Serveur d'exploration sur la musique en Sarre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multiple signaling conduits regulate global differentiation‐specific gene expression in PC12 cells

Identifieur interne : 000031 ( Istex/Corpus ); précédent : 000030; suivant : 000032

Multiple signaling conduits regulate global differentiation‐specific gene expression in PC12 cells

Auteurs : Lindsay Marek ; Valerie Levresse ; Claudia Amura ; Eve Zentrich ; Vicki Van Putten ; Raphael A. Nemenoff ; Lynn E. Heasley

Source :

RBID : ISTEX:02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000

English descriptors

Abstract

PC12 cells serve as a model for exploring nerve growth factor (NGF)‐stimulated signal pathways that mediate neural differentiation. We previously demonstrated that neurofilament light chain (NFLC) gene induction by NGF requires collaborative extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK) signaling. Herein, we investigate the broader requirement for integrated ERK and JNK signaling in NGF‐stimulated gene expression. NGF stimulates differentiation as well as maintenance of cell viability while insulin‐like growth factor‐1 (IGF‐1) stimulates only trophic actions in PC12 cells. Affymetrix Genechips were used to identify genes whose expression specifically increased in response to NGF, but not IGF‐1. From the set of NGF‐specific genes, the induction by NGF of ten genes with diverse predicted cellular functions was tested for ERK and JNK pathway requirements using the protein kinase inhibitors, PD98059 and SP600125, respectively. Like NFLC, induction of urokinase plasminogen activator (uPAR), transin/matrix metalloproteinase 3 (MMP3), Fra‐1 and transforming growth factor β1 (TGFβ1) required collaborative ERK and JNK signaling while the increased expression of cortexin, rat collapsin response mediator protein 4 (rCRMP4), rat growth and transformation‐dependent protein (RGT), and synapsin II required neither mitogen‐activated protein kinase (MAPK) pathway. NGF‐induction of the bradykinin B2 receptor and c‐Ret mRNAs was partially inhibited by SP600125, but not PD98059. Reporter constructs containing the promoters for ERK/JNK‐dependent genes (NFLC, transin, uPAR) as well as an ERK/JNK‐independent gene (synapsin II) revealed that both sets of genes required functional Ras signaling for activation by NGF. Integrated signaling through the ERK and JNK MAPKs, therefore, represents a general conduit for NGF‐dependent gene expression, but additional Ras‐dependent signaling pathways distinct from the ERKs and JNKs must contribute as well. Thus, multiple signaling conduits control global differentiation‐specific gene expression in PC12 cells. © 2004 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/jcp.20087

Links to Exploration step

ISTEX:02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multiple signaling conduits regulate global differentiation‐specific gene expression in PC12 cells</title>
<author>
<name sortKey="Marek, Lindsay" sort="Marek, Lindsay" uniqKey="Marek L" first="Lindsay" last="Marek">Lindsay Marek</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Levresse, Valerie" sort="Levresse, Valerie" uniqKey="Levresse V" first="Valerie" last="Levresse">Valerie Levresse</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amura, Claudia" sort="Amura, Claudia" uniqKey="Amura C" first="Claudia" last="Amura">Claudia Amura</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zentrich, Eve" sort="Zentrich, Eve" uniqKey="Zentrich E" first="Eve" last="Zentrich">Eve Zentrich</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Putten, Vicki Van" sort="Putten, Vicki Van" uniqKey="Putten V" first="Vicki Van" last="Putten">Vicki Van Putten</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nemenoff, Raphael A" sort="Nemenoff, Raphael A" uniqKey="Nemenoff R" first="Raphael A." last="Nemenoff">Raphael A. Nemenoff</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Heasley, Lynn E" sort="Heasley, Lynn E" uniqKey="Heasley L" first="Lynn E." last="Heasley">Lynn E. Heasley</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Division of Renal Medicine, C‐281, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1002/jcp.20087</idno>
<idno type="url">https://api.istex.fr/document/02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000031</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000031</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Multiple signaling conduits regulate global differentiation‐specific gene expression in PC12 cells</title>
<author>
<name sortKey="Marek, Lindsay" sort="Marek, Lindsay" uniqKey="Marek L" first="Lindsay" last="Marek">Lindsay Marek</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Levresse, Valerie" sort="Levresse, Valerie" uniqKey="Levresse V" first="Valerie" last="Levresse">Valerie Levresse</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amura, Claudia" sort="Amura, Claudia" uniqKey="Amura C" first="Claudia" last="Amura">Claudia Amura</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zentrich, Eve" sort="Zentrich, Eve" uniqKey="Zentrich E" first="Eve" last="Zentrich">Eve Zentrich</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Putten, Vicki Van" sort="Putten, Vicki Van" uniqKey="Putten V" first="Vicki Van" last="Putten">Vicki Van Putten</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nemenoff, Raphael A" sort="Nemenoff, Raphael A" uniqKey="Nemenoff R" first="Raphael A." last="Nemenoff">Raphael A. Nemenoff</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Heasley, Lynn E" sort="Heasley, Lynn E" uniqKey="Heasley L" first="Lynn E." last="Heasley">Lynn E. Heasley</name>
<affiliation>
<mods:affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Division of Renal Medicine, C‐281, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Cellular Physiology</title>
<title level="j" type="abbrev">J. Cell. Physiol.</title>
<idno type="ISSN">0021-9541</idno>
<idno type="eISSN">1097-4652</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2004-12">2004-12</date>
<biblScope unit="volume">201</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="459">459</biblScope>
<biblScope unit="page" to="469">469</biblScope>
</imprint>
<idno type="ISSN">0021-9541</idno>
</series>
<idno type="istex">02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000</idno>
<idno type="DOI">10.1002/jcp.20087</idno>
<idno type="ArticleID">JCP20087</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-9541</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Activator</term>
<term>Affymetrix</term>
<term>Biol</term>
<term>Biol chem</term>
<term>Cell differentiation</term>
<term>Cell extracts</term>
<term>Chem</term>
<term>Collaborative</term>
<term>Collaborative action</term>
<term>Collapsin response mediator protein</term>
<term>Conduit</term>
<term>Cortexin</term>
<term>Differentiation program</term>
<term>Erks</term>
<term>Extracellular</term>
<term>Extracellular kinase</term>
<term>Gene</term>
<term>Gene expression</term>
<term>Genechip</term>
<term>Global gene expression</term>
<term>Growth factor</term>
<term>Growth factors</term>
<term>Horse serum</term>
<term>Human synapsin</term>
<term>Independent experiments</term>
<term>Induction</term>
<term>Inhibitor</term>
<term>Kinase</term>
<term>Light chain</term>
<term>Mapk</term>
<term>Mapk pathways</term>
<term>Mapks</term>
<term>Marek</term>
<term>Mrna</term>
<term>Multiple signal conduits</term>
<term>Muscle cells</term>
<term>Nerve growth factor</term>
<term>Neural differentiation</term>
<term>Neuronal</term>
<term>Neuronal differentiation</term>
<term>Nflc</term>
<term>Nflc promoter</term>
<term>Pathway</term>
<term>Pheochromocytoma cells</term>
<term>Plasminogen</term>
<term>Previous study</term>
<term>Primer</term>
<term>Proc natl acad</term>
<term>Promoter</term>
<term>Protein kinase</term>
<term>Receptor</term>
<term>Signal conduit</term>
<term>Signal conduits</term>
<term>Synapsin</term>
<term>Synapsin reporter</term>
<term>Tgfb1</term>
<term>Transcription</term>
<term>Transcriptional</term>
<term>Transcriptional regulation</term>
<term>Transfected</term>
<term>Transfected cells</term>
<term>Upar</term>
<term>Urokinase plasminogen activator receptor</term>
<term>Zentrich</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">PC12 cells serve as a model for exploring nerve growth factor (NGF)‐stimulated signal pathways that mediate neural differentiation. We previously demonstrated that neurofilament light chain (NFLC) gene induction by NGF requires collaborative extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK) signaling. Herein, we investigate the broader requirement for integrated ERK and JNK signaling in NGF‐stimulated gene expression. NGF stimulates differentiation as well as maintenance of cell viability while insulin‐like growth factor‐1 (IGF‐1) stimulates only trophic actions in PC12 cells. Affymetrix Genechips were used to identify genes whose expression specifically increased in response to NGF, but not IGF‐1. From the set of NGF‐specific genes, the induction by NGF of ten genes with diverse predicted cellular functions was tested for ERK and JNK pathway requirements using the protein kinase inhibitors, PD98059 and SP600125, respectively. Like NFLC, induction of urokinase plasminogen activator (uPAR), transin/matrix metalloproteinase 3 (MMP3), Fra‐1 and transforming growth factor β1 (TGFβ1) required collaborative ERK and JNK signaling while the increased expression of cortexin, rat collapsin response mediator protein 4 (rCRMP4), rat growth and transformation‐dependent protein (RGT), and synapsin II required neither mitogen‐activated protein kinase (MAPK) pathway. NGF‐induction of the bradykinin B2 receptor and c‐Ret mRNAs was partially inhibited by SP600125, but not PD98059. Reporter constructs containing the promoters for ERK/JNK‐dependent genes (NFLC, transin, uPAR) as well as an ERK/JNK‐independent gene (synapsin II) revealed that both sets of genes required functional Ras signaling for activation by NGF. Integrated signaling through the ERK and JNK MAPKs, therefore, represents a general conduit for NGF‐dependent gene expression, but additional Ras‐dependent signaling pathways distinct from the ERKs and JNKs must contribute as well. Thus, multiple signaling conduits control global differentiation‐specific gene expression in PC12 cells. © 2004 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>pathway</json:string>
<json:string>kinase</json:string>
<json:string>synapsin</json:string>
<json:string>nflc</json:string>
<json:string>biol</json:string>
<json:string>mrna</json:string>
<json:string>receptor</json:string>
<json:string>mapk</json:string>
<json:string>nerve growth factor</json:string>
<json:string>upar</json:string>
<json:string>promoter</json:string>
<json:string>chem</json:string>
<json:string>conduit</json:string>
<json:string>gene expression</json:string>
<json:string>transcriptional</json:string>
<json:string>cortexin</json:string>
<json:string>mapks</json:string>
<json:string>transfected</json:string>
<json:string>affymetrix</json:string>
<json:string>tgfb1</json:string>
<json:string>primer</json:string>
<json:string>activator</json:string>
<json:string>cell differentiation</json:string>
<json:string>marek</json:string>
<json:string>extracellular</json:string>
<json:string>erks</json:string>
<json:string>zentrich</json:string>
<json:string>genechip</json:string>
<json:string>collaborative</json:string>
<json:string>plasminogen</json:string>
<json:string>cell extracts</json:string>
<json:string>growth factor</json:string>
<json:string>gene</json:string>
<json:string>proc natl acad</json:string>
<json:string>signal conduits</json:string>
<json:string>inhibitor</json:string>
<json:string>neuronal differentiation</json:string>
<json:string>collapsin response mediator protein</json:string>
<json:string>multiple signal conduits</json:string>
<json:string>biol chem</json:string>
<json:string>horse serum</json:string>
<json:string>independent experiments</json:string>
<json:string>nflc promoter</json:string>
<json:string>protein kinase</json:string>
<json:string>extracellular kinase</json:string>
<json:string>global gene expression</json:string>
<json:string>transcriptional regulation</json:string>
<json:string>growth factors</json:string>
<json:string>neural differentiation</json:string>
<json:string>mapk pathways</json:string>
<json:string>induction</json:string>
<json:string>transcription</json:string>
<json:string>neuronal</json:string>
<json:string>transfected cells</json:string>
<json:string>human synapsin</json:string>
<json:string>differentiation program</json:string>
<json:string>previous study</json:string>
<json:string>pheochromocytoma cells</json:string>
<json:string>collaborative action</json:string>
<json:string>light chain</json:string>
<json:string>signal conduit</json:string>
<json:string>muscle cells</json:string>
<json:string>urokinase plasminogen activator receptor</json:string>
<json:string>synapsin reporter</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Lindsay Marek</name>
<affiliations>
<json:string>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</json:string>
</affiliations>
</json:item>
<json:item>
<name>Valerie Levresse</name>
<affiliations>
<json:string>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</json:string>
</affiliations>
</json:item>
<json:item>
<name>Claudia Amura</name>
<affiliations>
<json:string>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</json:string>
</affiliations>
</json:item>
<json:item>
<name>Eve Zentrich</name>
<affiliations>
<json:string>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</json:string>
</affiliations>
</json:item>
<json:item>
<name>Vicki Van Putten</name>
<affiliations>
<json:string>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</json:string>
</affiliations>
</json:item>
<json:item>
<name>Raphael A. Nemenoff</name>
<affiliations>
<json:string>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lynn E. Heasley</name>
<affiliations>
<json:string>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</json:string>
<json:string>Division of Renal Medicine, C‐281, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262.</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>JCP20087</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>PC12 cells serve as a model for exploring nerve growth factor (NGF)‐stimulated signal pathways that mediate neural differentiation. We previously demonstrated that neurofilament light chain (NFLC) gene induction by NGF requires collaborative extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK) signaling. Herein, we investigate the broader requirement for integrated ERK and JNK signaling in NGF‐stimulated gene expression. NGF stimulates differentiation as well as maintenance of cell viability while insulin‐like growth factor‐1 (IGF‐1) stimulates only trophic actions in PC12 cells. Affymetrix Genechips were used to identify genes whose expression specifically increased in response to NGF, but not IGF‐1. From the set of NGF‐specific genes, the induction by NGF of ten genes with diverse predicted cellular functions was tested for ERK and JNK pathway requirements using the protein kinase inhibitors, PD98059 and SP600125, respectively. Like NFLC, induction of urokinase plasminogen activator (uPAR), transin/matrix metalloproteinase 3 (MMP3), Fra‐1 and transforming growth factor β1 (TGFβ1) required collaborative ERK and JNK signaling while the increased expression of cortexin, rat collapsin response mediator protein 4 (rCRMP4), rat growth and transformation‐dependent protein (RGT), and synapsin II required neither mitogen‐activated protein kinase (MAPK) pathway. NGF‐induction of the bradykinin B2 receptor and c‐Ret mRNAs was partially inhibited by SP600125, but not PD98059. Reporter constructs containing the promoters for ERK/JNK‐dependent genes (NFLC, transin, uPAR) as well as an ERK/JNK‐independent gene (synapsin II) revealed that both sets of genes required functional Ras signaling for activation by NGF. Integrated signaling through the ERK and JNK MAPKs, therefore, represents a general conduit for NGF‐dependent gene expression, but additional Ras‐dependent signaling pathways distinct from the ERKs and JNKs must contribute as well. Thus, multiple signaling conduits control global differentiation‐specific gene expression in PC12 cells. © 2004 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>592 x 789 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2114</abstractCharCount>
<pdfWordCount>6875</pdfWordCount>
<pdfCharCount>46183</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>285</abstractWordCount>
</qualityIndicators>
<title>Multiple signaling conduits regulate global differentiation‐specific gene expression in PC12 cells</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Cellular Physiology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1097-4652</json:string>
</doi>
<issn>
<json:string>0021-9541</json:string>
</issn>
<eissn>
<json:string>1097-4652</json:string>
</eissn>
<publisherId>
<json:string>JCP</json:string>
</publisherId>
<volume>201</volume>
<issue>3</issue>
<pages>
<first>459</first>
<last>469</last>
<total>11</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Original Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>physiology</json:string>
<json:string>cell biology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>biomedical research</json:string>
<json:string>biochemistry & molecular biology</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>genetique des eucaryotes. evolution biologique et moleculaire</json:string>
</inist>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1002/jcp.20087</json:string>
</doi>
<id>02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Multiple signaling conduits regulate global differentiation‐specific gene expression in PC12 cells</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 2004 Wiley‐Liss, Inc.</p>
</availability>
<date>2004</date>
</publicationStmt>
<notesStmt>
<note>National Institutes of Health - No. GM61718; No. DK59756;</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Multiple signaling conduits regulate global differentiation‐specific gene expression in PC12 cells</title>
<author xml:id="author-1">
<persName>
<forename type="first">Lindsay</forename>
<surname>Marek</surname>
</persName>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Valerie</forename>
<surname>Levresse</surname>
</persName>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Claudia</forename>
<surname>Amura</surname>
</persName>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Eve</forename>
<surname>Zentrich</surname>
</persName>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Vicki Van</forename>
<surname>Putten</surname>
</persName>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Raphael A.</forename>
<surname>Nemenoff</surname>
</persName>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">Lynn E.</forename>
<surname>Heasley</surname>
</persName>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
<affiliation>Division of Renal Medicine, C‐281, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262.</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Cellular Physiology</title>
<title level="j" type="abbrev">J. Cell. Physiol.</title>
<idno type="pISSN">0021-9541</idno>
<idno type="eISSN">1097-4652</idno>
<idno type="DOI">10.1002/(ISSN)1097-4652</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2004-12"></date>
<biblScope unit="volume">201</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="459">459</biblScope>
<biblScope unit="page" to="469">469</biblScope>
</imprint>
</monogr>
<idno type="istex">02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000</idno>
<idno type="DOI">10.1002/jcp.20087</idno>
<idno type="ArticleID">JCP20087</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>PC12 cells serve as a model for exploring nerve growth factor (NGF)‐stimulated signal pathways that mediate neural differentiation. We previously demonstrated that neurofilament light chain (NFLC) gene induction by NGF requires collaborative extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK) signaling. Herein, we investigate the broader requirement for integrated ERK and JNK signaling in NGF‐stimulated gene expression. NGF stimulates differentiation as well as maintenance of cell viability while insulin‐like growth factor‐1 (IGF‐1) stimulates only trophic actions in PC12 cells. Affymetrix Genechips were used to identify genes whose expression specifically increased in response to NGF, but not IGF‐1. From the set of NGF‐specific genes, the induction by NGF of ten genes with diverse predicted cellular functions was tested for ERK and JNK pathway requirements using the protein kinase inhibitors, PD98059 and SP600125, respectively. Like NFLC, induction of urokinase plasminogen activator (uPAR), transin/matrix metalloproteinase 3 (MMP3), Fra‐1 and transforming growth factor β1 (TGFβ1) required collaborative ERK and JNK signaling while the increased expression of cortexin, rat collapsin response mediator protein 4 (rCRMP4), rat growth and transformation‐dependent protein (RGT), and synapsin II required neither mitogen‐activated protein kinase (MAPK) pathway. NGF‐induction of the bradykinin B2 receptor and c‐Ret mRNAs was partially inhibited by SP600125, but not PD98059. Reporter constructs containing the promoters for ERK/JNK‐dependent genes (NFLC, transin, uPAR) as well as an ERK/JNK‐independent gene (synapsin II) revealed that both sets of genes required functional Ras signaling for activation by NGF. Integrated signaling through the ERK and JNK MAPKs, therefore, represents a general conduit for NGF‐dependent gene expression, but additional Ras‐dependent signaling pathways distinct from the ERKs and JNKs must contribute as well. Thus, multiple signaling conduits control global differentiation‐specific gene expression in PC12 cells. © 2004 Wiley‐Liss, Inc.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Original Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2004-01-29">Received</change>
<change when="2004-02-09">Registration</change>
<change when="2004-12">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-4652</doi>
<issn type="print">0021-9541</issn>
<issn type="electronic">1097-4652</issn>
<idGroup>
<id type="product" value="JCP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF CELLULAR PHYSIOLOGY">Journal of Cellular Physiology</title>
<title type="short">J. Cell. Physiol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley" registered="yes">10.1002/jcp.v201:3</doi>
<numberingGroup>
<numbering type="journalVolume" number="201">201</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2004-12">December 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="150" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jcp.20087</doi>
<idGroup>
<id type="unit" value="JCP20087"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="11"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Article</title>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2004 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2004-01-29"></event>
<event type="manuscriptAccepted" date="2004-02-09"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2004-06-01"></event>
<event type="firstOnline" date="2004-06-01"></event>
<event type="publishedOnlineFinalForm" date="2004-09-29"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-05"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">459</numbering>
<numbering type="pageLast">469</numbering>
</numberingGroup>
<correspondenceTo>Division of Renal Medicine, C‐281, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JCP.JCP20087.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="3"></count>
<count type="referenceTotal" number="49"></count>
<count type="wordTotal" number="8401"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Multiple signaling conduits regulate global differentiation‐specific gene expression in PC12 cells</title>
<title type="short" xml:lang="en">MULTIPLE SIGNAL CONDUITS IN PC12 CELL DIFFERENTIATION</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Lindsay</givenNames>
<familyName>Marek</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Valerie</givenNames>
<familyName>Levresse</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Claudia</givenNames>
<familyName>Amura</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Eve</givenNames>
<familyName>Zentrich</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Vicki Van</givenNames>
<familyName>Putten</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Raphael A.</givenNames>
<familyName>Nemenoff</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Lynn E.</givenNames>
<familyName>Heasley</familyName>
</personName>
<contactDetails>
<email>Lynn.Heasley@UCHSC.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<fundingInfo>
<fundingAgency>National Institutes of Health</fundingAgency>
<fundingNumber>GM61718</fundingNumber>
<fundingNumber>DK59756</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>PC12 cells serve as a model for exploring nerve growth factor (NGF)‐stimulated signal pathways that mediate neural differentiation. We previously demonstrated that neurofilament light chain (
<i>NFLC</i>
) gene induction by NGF requires collaborative extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK) signaling. Herein, we investigate the broader requirement for integrated ERK and JNK signaling in NGF‐stimulated gene expression. NGF stimulates differentiation as well as maintenance of cell viability while insulin‐like growth factor‐1 (IGF‐1) stimulates only trophic actions in PC12 cells. Affymetrix Genechips were used to identify genes whose expression specifically increased in response to NGF, but not IGF‐1. From the set of NGF‐specific genes, the induction by NGF of ten genes with diverse predicted cellular functions was tested for ERK and JNK pathway requirements using the protein kinase inhibitors, PD98059 and SP600125, respectively. Like NFLC, induction of urokinase plasminogen activator (uPAR), transin/matrix metalloproteinase 3 (MMP3), Fra‐1 and transforming growth factor β1 (TGFβ1) required collaborative ERK and JNK signaling while the increased expression of cortexin, rat collapsin response mediator protein 4 (rCRMP4), rat growth and transformation‐dependent protein (RGT), and synapsin II required neither mitogen‐activated protein kinase (MAPK) pathway. NGF‐induction of the bradykinin B2 receptor and c‐Ret mRNAs was partially inhibited by SP600125, but not PD98059. Reporter constructs containing the promoters for ERK/JNK‐dependent genes (
<i>NFLC</i>
,
<i>transin</i>
,
<i>uPAR</i>
) as well as an ERK/JNK‐independent gene (synapsin II) revealed that both sets of genes required functional Ras signaling for activation by NGF. Integrated signaling through the ERK and JNK MAPKs, therefore, represents a general conduit for NGF‐dependent gene expression, but additional Ras‐dependent signaling pathways distinct from the ERKs and JNKs must contribute as well. Thus, multiple signaling conduits control global differentiation‐specific gene expression in PC12 cells. © 2004 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Multiple signaling conduits regulate global differentiation‐specific gene expression in PC12 cells</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>MULTIPLE SIGNAL CONDUITS IN PC12 CELL DIFFERENTIATION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Multiple signaling conduits regulate global differentiation‐specific gene expression in PC12 cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lindsay</namePart>
<namePart type="family">Marek</namePart>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valerie</namePart>
<namePart type="family">Levresse</namePart>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Amura</namePart>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eve</namePart>
<namePart type="family">Zentrich</namePart>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vicki Van</namePart>
<namePart type="family">Putten</namePart>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raphael A.</namePart>
<namePart type="family">Nemenoff</namePart>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lynn E.</namePart>
<namePart type="family">Heasley</namePart>
<affiliation>Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado</affiliation>
<affiliation>Division of Renal Medicine, C‐281, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2004-12</dateIssued>
<dateCaptured encoding="w3cdtf">2004-01-29</dateCaptured>
<dateValid encoding="w3cdtf">2004-02-09</dateValid>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">6</extent>
<extent unit="tables">3</extent>
<extent unit="references">49</extent>
<extent unit="words">8401</extent>
</physicalDescription>
<abstract lang="en">PC12 cells serve as a model for exploring nerve growth factor (NGF)‐stimulated signal pathways that mediate neural differentiation. We previously demonstrated that neurofilament light chain (NFLC) gene induction by NGF requires collaborative extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK) signaling. Herein, we investigate the broader requirement for integrated ERK and JNK signaling in NGF‐stimulated gene expression. NGF stimulates differentiation as well as maintenance of cell viability while insulin‐like growth factor‐1 (IGF‐1) stimulates only trophic actions in PC12 cells. Affymetrix Genechips were used to identify genes whose expression specifically increased in response to NGF, but not IGF‐1. From the set of NGF‐specific genes, the induction by NGF of ten genes with diverse predicted cellular functions was tested for ERK and JNK pathway requirements using the protein kinase inhibitors, PD98059 and SP600125, respectively. Like NFLC, induction of urokinase plasminogen activator (uPAR), transin/matrix metalloproteinase 3 (MMP3), Fra‐1 and transforming growth factor β1 (TGFβ1) required collaborative ERK and JNK signaling while the increased expression of cortexin, rat collapsin response mediator protein 4 (rCRMP4), rat growth and transformation‐dependent protein (RGT), and synapsin II required neither mitogen‐activated protein kinase (MAPK) pathway. NGF‐induction of the bradykinin B2 receptor and c‐Ret mRNAs was partially inhibited by SP600125, but not PD98059. Reporter constructs containing the promoters for ERK/JNK‐dependent genes (NFLC, transin, uPAR) as well as an ERK/JNK‐independent gene (synapsin II) revealed that both sets of genes required functional Ras signaling for activation by NGF. Integrated signaling through the ERK and JNK MAPKs, therefore, represents a general conduit for NGF‐dependent gene expression, but additional Ras‐dependent signaling pathways distinct from the ERKs and JNKs must contribute as well. Thus, multiple signaling conduits control global differentiation‐specific gene expression in PC12 cells. © 2004 Wiley‐Liss, Inc.</abstract>
<note type="funding">National Institutes of Health - No. GM61718; No. DK59756; </note>
<relatedItem type="host">
<titleInfo>
<title>Journal of Cellular Physiology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Cell. Physiol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Original Article</topic>
</subject>
<identifier type="ISSN">0021-9541</identifier>
<identifier type="eISSN">1097-4652</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-4652</identifier>
<identifier type="PublisherID">JCP</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>201</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>459</start>
<end>469</end>
<total>11</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000</identifier>
<identifier type="DOI">10.1002/jcp.20087</identifier>
<identifier type="ArticleID">JCP20087</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2004 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sarre/explor/MusicSarreV3/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000031 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000031 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sarre
   |area=    MusicSarreV3
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:02DDA9AC51ECDAE36D1FA98A7BACFCCE2C424000
   |texte=   Multiple signaling conduits regulate global differentiation‐specific gene expression in PC12 cells
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sun Jul 15 18:16:09 2018. Site generation: Tue Mar 5 19:21:25 2024