Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT + SAIL)

Identifieur interne : 000859 ( PascalFrancis/Corpus ); précédent : 000858; suivant : 000860

Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT + SAIL)

Auteurs : M. Vohland ; T. Jarmer

Source :

RBID : Pascal:08-0105931

Descripteurs français

English descriptors

Abstract

As permanent grassland is a large-scale land-use type in Central Europe, grassland inventories are relevant for ecological and agrarian issues. The objective of this study was to assess structural and biochemical grassland parameters (LAI, chlorophyll, water and dry matter contents) from field spectroradiometer data (ASD FieldSpec II) by radiative transfer modelling (PROSPECT + SAIL). Constraints were necessary to compensate the ill-posed nature of model inversion for accurate parameter retrieval. In this context, we found the foliage moisture content to play an important role. After coupling the equivalent water thickness and the dry matter content in a ratio of 4:1, the estimation accuracy for the LAI clearly improved. In terms of LAI, the RMSE decreased from 0.86 to 0.74, and the range of LAI values measured in the field (min=0.10, max=5.88) was reproduced exactly with estimates ranging from 0.05 to 5.46. The spectra reconstructed by PROSPECT + SAIL using the inverted parameter estimates coincided well with the measured spectra. Nonetheless, obtained canopy chlorophyll contents tended to be too high. When using ground measured chlorophyll data for spectra generation, simulated reflectances were clearly higher in the visible domain than the measured ones. This is partly attributed to the chlorophyll absorption coefficients of PROSPECT that may not be true for the majority of grassland plant species in reality. Neverthelesss, the obtained results prove the potential of PROSPECT+SAIL for retrieving structural and biochemical grassland parameters; results may be appropriate for assimilation in the modelling of plant growth or carbon cycle, for example.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0143-1161
A02 01      @0 IJSEDK
A03   1    @0 Int. j. remote sens. : (Print)
A05       @2 29
A06       @2 1-2
A08 01  1  ENG  @1 Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT + SAIL)
A11 01  1    @1 VOHLAND (M.)
A11 02  1    @1 JARMER (T.)
A14 01      @1 Remote Sensing and Geoinformatics, Faculty of Geography and Geosciences, University of Trier, Campus II @2 54286 Trier @3 DEU @Z 1 aut.
A14 02      @1 Remote Sensing and Geoinformatics, Institute of Geographical Sciences, Department of Earth Sciences, Free University of Berlin @2 12249 Berlin @3 DEU @Z 2 aut.
A20       @1 191-209
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 19437 @5 354000173952870110
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 08-0105931
A60       @1 P
A61       @0 A
A64 01  1    @0 International journal of remote sensing : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 As permanent grassland is a large-scale land-use type in Central Europe, grassland inventories are relevant for ecological and agrarian issues. The objective of this study was to assess structural and biochemical grassland parameters (LAI, chlorophyll, water and dry matter contents) from field spectroradiometer data (ASD FieldSpec II) by radiative transfer modelling (PROSPECT + SAIL). Constraints were necessary to compensate the ill-posed nature of model inversion for accurate parameter retrieval. In this context, we found the foliage moisture content to play an important role. After coupling the equivalent water thickness and the dry matter content in a ratio of 4:1, the estimation accuracy for the LAI clearly improved. In terms of LAI, the RMSE decreased from 0.86 to 0.74, and the range of LAI values measured in the field (min=0.10, max=5.88) was reproduced exactly with estimates ranging from 0.05 to 5.46. The spectra reconstructed by PROSPECT + SAIL using the inverted parameter estimates coincided well with the measured spectra. Nonetheless, obtained canopy chlorophyll contents tended to be too high. When using ground measured chlorophyll data for spectra generation, simulated reflectances were clearly higher in the visible domain than the measured ones. This is partly attributed to the chlorophyll absorption coefficients of PROSPECT that may not be true for the majority of grassland plant species in reality. Neverthelesss, the obtained results prove the potential of PROSPECT+SAIL for retrieving structural and biochemical grassland parameters; results may be appropriate for assimilation in the modelling of plant growth or carbon cycle, for example.
C02 01  X    @0 002A14A03
C02 02  2    @0 001E01M04
C02 03  2    @0 225B04
C03 01  2  FRE  @0 Télédétection @5 01
C03 01  2  ENG  @0 remote sensing @5 01
C03 01  2  SPA  @0 Detección a distancia @5 01
C03 02  2  FRE  @0 Végétation @5 02
C03 02  2  ENG  @0 vegetation @5 02
C03 02  2  SPA  @0 Vegetación @5 02
C03 03  2  FRE  @0 Prairie @5 03
C03 03  2  ENG  @0 grasslands @5 03
C03 03  2  SPA  @0 Pradera @5 03
C03 04  2  FRE  @0 Transfert radiatif @5 05
C03 04  2  ENG  @0 radiative transfer @5 05
C03 05  2  FRE  @0 Modèle @5 06
C03 05  2  ENG  @0 models @5 06
C03 05  2  SPA  @0 Modelo @5 06
C03 06  2  FRE  @0 Croissance @5 08
C03 06  2  ENG  @0 growth @5 08
C03 07  2  FRE  @0 Utilisation terrain @5 09
C03 07  2  ENG  @0 land use @5 09
C03 07  2  SPA  @0 Utilización terreno @5 09
C03 08  2  FRE  @0 Occupation sol @5 10
C03 08  2  ENG  @0 land cover @5 10
C03 09  2  FRE  @0 Inventaire @5 12
C03 09  2  ENG  @0 inventory @5 12
C03 09  2  SPA  @0 Inventario @5 12
C03 10  2  FRE  @0 Ecologie @5 13
C03 10  2  ENG  @0 ecology @5 13
C03 10  2  SPA  @0 Ecología @5 13
C03 11  2  FRE  @0 Biochimie @5 14
C03 11  2  ENG  @0 biochemistry @5 14
C03 11  2  SPA  @0 Bioquímica @5 14
C03 12  2  FRE  @0 Chlorophylle @5 17
C03 12  2  ENG  @0 chlorophyll @5 17
C03 12  2  SPA  @0 Clorofila @5 17
C03 13  2  FRE  @0 Cycle carbone @5 20
C03 13  2  ENG  @0 carbon cycle @5 20
C03 14  2  FRE  @0 Problème inverse @5 22
C03 14  2  ENG  @0 inverse problem @5 22
C03 14  2  SPA  @0 Problema inverso @5 22
C03 15  2  FRE  @0 Humidité sol @5 25
C03 15  2  ENG  @0 soil moisture @5 25
C03 15  2  SPA  @0 Humedad suelo @5 25
C03 16  X  FRE  @0 Feuillage @5 26
C03 16  X  ENG  @0 Foliage @5 26
C03 16  X  SPA  @0 Follaje @5 26
C03 17  X  FRE  @0 Inversion @5 27
C03 17  X  ENG  @0 Inversion @5 27
C03 17  X  SPA  @0 Inversión @5 27
C03 18  X  FRE  @0 Teneur matière sèche @5 28
C03 18  X  ENG  @0 Dry matter content @5 28
C03 18  X  SPA  @0 Contenido materia seca @5 28
C03 19  X  FRE  @0 Indice foliaire @5 29
C03 19  X  ENG  @0 Leaf area index @5 29
C03 19  X  SPA  @0 Indice foliar @5 29
C03 20  X  FRE  @0 Paramètre @5 30
C03 20  X  ENG  @0 Parameter @5 30
C03 20  X  SPA  @0 Parámetro @5 30
C03 21  X  FRE  @0 Spectroradiométrie @5 32
C03 21  X  ENG  @0 Spectroradiometry @5 32
C03 21  X  SPA  @0 Espectroradiometría @5 32
C03 22  X  FRE  @0 Prairie permanente @5 33
C03 22  X  ENG  @0 Permanent grassland @5 33
C03 22  X  SPA  @0 Pradera permanente @5 33
C03 23  X  FRE  @0 Analyse biochimique @5 34
C03 23  X  ENG  @0 Biochemical analysis @5 34
C03 23  X  SPA  @0 Análisis bioquímico @5 34
C03 24  2  FRE  @0 LAI @4 INC @5 52
C03 25  2  FRE  @0 Rhénanie Palatinat @2 NG @5 61
C03 25  2  ENG  @0 Rhineland-Palatinate Germany @2 NG @5 61
C03 25  2  SPA  @0 Renania Palatinado @2 NG @5 61
C07 01  2  FRE  @0 Allemagne @2 NG
C07 01  2  ENG  @0 Germany @2 NG
C07 01  2  SPA  @0 Alemania @2 NG
C07 02  2  FRE  @0 Europe Centrale @2 NG
C07 02  2  ENG  @0 Central Europe @2 NG
C07 02  2  SPA  @0 Europa central @2 NG
C07 03  2  FRE  @0 Europe @2 564
C07 03  2  ENG  @0 Europe @2 564
C07 03  2  SPA  @0 Europa @2 564
N21       @1 056
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 08-0105931 INIST
ET : Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT + SAIL)
AU : VOHLAND (M.); JARMER (T.)
AF : Remote Sensing and Geoinformatics, Faculty of Geography and Geosciences, University of Trier, Campus II/54286 Trier/Allemagne (1 aut.); Remote Sensing and Geoinformatics, Institute of Geographical Sciences, Department of Earth Sciences, Free University of Berlin/12249 Berlin/Allemagne (2 aut.)
DT : Publication en série; Niveau analytique
SO : International journal of remote sensing : (Print); ISSN 0143-1161; Coden IJSEDK; Royaume-Uni; Da. 2008; Vol. 29; No. 1-2; Pp. 191-209; Bibl. 1 p.3/4
LA : Anglais
EA : As permanent grassland is a large-scale land-use type in Central Europe, grassland inventories are relevant for ecological and agrarian issues. The objective of this study was to assess structural and biochemical grassland parameters (LAI, chlorophyll, water and dry matter contents) from field spectroradiometer data (ASD FieldSpec II) by radiative transfer modelling (PROSPECT + SAIL). Constraints were necessary to compensate the ill-posed nature of model inversion for accurate parameter retrieval. In this context, we found the foliage moisture content to play an important role. After coupling the equivalent water thickness and the dry matter content in a ratio of 4:1, the estimation accuracy for the LAI clearly improved. In terms of LAI, the RMSE decreased from 0.86 to 0.74, and the range of LAI values measured in the field (min=0.10, max=5.88) was reproduced exactly with estimates ranging from 0.05 to 5.46. The spectra reconstructed by PROSPECT + SAIL using the inverted parameter estimates coincided well with the measured spectra. Nonetheless, obtained canopy chlorophyll contents tended to be too high. When using ground measured chlorophyll data for spectra generation, simulated reflectances were clearly higher in the visible domain than the measured ones. This is partly attributed to the chlorophyll absorption coefficients of PROSPECT that may not be true for the majority of grassland plant species in reality. Neverthelesss, the obtained results prove the potential of PROSPECT+SAIL for retrieving structural and biochemical grassland parameters; results may be appropriate for assimilation in the modelling of plant growth or carbon cycle, for example.
CC : 002A14A03; 001E01M04; 225B04
FD : Télédétection; Végétation; Prairie; Transfert radiatif; Modèle; Croissance; Utilisation terrain; Occupation sol; Inventaire; Ecologie; Biochimie; Chlorophylle; Cycle carbone; Problème inverse; Humidité sol; Feuillage; Inversion; Teneur matière sèche; Indice foliaire; Paramètre; Spectroradiométrie; Prairie permanente; Analyse biochimique; LAI; Rhénanie Palatinat
FG : Allemagne; Europe Centrale; Europe
ED : remote sensing; vegetation; grasslands; radiative transfer; models; growth; land use; land cover; inventory; ecology; biochemistry; chlorophyll; carbon cycle; inverse problem; soil moisture; Foliage; Inversion; Dry matter content; Leaf area index; Parameter; Spectroradiometry; Permanent grassland; Biochemical analysis; Rhineland-Palatinate Germany
EG : Germany; Central Europe; Europe
SD : Detección a distancia; Vegetación; Pradera; Modelo; Utilización terreno; Inventario; Ecología; Bioquímica; Clorofila; Problema inverso; Humedad suelo; Follaje; Inversión; Contenido materia seca; Indice foliar; Parámetro; Espectroradiometría; Pradera permanente; Análisis bioquímico; Renania Palatinado
LO : INIST-19437.354000173952870110
ID : 08-0105931

Links to Exploration step

Pascal:08-0105931

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT + SAIL)</title>
<author>
<name sortKey="Vohland, M" sort="Vohland, M" uniqKey="Vohland M" first="M." last="Vohland">M. Vohland</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Remote Sensing and Geoinformatics, Faculty of Geography and Geosciences, University of Trier, Campus II</s1>
<s2>54286 Trier</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jarmer, T" sort="Jarmer, T" uniqKey="Jarmer T" first="T." last="Jarmer">T. Jarmer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Remote Sensing and Geoinformatics, Institute of Geographical Sciences, Department of Earth Sciences, Free University of Berlin</s1>
<s2>12249 Berlin</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0105931</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0105931 INIST</idno>
<idno type="RBID">Pascal:08-0105931</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000859</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT + SAIL)</title>
<author>
<name sortKey="Vohland, M" sort="Vohland, M" uniqKey="Vohland M" first="M." last="Vohland">M. Vohland</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Remote Sensing and Geoinformatics, Faculty of Geography and Geosciences, University of Trier, Campus II</s1>
<s2>54286 Trier</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jarmer, T" sort="Jarmer, T" uniqKey="Jarmer T" first="T." last="Jarmer">T. Jarmer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Remote Sensing and Geoinformatics, Institute of Geographical Sciences, Department of Earth Sciences, Free University of Berlin</s1>
<s2>12249 Berlin</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of remote sensing : (Print)</title>
<title level="j" type="abbreviated">Int. j. remote sens. : (Print)</title>
<idno type="ISSN">0143-1161</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of remote sensing : (Print)</title>
<title level="j" type="abbreviated">Int. j. remote sens. : (Print)</title>
<idno type="ISSN">0143-1161</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biochemical analysis</term>
<term>Dry matter content</term>
<term>Foliage</term>
<term>Inversion</term>
<term>Leaf area index</term>
<term>Parameter</term>
<term>Permanent grassland</term>
<term>Rhineland-Palatinate Germany</term>
<term>Spectroradiometry</term>
<term>biochemistry</term>
<term>carbon cycle</term>
<term>chlorophyll</term>
<term>ecology</term>
<term>grasslands</term>
<term>growth</term>
<term>inventory</term>
<term>inverse problem</term>
<term>land cover</term>
<term>land use</term>
<term>models</term>
<term>radiative transfer</term>
<term>remote sensing</term>
<term>soil moisture</term>
<term>vegetation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Télédétection</term>
<term>Végétation</term>
<term>Prairie</term>
<term>Transfert radiatif</term>
<term>Modèle</term>
<term>Croissance</term>
<term>Utilisation terrain</term>
<term>Occupation sol</term>
<term>Inventaire</term>
<term>Ecologie</term>
<term>Biochimie</term>
<term>Chlorophylle</term>
<term>Cycle carbone</term>
<term>Problème inverse</term>
<term>Humidité sol</term>
<term>Feuillage</term>
<term>Inversion</term>
<term>Teneur matière sèche</term>
<term>Indice foliaire</term>
<term>Paramètre</term>
<term>Spectroradiométrie</term>
<term>Prairie permanente</term>
<term>Analyse biochimique</term>
<term>LAI</term>
<term>Rhénanie Palatinat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As permanent grassland is a large-scale land-use type in Central Europe, grassland inventories are relevant for ecological and agrarian issues. The objective of this study was to assess structural and biochemical grassland parameters (LAI, chlorophyll, water and dry matter contents) from field spectroradiometer data (ASD FieldSpec II) by radiative transfer modelling (PROSPECT + SAIL). Constraints were necessary to compensate the ill-posed nature of model inversion for accurate parameter retrieval. In this context, we found the foliage moisture content to play an important role. After coupling the equivalent water thickness and the dry matter content in a ratio of 4:1, the estimation accuracy for the LAI clearly improved. In terms of LAI, the RMSE decreased from 0.86 to 0.74, and the range of LAI values measured in the field (min=0.10, max=5.88) was reproduced exactly with estimates ranging from 0.05 to 5.46. The spectra reconstructed by PROSPECT + SAIL using the inverted parameter estimates coincided well with the measured spectra. Nonetheless, obtained canopy chlorophyll contents tended to be too high. When using ground measured chlorophyll data for spectra generation, simulated reflectances were clearly higher in the visible domain than the measured ones. This is partly attributed to the chlorophyll absorption coefficients of PROSPECT that may not be true for the majority of grassland plant species in reality. Neverthelesss, the obtained results prove the potential of PROSPECT+SAIL for retrieving structural and biochemical grassland parameters; results may be appropriate for assimilation in the modelling of plant growth or carbon cycle, for example.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0143-1161</s0>
</fA01>
<fA02 i1="01">
<s0>IJSEDK</s0>
</fA02>
<fA03 i2="1">
<s0>Int. j. remote sens. : (Print)</s0>
</fA03>
<fA05>
<s2>29</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT + SAIL)</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VOHLAND (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JARMER (T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Remote Sensing and Geoinformatics, Faculty of Geography and Geosciences, University of Trier, Campus II</s1>
<s2>54286 Trier</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Remote Sensing and Geoinformatics, Institute of Geographical Sciences, Department of Earth Sciences, Free University of Berlin</s1>
<s2>12249 Berlin</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>191-209</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>19437</s2>
<s5>354000173952870110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0105931</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of remote sensing : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>As permanent grassland is a large-scale land-use type in Central Europe, grassland inventories are relevant for ecological and agrarian issues. The objective of this study was to assess structural and biochemical grassland parameters (LAI, chlorophyll, water and dry matter contents) from field spectroradiometer data (ASD FieldSpec II) by radiative transfer modelling (PROSPECT + SAIL). Constraints were necessary to compensate the ill-posed nature of model inversion for accurate parameter retrieval. In this context, we found the foliage moisture content to play an important role. After coupling the equivalent water thickness and the dry matter content in a ratio of 4:1, the estimation accuracy for the LAI clearly improved. In terms of LAI, the RMSE decreased from 0.86 to 0.74, and the range of LAI values measured in the field (min=0.10, max=5.88) was reproduced exactly with estimates ranging from 0.05 to 5.46. The spectra reconstructed by PROSPECT + SAIL using the inverted parameter estimates coincided well with the measured spectra. Nonetheless, obtained canopy chlorophyll contents tended to be too high. When using ground measured chlorophyll data for spectra generation, simulated reflectances were clearly higher in the visible domain than the measured ones. This is partly attributed to the chlorophyll absorption coefficients of PROSPECT that may not be true for the majority of grassland plant species in reality. Neverthelesss, the obtained results prove the potential of PROSPECT+SAIL for retrieving structural and biochemical grassland parameters; results may be appropriate for assimilation in the modelling of plant growth or carbon cycle, for example.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14A03</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01M04</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>225B04</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Télédétection</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>remote sensing</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Detección a distancia</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Végétation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>vegetation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Vegetación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Prairie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>grasslands</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Pradera</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Transfert radiatif</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>radiative transfer</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>models</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Croissance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>growth</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Utilisation terrain</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>land use</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Utilización terreno</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Occupation sol</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>land cover</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Inventaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>inventory</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Inventario</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Ecologie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>ecology</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Ecología</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Biochimie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>biochemistry</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Bioquímica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Chlorophylle</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>chlorophyll</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Clorofila</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Cycle carbone</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>carbon cycle</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Problème inverse</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>inverse problem</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Problema inverso</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Humidité sol</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>soil moisture</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Humedad suelo</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Feuillage</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Foliage</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Follaje</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Inversion</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Inversion</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Inversión</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Teneur matière sèche</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Dry matter content</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Contenido materia seca</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Indice foliaire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Leaf area index</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indice foliar</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Paramètre</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Parameter</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Parámetro</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Spectroradiométrie</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Spectroradiometry</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Espectroradiometría</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Prairie permanente</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Permanent grassland</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Pradera permanente</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Analyse biochimique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Biochemical analysis</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Análisis bioquímico</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>LAI</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Rhénanie Palatinat</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>Rhineland-Palatinate Germany</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="25" i2="2" l="SPA">
<s0>Renania Palatinado</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Allemagne</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Germany</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Alemania</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Europe Centrale</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>Central Europe</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Europa central</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Europe</s0>
<s2>564</s2>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>Europe</s0>
<s2>564</s2>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Europa</s0>
<s2>564</s2>
</fC07>
<fN21>
<s1>056</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 08-0105931 INIST</NO>
<ET>Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT + SAIL)</ET>
<AU>VOHLAND (M.); JARMER (T.)</AU>
<AF>Remote Sensing and Geoinformatics, Faculty of Geography and Geosciences, University of Trier, Campus II/54286 Trier/Allemagne (1 aut.); Remote Sensing and Geoinformatics, Institute of Geographical Sciences, Department of Earth Sciences, Free University of Berlin/12249 Berlin/Allemagne (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>International journal of remote sensing : (Print); ISSN 0143-1161; Coden IJSEDK; Royaume-Uni; Da. 2008; Vol. 29; No. 1-2; Pp. 191-209; Bibl. 1 p.3/4</SO>
<LA>Anglais</LA>
<EA>As permanent grassland is a large-scale land-use type in Central Europe, grassland inventories are relevant for ecological and agrarian issues. The objective of this study was to assess structural and biochemical grassland parameters (LAI, chlorophyll, water and dry matter contents) from field spectroradiometer data (ASD FieldSpec II) by radiative transfer modelling (PROSPECT + SAIL). Constraints were necessary to compensate the ill-posed nature of model inversion for accurate parameter retrieval. In this context, we found the foliage moisture content to play an important role. After coupling the equivalent water thickness and the dry matter content in a ratio of 4:1, the estimation accuracy for the LAI clearly improved. In terms of LAI, the RMSE decreased from 0.86 to 0.74, and the range of LAI values measured in the field (min=0.10, max=5.88) was reproduced exactly with estimates ranging from 0.05 to 5.46. The spectra reconstructed by PROSPECT + SAIL using the inverted parameter estimates coincided well with the measured spectra. Nonetheless, obtained canopy chlorophyll contents tended to be too high. When using ground measured chlorophyll data for spectra generation, simulated reflectances were clearly higher in the visible domain than the measured ones. This is partly attributed to the chlorophyll absorption coefficients of PROSPECT that may not be true for the majority of grassland plant species in reality. Neverthelesss, the obtained results prove the potential of PROSPECT+SAIL for retrieving structural and biochemical grassland parameters; results may be appropriate for assimilation in the modelling of plant growth or carbon cycle, for example.</EA>
<CC>002A14A03; 001E01M04; 225B04</CC>
<FD>Télédétection; Végétation; Prairie; Transfert radiatif; Modèle; Croissance; Utilisation terrain; Occupation sol; Inventaire; Ecologie; Biochimie; Chlorophylle; Cycle carbone; Problème inverse; Humidité sol; Feuillage; Inversion; Teneur matière sèche; Indice foliaire; Paramètre; Spectroradiométrie; Prairie permanente; Analyse biochimique; LAI; Rhénanie Palatinat</FD>
<FG>Allemagne; Europe Centrale; Europe</FG>
<ED>remote sensing; vegetation; grasslands; radiative transfer; models; growth; land use; land cover; inventory; ecology; biochemistry; chlorophyll; carbon cycle; inverse problem; soil moisture; Foliage; Inversion; Dry matter content; Leaf area index; Parameter; Spectroradiometry; Permanent grassland; Biochemical analysis; Rhineland-Palatinate Germany</ED>
<EG>Germany; Central Europe; Europe</EG>
<SD>Detección a distancia; Vegetación; Pradera; Modelo; Utilización terreno; Inventario; Ecología; Bioquímica; Clorofila; Problema inverso; Humedad suelo; Follaje; Inversión; Contenido materia seca; Indice foliar; Parámetro; Espectroradiometría; Pradera permanente; Análisis bioquímico; Renania Palatinado</SD>
<LO>INIST-19437.354000173952870110</LO>
<ID>08-0105931</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000859 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000859 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0105931
   |texte=   Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT + SAIL)
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024