>
<term>Neurotrophin</term>
<term>Neurotrophins</term>
<term>Neutral endopeptidase</term>
<term>Nk1r</term>
<term>Nmda</term>
<term>Pacap</term>
<term>Papilla</term>
<term>Par2</term>
<term>Pathway</term>
<term>Peptide</term>
<term>Peripheral blood eosinophils</term>
<term>Pigmentation</term>
<term>Plasma membrane</term>
<term>Pomc</term>
<term>Pomc peptides</term>
<term>Present study</term>
<term>Proinflammatory</term>
<term>Pruritus</term>
<term>Receptor</term>
<term>Regulator</term>
<term>Rheumatoid arthritis</term>
<term>Schwann</term>
<term>Sebaceous</term>
<term>Sebaceous gland</term>
<term>Sebocytes</term>
<term>Sensitization</term>
<term>Sensory nerves</term>
<term>Sensory neurons</term>
<term>Somatostatin</term>
<term>Trafficking</term>
<term>Transgenic</term>
<term>Transgenic mice</term>
<term>Trpv1</term>
<term>Tumour</term>
<term>Upregulated</term>
<term>Upregulation</term>
<term>Uremic pruritus</term>
<term>Urocortin</term>
<term>Vanilloid</term>
<term>Vasoactive</term>
<term>Vellus hair follicles</term>
<term>Wound healing</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The melanocortin 1 receptor (MC1R) is a key regulator of melanocyte proliferation and differentiation and a major determinant of human skin phototype and skin cancer risk. Although the regulation of MC1R gene expression is fairly well understood, little is known about regulatory mechanisms acting at the protein level. In particular, no information is available on homologous desensitization of MC1R signalling. We studied MC1R and Mc1r desensitization and found that: 1) MC1R and Mc1r in melanoma cells undergo homologous desensitization, demonstrated by decreases in cAMP contents upon continuous exposure to agonists, 2) desensitization is not dependent on PKA, PKC, calcium mobilization or MAPKs but is agonist dose dependent, suggesting a role of receptor occupancy, 3) melanoma cells express two members of the GRK family of serine/threonine kinases, GRK2 and GRK6, 4. These kinases are expressed in normal melanocytes, 5) in cotransfection experiments performed with HEK 293T cells, GRK2 strongly impairs agonist‐dependent signalling by MC1R or Mc1r, 6) expression of a dominant negative GRK2 mutant in melanoma cells increases their cAMP response to MC1R agonists, 7) cotransfection of HEK 293T cells with GRK6 and MC1R inhibits both basal and agonist‐dependent signalling, and 8) cAMP production in agonist‐stimulated melanoma cells is strongly impaired by enrichment with GRK6 following stable transfection. Therefore, GRK2 and GRK6 are key regulators of MC1R signalling and may be important determinants of normal and pathological skin pigmentation.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>receptor</json:string>
<json:string>dermatology</json:string>
<json:string>follicle</json:string>
<json:string>keratinocytes</json:string>
<json:string>cutaneous</json:string>
<json:string>melanocyte</json:string>
<json:string>fibroblast</json:string>
<json:string>peptide</json:string>
<json:string>munster</json:string>
<json:string>mc1r</json:string>
<json:string>immune</json:string>
<json:string>pathway</json:string>
<json:string>inflammation</json:string>
<json:string>neuropeptides</json:string>
<json:string>melanoma</json:string>
<json:string>cgrp</json:string>
<json:string>epidermal</json:string>
<json:string>neurogenic</json:string>
<json:string>pomc</json:string>
<json:string>agonist</json:string>
<json:string>bdnf</json:string>
<json:string>dermatitis</json:string>
<json:string>2department</json:string>
<json:string>neuropeptide</json:string>
<json:string>dermal</json:string>
<json:string>capsaicin</json:string>
<json:string>pruritus</json:string>
<json:string>fibre</json:string>
<json:string>human skin</json:string>
<json:string>kinase</json:string>
<json:string>nk1r</json:string>
<json:string>melatonin</json:string>
<json:string>neurotrophins</json:string>
<json:string>intracellular</json:string>
<json:string>pigmentation</json:string>
<json:string>melanocortin</json:string>
<json:string>apoptosis</json:string>
<json:string>eosinophil</json:string>
<json:string>glutamine</json:string>
<json:string>mrna</json:string>
<json:string>hacat</json:string>
<json:string>microvascular</json:string>
<json:string>neurogenic inflammation</json:string>
<json:string>sebocytes</json:string>
<json:string>upregulation</json:string>
<json:string>trpv1</json:string>
<json:string>tumour</json:string>
<json:string>atopic</json:string>
<json:string>cytokine</json:string>
<json:string>murine</json:string>
<json:string>neuron</json:string>
<json:string>mediator</json:string>
<json:string>sensitization</json:string>
<json:string>calcitonin</json:string>
<json:string>inflammatory</json:string>
<json:string>luger1</json:string>
<json:string>atopic dermatitis</json:string>
<json:string>proinflammatory</json:string>
<json:string>somatostatin</json:string>
<json:string>endothelial cells</json:string>
<json:string>dendritic</json:string>
<json:string>3department</json:string>
<json:string>endothelial</json:string>
<json:string>urocortin</json:string>
<json:string>immunohistochemistry</json:string>
<json:string>cutaneous inflammation</json:string>
<json:string>vanilloid</json:string>
<json:string>hair follicle</json:string>
<json:string>sebaceous</json:string>
<json:string>pomc peptides</json:string>
<json:string>cell biology</json:string>
<json:string>melanin</json:string>
<json:string>neurotrophin</json:string>
<json:string>par2</json:string>
<json:string>melanogenesis</json:string>
<json:string>upregulated</json:string>
<json:string>nmda</json:string>
<json:string>hacat cells</json:string>
<json:string>papilla</json:string>
<json:string>pacap</json:string>
<json:string>immunoreactivity</json:string>
<json:string>sensory neurons</json:string>
<json:string>sensory nerves</json:string>
<json:string>cytotoxicity</json:string>
<json:string>naltrexone</json:string>
<json:string>msc</json:string>
<json:string>basal</json:string>
<json:string>schwann</json:string>
<json:string>immunobiology</json:string>
<json:string>anagen</json:string>
<json:string>antimicrobial</json:string>
<json:string>antioxidant</json:string>
<json:string>trafficking</json:string>
<json:string>calcitonin peptide</json:string>
<json:string>immune cells</json:string>
<json:string>transgenic</json:string>
<json:string>neurotrophic</json:string>
<json:string>hamburg</json:string>
<json:string>vasoactive</json:string>
<json:string>homeostasis</json:string>
<json:string>biomedical</json:string>
<json:string>apoptotic</json:string>
<json:string>lymphocyte</json:string>
<json:string>bmdcs</json:string>
<json:string>melanoma cells</json:string>
<json:string>neuroendocrine</json:string>
<json:string>extracellular</json:string>
<json:string>charite</json:string>
<json:string>immunomodulatory</json:string>
<json:string>endocrine</json:string>
<json:string>keratinocyte</json:string>
<json:string>nervous system</json:string>
<json:string>acth</json:string>
<json:string>activates</json:string>
<json:string>nerve fibres</json:string>
<json:string>mitf</json:string>
<json:string>biomedical sciences</json:string>
<json:string>dendricity</json:string>
<json:string>autoimmune</json:string>
<json:string>hair growth</json:string>
<json:string>nerve growth factor</json:string>
<json:string>human sebocytes</json:string>
<json:string>epithelial</json:string>
<json:string>bohm1</json:string>
<json:string>important role</json:string>
<json:string>dermal microvascular</json:string>
<json:string>hyperalgesia</json:string>
<json:string>mast cells</json:string>
<json:string>ludwig boltzmann institute</json:string>
<json:string>insr</json:string>
<json:string>modulators</json:string>
<json:string>adrenomedullin</json:string>
<json:string>hdmec</json:string>
<json:string>transgenic mice</json:string>
<json:string>neurotrophic factor</json:string>
<json:string>healthy subjects</json:string>
<json:string>immune response</json:string>
<json:string>wound healing</json:string>
<json:string>neutral endopeptidase</json:string>
<json:string>dendritic cells</json:string>
<json:string>endogenous</json:string>
<json:string>regulator</json:string>
<json:string>functional role</json:string>
<json:string>immune system</json:string>
<json:string>human hair follicle</json:string>
<json:string>nerve fibers</json:string>
<json:string>rheumatoid arthritis</json:string>
<json:string>allergic dermatitis</json:string>
<json:string>vellus hair follicles</json:string>
<json:string>sebaceous gland</json:string>
<json:string>intracellular calcium concentration</json:string>
<json:string>plasma membrane</json:string>
<json:string>present study</json:string>
<json:string>peripheral blood eosinophils</json:string>
<json:string>costimulatory molecules</json:string>
<json:string>internal medicine</json:string>
<json:string>melanocortin receptors</json:string>
<json:string>hair follicles</json:string>
<json:string>uremic pruritus</json:string>
<json:string>adhesion</json:string>
<json:string>ligand</json:string>
<json:string>boltzmann</json:string>
<json:string>hair buds</json:string>
<json:string>plasma leakage</json:string>
<json:string>cell surface</json:string>
<json:string>epidermal growth factor</json:string>
<json:string>growth factors</json:string>
<json:string>autoimmune diseases</json:string>
<json:string>human melanocytes</json:string>
<json:string>northwestern university</json:string>
<json:string>hair cycle</json:string>
<json:string>merkel cells</json:string>
<json:string>first time</json:string>
<json:string>skin cells</json:string>
<json:string>molecular biology</json:string>
<json:string>contact dermatitis</json:string>
<json:string>adaptive immunity</json:string>
<json:string>inflammatory responses</json:string>
<json:string>schwann cells</json:string>
<json:string>topical application</json:string>
<json:string>oxidative stress</json:string>
<json:string>human keratinocytes</json:string>
<json:string>crucial role</json:string>
<json:string>reconstructed skin</json:string>
<json:string>cell death</json:string>
<json:string>plasma extravasation</json:string>
<json:string>stratum corneum</json:string>
<json:string>anagen hair follicles</json:string>
<json:string>various skin diseases</json:string>
<json:string>neuronal</json:string>
<json:string>afferent</json:string>
<json:string>ethanol</json:string>
<json:string>mouse</json:string>
<json:string>physiology</json:string>
<json:string>proliferation</json:string>
<json:string>allergic</json:string>
<json:string>epidermis</json:string>
<json:string>blood vessels</json:string>
<json:string>melanocyte dendricity</json:string>
<json:string>university hospital</json:string>
<json:string>melanocyte differentiation</json:string>
<json:string>adverse events</json:string>
<json:string>skin cancer</json:string>
<json:string>pivotal role</json:string>
<json:string>human hair growth</json:string>
<json:string>hapten uptake</json:string>
<json:string>intercellular adhesion</json:string>
<json:string>hair growth cycle</json:string>
<json:string>public health</json:string>
<json:string>functional absence</json:string>
<json:string>proteolytic peptidases</json:string>
<json:string>lesional skin</json:string>
<json:string>transcription factors</json:string>
<json:string>respiratory burst</json:string>
<json:string>protein expression</json:string>
<json:string>prurigo nodularis</json:string>
<json:string>significant increase</json:string>
<json:string>proinflammatory cytokines</json:string>
<json:string>epidermal cells</json:string>
<json:string>sensorial neurons</json:string>
<json:string>dorsal root ganglia</json:string>
<json:string>cell proliferation</json:string>
<json:string>protein level</json:string>
<json:string>sebaceous glands</json:string>
<json:string>molecular medicine</json:string>
<json:string>nmda receptors</json:string>
<json:string>postnatal development</json:string>
<json:string>glutamine synthetase</json:string>
<json:string>cutaneous expression</json:string>
<json:string>dermal papilla</json:string>
<json:string>terminal schwann cells</json:string>
<json:string>protein kinase</json:string>
<json:string>nk1r trafficking</json:string>
<json:string>hacat keratinocytes</json:string>
<json:string>human epidermis</json:string>
<json:string>university medicine berlin</json:string>
<json:string>neuropeptide substance</json:string>
<json:string>hair loss</json:string>
<json:string>contact hypersensitivity</json:string>
<json:string>humboldt university</json:string>
<json:string>sigma receptors</json:string>
<json:string>high concentrations</json:string>
<json:string>human fibroblasts</json:string>
<json:string>hair follicle growth</json:string>
<json:string>hair fibre elongation</json:string>
<json:string>hair manner</json:string>
<json:string>western blot</json:string>
<json:string>capsaicin cytotoxicity</json:string>
<json:string>human terminal</json:string>
<json:string>receptor system</json:string>
<json:string>mrna expression</json:string>
<json:string>avena rhealba1</json:string>
<json:string>morphine modulation</json:string>
<json:string>urocortin peptides</json:string>
<json:string>cutaneous neurogenic inflammation</json:string>
<json:string>other hand</json:string>
<json:string>several neuropeptides</json:string>
<json:string>skin inflammation</json:string>
<json:string>dermal fibroblasts</json:string>
<json:string>inhibitor</json:string>
<json:string>activation</json:string>
<json:string>antagonist</json:string>
<json:string>mast</json:string>
<json:string>molecule</json:string>
<json:string>cell</json:string>
<json:string>cultured</json:string>
<json:string>vivo</json:string>
<json:string>skin</json:string>
<json:string>nerve</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>J. C. García‐Borrón</name>
<affiliations>
<json:string>Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>EXD212F</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>abstract</json:string>
</originalGenre>
<abstract>The melanocortin 1 receptor (MC1R) is a key regulator of melanocyte proliferation and differentiation and a major determinant of human skin phototype and skin cancer risk. Although the regulation of MC1R gene expression is fairly well understood, little is known about regulatory mechanisms acting at the protein level. In particular, no information is available on homologous desensitization of MC1R signalling. We studied MC1R and Mc1r desensitization and found that: 1) MC1R and Mc1r in melanoma cells undergo homologous desensitization, demonstrated by decreases in cAMP contents upon continuous exposure to agonists, 2) desensitization is not dependent on PKA, PKC, calcium mobilization or MAPKs but is agonist dose dependent, suggesting a role of receptor occupancy, 3) melanoma cells express two members of the GRK family of serine/threonine kinases, GRK2 and GRK6, 4. These kinases are expressed in normal melanocytes, 5) in cotransfection experiments performed with HEK 293T cells, GRK2 strongly impairs agonist‐dependent signalling by MC1R or Mc1r, 6) expression of a dominant negative GRK2 mutant in melanoma cells increases their cAMP response to MC1R agonists, 7) cotransfection of HEK 293T cells with GRK6 and MC1R inhibits both basal and agonist‐dependent signalling, and 8) cAMP production in agonist‐stimulated melanoma cells is strongly impaired by enrichment with GRK6 following stable transfection. Therefore, GRK2 and GRK6 are key regulators of MC1R signalling and may be important determinants of normal and pathological skin pigmentation.</abstract>
<qualityIndicators>
<score>7.736</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 782 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractCharCount>1561</abstractCharCount>
<pdfWordCount>23570</pdfWordCount>
<pdfCharCount>158516</pdfCharCount>
<pdfPageCount>25</pdfPageCount>
<abstractWordCount>228</abstractWordCount>
</qualityIndicators>
<title>Regulation of MC1R signalling by G‐protein‐coupled receptor kinases</title>
<genre>
<json:string>abstract</json:string>
</genre>
<host>
<title>Experimental Dermatology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1600-0625</json:string>
</doi>
<issn>
<json:string>0906-6705</json:string>
</issn>
<eissn>
<json:string>1600-0625</json:string>
</eissn>
<publisherId>
<json:string>EXD</json:string>
</publisherId>
<volume>13</volume>
<issue>9</issue>
<pages>
<first>568</first>
<last>568</last>
<total>1</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>dermatology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>dermatology & venereal diseases</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences medicales</json:string>
<json:string>cardiologie. appareil circulatoire</json:string>
</inist>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1111/j.0906-6705.2004.00212f.x</json:string>
</doi>
<id>4139881425E46EEA8FC6D1946AFE9E987FC56FA7</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/4139881425E46EEA8FC6D1946AFE9E987FC56FA7/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/4139881425E46EEA8FC6D1946AFE9E987FC56FA7/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/4139881425E46EEA8FC6D1946AFE9E987FC56FA7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Regulation of MC1R signalling by G‐protein‐coupled receptor kinases</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd/Inc.</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2004</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Regulation of MC1R signalling by G‐protein‐coupled receptor kinases</title>
<author xml:id="author-1">
<persName>
<forename type="first">J. C.</forename>
<surname>García‐Borrón</surname>
</persName>
<affiliation>Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Experimental Dermatology</title>
<idno type="pISSN">0906-6705</idno>
<idno type="eISSN">1600-0625</idno>
<idno type="DOI">10.1111/(ISSN)1600-0625</idno>
<imprint>
<publisher>Blackwell Publishing Ltd/Inc.</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2004-09"></date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="568">568</biblScope>
<biblScope unit="page" to="568">568</biblScope>
</imprint>
</monogr>
<idno type="istex">4139881425E46EEA8FC6D1946AFE9E987FC56FA7</idno>
<idno type="DOI">10.1111/j.0906-6705.2004.00212f.x</idno>
<idno type="ArticleID">EXD212F</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The melanocortin 1 receptor (MC1R) is a key regulator of melanocyte proliferation and differentiation and a major determinant of human skin phototype and skin cancer risk. Although the regulation of MC1R gene expression is fairly well understood, little is known about regulatory mechanisms acting at the protein level. In particular, no information is available on homologous desensitization of MC1R signalling. We studied MC1R and Mc1r desensitization and found that: 1) MC1R and Mc1r in melanoma cells undergo homologous desensitization, demonstrated by decreases in cAMP contents upon continuous exposure to agonists, 2) desensitization is not dependent on PKA, PKC, calcium mobilization or MAPKs but is agonist dose dependent, suggesting a role of receptor occupancy, 3) melanoma cells express two members of the GRK family of serine/threonine kinases, GRK2 and GRK6, 4. These kinases are expressed in normal melanocytes, 5) in cotransfection experiments performed with HEK 293T cells, GRK2 strongly impairs agonist‐dependent signalling by MC1R or Mc1r, 6) expression of a dominant negative GRK2 mutant in melanoma cells increases their cAMP response to MC1R agonists, 7) cotransfection of HEK 293T cells with GRK6 and MC1R inhibits both basal and agonist‐dependent signalling, and 8) cAMP production in agonist‐stimulated melanoma cells is strongly impaired by enrichment with GRK6 following stable transfection. Therefore, GRK2 and GRK6 are key regulators of MC1R signalling and may be important determinants of normal and pathological skin pigmentation.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2004-09">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-12-14">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-02-9">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/4139881425E46EEA8FC6D1946AFE9E987FC56FA7/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley component found">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd/Inc.</publisherName>
<publisherLoc>Oxford, UK; Malden, USA</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1600-0625</doi>
<issn type="print">0906-6705</issn>
<issn type="electronic">1600-0625</issn>
<idGroup>
<id type="product" value="EXD"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="EXPERIMENTAL DERMATOLOGY">Experimental Dermatology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="09009">
<doi origin="wiley">10.1111/exd.2004.13.issue-9</doi>
<numberingGroup>
<numbering type="journalVolume" number="13">13</numbering>
<numbering type="journalIssue" number="9">9</numbering>
</numberingGroup>
<coverDate startDate="2004-09">September 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="abstract" position="0056800" status="forIssue">
<doi origin="wiley">10.1111/j.0906-6705.2004.00212f.x</doi>
<idGroup>
<id type="unit" value="EXD212F"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="1"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Abstracts</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2008-06-28"></event>
<event type="publishedOnlineFinalForm" date="2008-06-28"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.15 mode:FullText source:Header result:Header" date="2010-07-19"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-17"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="568">568</numbering>
<numbering type="pageLast" number="568">568</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:EXD.EXD212f.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="0"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="0"></count>
<count type="wordTotal" number="2708"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Regulation of MC1R signalling by G‐protein‐coupled receptor kinases</title>
<title type="shortAuthors">
<b>Abstracts</b>
</title>
<title type="short">
<b>Abstracts</b>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>J. C.</givenNames>
<familyName>García‐Borrón</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="ES">
<unparsedAffiliation>
<b>Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain</b>
</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>The melanocortin 1 receptor (MC1R) is a key regulator of melanocyte proliferation and differentiation and a major determinant of human skin phototype and skin cancer risk. Although the regulation of
<i>MC1R</i>
gene expression is fairly well understood, little is known about regulatory mechanisms acting at the protein level. In particular, no information is available on homologous desensitization of MC1R signalling. We studied MC1R and Mc1r desensitization and found that: 1) MC1R and Mc1r in melanoma cells undergo homologous desensitization, demonstrated by decreases in cAMP contents upon continuous exposure to agonists, 2) desensitization is not dependent on PKA, PKC, calcium mobilization or MAPKs but is agonist dose dependent, suggesting a role of receptor occupancy, 3) melanoma cells express two members of the GRK family of serine/threonine kinases, GRK2 and GRK6, 4. These kinases are expressed in normal melanocytes, 5) in cotransfection experiments performed with HEK 293T cells, GRK2 strongly impairs agonist‐dependent signalling by MC1R or Mc1r, 6) expression of a dominant negative GRK2 mutant in melanoma cells increases their cAMP response to MC1R agonists, 7) cotransfection of HEK 293T cells with GRK6 and MC1R inhibits both basal and agonist‐dependent signalling, and 8) cAMP production in agonist‐stimulated melanoma cells is strongly impaired by enrichment with GRK6 following stable transfection. Therefore, GRK2 and GRK6 are key regulators of MC1R signalling and may be important determinants of normal and pathological skin pigmentation.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Regulation of MC1R signalling by G‐protein‐coupled receptor kinases</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Abstracts</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Regulation of MC1R signalling by G‐protein‐coupled receptor kinases</title>
</titleInfo>
<name type="personal">
<namePart type="given">J. C.</namePart>
<namePart type="family">García‐Borrón</namePart>
<affiliation>Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="abstract" displayLabel="abstract"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd/Inc.</publisher>
<place>
<placeTerm type="text">Oxford, UK; Malden, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2004-09</dateIssued>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="words">2708</extent>
</physicalDescription>
<abstract lang="en">The melanocortin 1 receptor (MC1R) is a key regulator of melanocyte proliferation and differentiation and a major determinant of human skin phototype and skin cancer risk. Although the regulation of MC1R gene expression is fairly well understood, little is known about regulatory mechanisms acting at the protein level. In particular, no information is available on homologous desensitization of MC1R signalling. We studied MC1R and Mc1r desensitization and found that: 1) MC1R and Mc1r in melanoma cells undergo homologous desensitization, demonstrated by decreases in cAMP contents upon continuous exposure to agonists, 2) desensitization is not dependent on PKA, PKC, calcium mobilization or MAPKs but is agonist dose dependent, suggesting a role of receptor occupancy, 3) melanoma cells express two members of the GRK family of serine/threonine kinases, GRK2 and GRK6, 4. These kinases are expressed in normal melanocytes, 5) in cotransfection experiments performed with HEK 293T cells, GRK2 strongly impairs agonist‐dependent signalling by MC1R or Mc1r, 6) expression of a dominant negative GRK2 mutant in melanoma cells increases their cAMP response to MC1R agonists, 7) cotransfection of HEK 293T cells with GRK6 and MC1R inhibits both basal and agonist‐dependent signalling, and 8) cAMP production in agonist‐stimulated melanoma cells is strongly impaired by enrichment with GRK6 following stable transfection. Therefore, GRK2 and GRK6 are key regulators of MC1R signalling and may be important determinants of normal and pathological skin pigmentation.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Experimental Dermatology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0906-6705</identifier>
<identifier type="eISSN">1600-0625</identifier>
<identifier type="DOI">10.1111/(ISSN)1600-0625</identifier>
<identifier type="PublisherID">EXD</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>568</start>
<end>568</end>
<total>1</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">4139881425E46EEA8FC6D1946AFE9E987FC56FA7</identifier>
<identifier type="DOI">10.1111/j.0906-6705.2004.00212f.x</identifier>
<identifier type="ArticleID">EXD212F</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd/Inc.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000683 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000683 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4139881425E46EEA8FC6D1946AFE9E987FC56FA7
   |texte=   Regulation of MC1R signalling by G‐protein‐coupled receptor kinases
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024