Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Xenobiotic removal efficiencies in wastewater treatment plants: Residence time distributions as a guiding principle for sampling strategies

Identifieur interne : 000360 ( PascalFrancis/Corpus ); précédent : 000359; suivant : 000361

Xenobiotic removal efficiencies in wastewater treatment plants: Residence time distributions as a guiding principle for sampling strategies

Auteurs : Marius Majewsky ; Tom Galle ; Michael Bayerle ; Rajeev Goel ; Klaus Fischer ; Peter A. Vanrolleghem

Source :

RBID : Pascal:11-0501862

Descripteurs français

English descriptors

Abstract

The effect of mixing regimes and residence time distribution (RTD) on solute transport in wastewater treatment plants (WWTPs) is well understood in environmental engineering. Nevertheless, it is frequently neglected in sampling design and data analysis for the investigation of polar xenobiotic removal efficiencies in WWTPs. Most studies on the latter use 24-h composite samples in influent and effluent. The effluent sampling period is often shifted by the mean hydraulic retention time assuming that this allows a total coverage of the influent load. However, this assumption disregards mixing regime characteristics as well as flow and concentration variability in evaluating xenobiotic removal performances and may consequently lead to biased estimates or even negative elimination efficiencies. The present study aims at developing a modeling approach to estimate xenobiotic removal efficiencies from monitoring data taking the hydraulic RTD in WWTPs into consideration. For this purpose, completely mixed tanks-in-series were applied to address hydraulic mixing regimes in a Luxembourg WWTP. Hydraulic calibration for this WWTP was performed using wastewater conductivity as a tracer. The RTD mixing approach was coupled with first-order biodegradation kinetics for xenobiotics covering three classes of biodegradability during aerobic treatment. Model simulations showed that a daily influent load is distributed over more than one day in the effluent. A 24-h sampling period with an optimal time offset between influent and effluent covers less than the half of the influent load in a dry weather scenario. According to RTD calculations, an optimized sampling strategy covering four consecutive measuring days in the influent would be necessary to estimate the full-scale elimination efficiencies with sufficient accuracy. Daily variations of influent flow and concentrations can substantially affect the reliability of these sampling results. Commonly reported negative removal efficiencies for xenobiotics might therefore be a consequence of biased sampling schemes. In this regard, the present study aims at contributing to bridge the gap between environmental chemistry and engineering practices.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0043-1354
A02 01      @0 WATRAG
A03   1    @0 Water res. : (Oxf.)
A05       @2 45
A06       @2 18
A08 01  1  ENG  @1 Xenobiotic removal efficiencies in wastewater treatment plants: Residence time distributions as a guiding principle for sampling strategies
A11 01  1    @1 MAJEWSKY (Marius)
A11 02  1    @1 GALLE (Tom)
A11 03  1    @1 BAYERLE (Michael)
A11 04  1    @1 GOEL (Rajeev)
A11 05  1    @1 FISCHER (Klaus)
A11 06  1    @1 VANROLLEGHEM (Peter A.)
A14 01      @1 Resource Center for Environmental Technologies (CRTE), CRP Henri Tudor, 66, rue de Luxembourg @2 4221 Esch-sur-Alzette @3 LUX @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Hydromantis, Environmental Software Solutions, Inc., 1 James Street South, Suite #1601 @2 Hamilton, ON L8P 4R5 @3 CAN @Z 4 aut.
A14 03      @1 Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21 @2 54296 Trier @3 DEU @Z 5 aut.
A14 04      @1 ModelEAU, Département de génie civil et de génie des eaux, Université Laval @2 Quebec, QC G1V 0A6 @3 CAN @Z 6 aut.
A20       @1 6152-6162
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 8940A @5 354000507290870330
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 11-0501862
A60       @1 P
A61       @0 A
A64 01  1    @0 Water research : (Oxford)
A66 01      @0 GBR
C01 01    ENG  @0 The effect of mixing regimes and residence time distribution (RTD) on solute transport in wastewater treatment plants (WWTPs) is well understood in environmental engineering. Nevertheless, it is frequently neglected in sampling design and data analysis for the investigation of polar xenobiotic removal efficiencies in WWTPs. Most studies on the latter use 24-h composite samples in influent and effluent. The effluent sampling period is often shifted by the mean hydraulic retention time assuming that this allows a total coverage of the influent load. However, this assumption disregards mixing regime characteristics as well as flow and concentration variability in evaluating xenobiotic removal performances and may consequently lead to biased estimates or even negative elimination efficiencies. The present study aims at developing a modeling approach to estimate xenobiotic removal efficiencies from monitoring data taking the hydraulic RTD in WWTPs into consideration. For this purpose, completely mixed tanks-in-series were applied to address hydraulic mixing regimes in a Luxembourg WWTP. Hydraulic calibration for this WWTP was performed using wastewater conductivity as a tracer. The RTD mixing approach was coupled with first-order biodegradation kinetics for xenobiotics covering three classes of biodegradability during aerobic treatment. Model simulations showed that a daily influent load is distributed over more than one day in the effluent. A 24-h sampling period with an optimal time offset between influent and effluent covers less than the half of the influent load in a dry weather scenario. According to RTD calculations, an optimized sampling strategy covering four consecutive measuring days in the influent would be necessary to estimate the full-scale elimination efficiencies with sufficient accuracy. Daily variations of influent flow and concentrations can substantially affect the reliability of these sampling results. Commonly reported negative removal efficiencies for xenobiotics might therefore be a consequence of biased sampling schemes. In this regard, the present study aims at contributing to bridge the gap between environmental chemistry and engineering practices.
C02 01  X    @0 001D16A
C03 01  X  FRE  @0 Xénobiotique @2 NK @2 FX @5 01
C03 01  X  ENG  @0 Xenobiotic @2 NK @2 FX @5 01
C03 01  X  SPA  @0 Xenobiótico @2 NK @2 FX @5 01
C03 02  X  FRE  @0 Station épuration @5 02
C03 02  X  ENG  @0 Sewage treatment plant @5 02
C03 02  X  SPA  @0 Estación depuradora @5 02
C03 03  X  FRE  @0 Distribution temps séjour @5 03
C03 03  X  ENG  @0 Residence time distribution @5 03
C03 03  X  SPA  @0 Distribución tiempo estancia @5 03
C03 04  X  FRE  @0 Modélisation @5 04
C03 04  X  ENG  @0 Modeling @5 04
C03 04  X  SPA  @0 Modelización @5 04
C03 05  X  FRE  @0 Plan échantillonnage @5 06
C03 05  X  ENG  @0 Sampling design @5 06
C03 05  X  SPA  @0 Plan muestreo @5 06
C03 06  X  FRE  @0 Temps rétention @5 08
C03 06  X  ENG  @0 Retention time @5 08
C03 06  X  SPA  @0 Tiempo retención @5 08
C03 07  X  FRE  @0 Performance @5 09
C03 07  X  ENG  @0 Performance @5 09
C03 07  X  SPA  @0 Rendimiento @5 09
C03 08  X  FRE  @0 Traceur @5 15
C03 08  X  ENG  @0 Tracers @5 15
C03 08  X  SPA  @0 Trazador @5 15
C03 09  X  FRE  @0 Dégradation biologique @5 16
C03 09  X  ENG  @0 Biodegradation @5 16
C03 09  X  SPA  @0 Degradación biológica @5 16
C03 10  X  FRE  @0 Cinétique @5 17
C03 10  X  ENG  @0 Kinetics @5 17
C03 10  X  SPA  @0 Cinética @5 17
C03 11  X  FRE  @0 Biodégradabilité @5 18
C03 11  X  ENG  @0 Biodegradability @5 18
C03 11  X  SPA  @0 Biodegradabilidad @5 18
C03 12  X  FRE  @0 Aérobie @5 19
C03 12  X  ENG  @0 Aerobe @5 19
C03 12  X  SPA  @0 Aerobio @5 19
C03 13  X  FRE  @0 Variation journalière @5 20
C03 13  X  ENG  @0 Daily variation @5 20
C03 13  X  SPA  @0 Variación diaria @5 20
C03 14  X  FRE  @0 Fiabilité @5 21
C03 14  X  ENG  @0 Reliability @5 21
C03 14  X  SPA  @0 Fiabilidad @5 21
C03 15  X  FRE  @0 Conception optimale @5 22
C03 15  X  ENG  @0 Optimal design @5 22
C03 15  X  SPA  @0 Concepción optimal @5 22
C03 16  X  FRE  @0 Luxembourg @2 NG @5 31
C03 16  X  ENG  @0 Luxembourg @2 NG @5 31
C03 16  X  SPA  @0 Luxemburgo @2 NG @5 31
C03 17  X  FRE  @0 Devenir polluant @5 35
C03 17  X  ENG  @0 Pollutant behavior @5 35
C03 17  X  SPA  @0 Evolución contaminante @5 35
C07 01  X  FRE  @0 Europe @2 NG
C07 01  X  ENG  @0 Europe @2 NG
C07 01  X  SPA  @0 Europa @2 NG
N21       @1 346

Format Inist (serveur)

NO : PASCAL 11-0501862 INIST
ET : Xenobiotic removal efficiencies in wastewater treatment plants: Residence time distributions as a guiding principle for sampling strategies
AU : MAJEWSKY (Marius); GALLE (Tom); BAYERLE (Michael); GOEL (Rajeev); FISCHER (Klaus); VANROLLEGHEM (Peter A.)
AF : Resource Center for Environmental Technologies (CRTE), CRP Henri Tudor, 66, rue de Luxembourg/4221 Esch-sur-Alzette/Luxembourg (1 aut., 2 aut., 3 aut.); Hydromantis, Environmental Software Solutions, Inc., 1 James Street South, Suite #1601/Hamilton, ON L8P 4R5/Canada (4 aut.); Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21/54296 Trier/Allemagne (5 aut.); ModelEAU, Département de génie civil et de génie des eaux, Université Laval/Quebec, QC G1V 0A6/Canada (6 aut.)
DT : Publication en série; Niveau analytique
SO : Water research : (Oxford); ISSN 0043-1354; Coden WATRAG; Royaume-Uni; Da. 2011; Vol. 45; No. 18; Pp. 6152-6162; Bibl. 3/4 p.
LA : Anglais
EA : The effect of mixing regimes and residence time distribution (RTD) on solute transport in wastewater treatment plants (WWTPs) is well understood in environmental engineering. Nevertheless, it is frequently neglected in sampling design and data analysis for the investigation of polar xenobiotic removal efficiencies in WWTPs. Most studies on the latter use 24-h composite samples in influent and effluent. The effluent sampling period is often shifted by the mean hydraulic retention time assuming that this allows a total coverage of the influent load. However, this assumption disregards mixing regime characteristics as well as flow and concentration variability in evaluating xenobiotic removal performances and may consequently lead to biased estimates or even negative elimination efficiencies. The present study aims at developing a modeling approach to estimate xenobiotic removal efficiencies from monitoring data taking the hydraulic RTD in WWTPs into consideration. For this purpose, completely mixed tanks-in-series were applied to address hydraulic mixing regimes in a Luxembourg WWTP. Hydraulic calibration for this WWTP was performed using wastewater conductivity as a tracer. The RTD mixing approach was coupled with first-order biodegradation kinetics for xenobiotics covering three classes of biodegradability during aerobic treatment. Model simulations showed that a daily influent load is distributed over more than one day in the effluent. A 24-h sampling period with an optimal time offset between influent and effluent covers less than the half of the influent load in a dry weather scenario. According to RTD calculations, an optimized sampling strategy covering four consecutive measuring days in the influent would be necessary to estimate the full-scale elimination efficiencies with sufficient accuracy. Daily variations of influent flow and concentrations can substantially affect the reliability of these sampling results. Commonly reported negative removal efficiencies for xenobiotics might therefore be a consequence of biased sampling schemes. In this regard, the present study aims at contributing to bridge the gap between environmental chemistry and engineering practices.
CC : 001D16A
FD : Xénobiotique; Station épuration; Distribution temps séjour; Modélisation; Plan échantillonnage; Temps rétention; Performance; Traceur; Dégradation biologique; Cinétique; Biodégradabilité; Aérobie; Variation journalière; Fiabilité; Conception optimale; Luxembourg; Devenir polluant
FG : Europe
ED : Xenobiotic; Sewage treatment plant; Residence time distribution; Modeling; Sampling design; Retention time; Performance; Tracers; Biodegradation; Kinetics; Biodegradability; Aerobe; Daily variation; Reliability; Optimal design; Luxembourg; Pollutant behavior
EG : Europe
SD : Xenobiótico; Estación depuradora; Distribución tiempo estancia; Modelización; Plan muestreo; Tiempo retención; Rendimiento; Trazador; Degradación biológica; Cinética; Biodegradabilidad; Aerobio; Variación diaria; Fiabilidad; Concepción optimal; Luxemburgo; Evolución contaminante
LO : INIST-8940A.354000507290870330
ID : 11-0501862

Links to Exploration step

Pascal:11-0501862

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Xenobiotic removal efficiencies in wastewater treatment plants: Residence time distributions as a guiding principle for sampling strategies</title>
<author>
<name sortKey="Majewsky, Marius" sort="Majewsky, Marius" uniqKey="Majewsky M" first="Marius" last="Majewsky">Marius Majewsky</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Resource Center for Environmental Technologies (CRTE), CRP Henri Tudor, 66, rue de Luxembourg</s1>
<s2>4221 Esch-sur-Alzette</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Galle, Tom" sort="Galle, Tom" uniqKey="Galle T" first="Tom" last="Galle">Tom Galle</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Resource Center for Environmental Technologies (CRTE), CRP Henri Tudor, 66, rue de Luxembourg</s1>
<s2>4221 Esch-sur-Alzette</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bayerle, Michael" sort="Bayerle, Michael" uniqKey="Bayerle M" first="Michael" last="Bayerle">Michael Bayerle</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Resource Center for Environmental Technologies (CRTE), CRP Henri Tudor, 66, rue de Luxembourg</s1>
<s2>4221 Esch-sur-Alzette</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Goel, Rajeev" sort="Goel, Rajeev" uniqKey="Goel R" first="Rajeev" last="Goel">Rajeev Goel</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Hydromantis, Environmental Software Solutions, Inc., 1 James Street South, Suite #1601</s1>
<s2>Hamilton, ON L8P 4R5</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fischer, Klaus" sort="Fischer, Klaus" uniqKey="Fischer K" first="Klaus" last="Fischer">Klaus Fischer</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21</s1>
<s2>54296 Trier</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vanrolleghem, Peter A" sort="Vanrolleghem, Peter A" uniqKey="Vanrolleghem P" first="Peter A." last="Vanrolleghem">Peter A. Vanrolleghem</name>
<affiliation>
<inist:fA14 i1="04">
<s1>ModelEAU, Département de génie civil et de génie des eaux, Université Laval</s1>
<s2>Quebec, QC G1V 0A6</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0501862</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0501862 INIST</idno>
<idno type="RBID">Pascal:11-0501862</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000360</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Xenobiotic removal efficiencies in wastewater treatment plants: Residence time distributions as a guiding principle for sampling strategies</title>
<author>
<name sortKey="Majewsky, Marius" sort="Majewsky, Marius" uniqKey="Majewsky M" first="Marius" last="Majewsky">Marius Majewsky</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Resource Center for Environmental Technologies (CRTE), CRP Henri Tudor, 66, rue de Luxembourg</s1>
<s2>4221 Esch-sur-Alzette</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Galle, Tom" sort="Galle, Tom" uniqKey="Galle T" first="Tom" last="Galle">Tom Galle</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Resource Center for Environmental Technologies (CRTE), CRP Henri Tudor, 66, rue de Luxembourg</s1>
<s2>4221 Esch-sur-Alzette</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bayerle, Michael" sort="Bayerle, Michael" uniqKey="Bayerle M" first="Michael" last="Bayerle">Michael Bayerle</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Resource Center for Environmental Technologies (CRTE), CRP Henri Tudor, 66, rue de Luxembourg</s1>
<s2>4221 Esch-sur-Alzette</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Goel, Rajeev" sort="Goel, Rajeev" uniqKey="Goel R" first="Rajeev" last="Goel">Rajeev Goel</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Hydromantis, Environmental Software Solutions, Inc., 1 James Street South, Suite #1601</s1>
<s2>Hamilton, ON L8P 4R5</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fischer, Klaus" sort="Fischer, Klaus" uniqKey="Fischer K" first="Klaus" last="Fischer">Klaus Fischer</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21</s1>
<s2>54296 Trier</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vanrolleghem, Peter A" sort="Vanrolleghem, Peter A" uniqKey="Vanrolleghem P" first="Peter A." last="Vanrolleghem">Peter A. Vanrolleghem</name>
<affiliation>
<inist:fA14 i1="04">
<s1>ModelEAU, Département de génie civil et de génie des eaux, Université Laval</s1>
<s2>Quebec, QC G1V 0A6</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Water research : (Oxford)</title>
<title level="j" type="abbreviated">Water res. : (Oxf.)</title>
<idno type="ISSN">0043-1354</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Water research : (Oxford)</title>
<title level="j" type="abbreviated">Water res. : (Oxf.)</title>
<idno type="ISSN">0043-1354</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerobe</term>
<term>Biodegradability</term>
<term>Biodegradation</term>
<term>Daily variation</term>
<term>Kinetics</term>
<term>Luxembourg</term>
<term>Modeling</term>
<term>Optimal design</term>
<term>Performance</term>
<term>Pollutant behavior</term>
<term>Reliability</term>
<term>Residence time distribution</term>
<term>Retention time</term>
<term>Sampling design</term>
<term>Sewage treatment plant</term>
<term>Tracers</term>
<term>Xenobiotic</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Xénobiotique</term>
<term>Station épuration</term>
<term>Distribution temps séjour</term>
<term>Modélisation</term>
<term>Plan échantillonnage</term>
<term>Temps rétention</term>
<term>Performance</term>
<term>Traceur</term>
<term>Dégradation biologique</term>
<term>Cinétique</term>
<term>Biodégradabilité</term>
<term>Aérobie</term>
<term>Variation journalière</term>
<term>Fiabilité</term>
<term>Conception optimale</term>
<term>Luxembourg</term>
<term>Devenir polluant</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of mixing regimes and residence time distribution (RTD) on solute transport in wastewater treatment plants (WWTPs) is well understood in environmental engineering. Nevertheless, it is frequently neglected in sampling design and data analysis for the investigation of polar xenobiotic removal efficiencies in WWTPs. Most studies on the latter use 24-h composite samples in influent and effluent. The effluent sampling period is often shifted by the mean hydraulic retention time assuming that this allows a total coverage of the influent load. However, this assumption disregards mixing regime characteristics as well as flow and concentration variability in evaluating xenobiotic removal performances and may consequently lead to biased estimates or even negative elimination efficiencies. The present study aims at developing a modeling approach to estimate xenobiotic removal efficiencies from monitoring data taking the hydraulic RTD in WWTPs into consideration. For this purpose, completely mixed tanks-in-series were applied to address hydraulic mixing regimes in a Luxembourg WWTP. Hydraulic calibration for this WWTP was performed using wastewater conductivity as a tracer. The RTD mixing approach was coupled with first-order biodegradation kinetics for xenobiotics covering three classes of biodegradability during aerobic treatment. Model simulations showed that a daily influent load is distributed over more than one day in the effluent. A 24-h sampling period with an optimal time offset between influent and effluent covers less than the half of the influent load in a dry weather scenario. According to RTD calculations, an optimized sampling strategy covering four consecutive measuring days in the influent would be necessary to estimate the full-scale elimination efficiencies with sufficient accuracy. Daily variations of influent flow and concentrations can substantially affect the reliability of these sampling results. Commonly reported negative removal efficiencies for xenobiotics might therefore be a consequence of biased sampling schemes. In this regard, the present study aims at contributing to bridge the gap between environmental chemistry and engineering practices.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0043-1354</s0>
</fA01>
<fA02 i1="01">
<s0>WATRAG</s0>
</fA02>
<fA03 i2="1">
<s0>Water res. : (Oxf.)</s0>
</fA03>
<fA05>
<s2>45</s2>
</fA05>
<fA06>
<s2>18</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Xenobiotic removal efficiencies in wastewater treatment plants: Residence time distributions as a guiding principle for sampling strategies</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MAJEWSKY (Marius)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GALLE (Tom)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BAYERLE (Michael)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GOEL (Rajeev)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FISCHER (Klaus)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VANROLLEGHEM (Peter A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Resource Center for Environmental Technologies (CRTE), CRP Henri Tudor, 66, rue de Luxembourg</s1>
<s2>4221 Esch-sur-Alzette</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Hydromantis, Environmental Software Solutions, Inc., 1 James Street South, Suite #1601</s1>
<s2>Hamilton, ON L8P 4R5</s2>
<s3>CAN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21</s1>
<s2>54296 Trier</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>ModelEAU, Département de génie civil et de génie des eaux, Université Laval</s1>
<s2>Quebec, QC G1V 0A6</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>6152-6162</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940A</s2>
<s5>354000507290870330</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0501862</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Water research : (Oxford)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effect of mixing regimes and residence time distribution (RTD) on solute transport in wastewater treatment plants (WWTPs) is well understood in environmental engineering. Nevertheless, it is frequently neglected in sampling design and data analysis for the investigation of polar xenobiotic removal efficiencies in WWTPs. Most studies on the latter use 24-h composite samples in influent and effluent. The effluent sampling period is often shifted by the mean hydraulic retention time assuming that this allows a total coverage of the influent load. However, this assumption disregards mixing regime characteristics as well as flow and concentration variability in evaluating xenobiotic removal performances and may consequently lead to biased estimates or even negative elimination efficiencies. The present study aims at developing a modeling approach to estimate xenobiotic removal efficiencies from monitoring data taking the hydraulic RTD in WWTPs into consideration. For this purpose, completely mixed tanks-in-series were applied to address hydraulic mixing regimes in a Luxembourg WWTP. Hydraulic calibration for this WWTP was performed using wastewater conductivity as a tracer. The RTD mixing approach was coupled with first-order biodegradation kinetics for xenobiotics covering three classes of biodegradability during aerobic treatment. Model simulations showed that a daily influent load is distributed over more than one day in the effluent. A 24-h sampling period with an optimal time offset between influent and effluent covers less than the half of the influent load in a dry weather scenario. According to RTD calculations, an optimized sampling strategy covering four consecutive measuring days in the influent would be necessary to estimate the full-scale elimination efficiencies with sufficient accuracy. Daily variations of influent flow and concentrations can substantially affect the reliability of these sampling results. Commonly reported negative removal efficiencies for xenobiotics might therefore be a consequence of biased sampling schemes. In this regard, the present study aims at contributing to bridge the gap between environmental chemistry and engineering practices.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Xénobiotique</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Xenobiotic</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Xenobiótico</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Station épuration</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Sewage treatment plant</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estación depuradora</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Distribution temps séjour</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Residence time distribution</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Distribución tiempo estancia</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Plan échantillonnage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Sampling design</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Plan muestreo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Temps rétention</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Retention time</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Tiempo retención</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Performance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Performance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Rendimiento</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Traceur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tracers</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Trazador</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dégradation biologique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Biodegradation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Degradación biológica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cinétique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Kinetics</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cinética</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Biodégradabilité</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Biodegradability</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Biodegradabilidad</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Aérobie</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Aerobe</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Aerobio</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Variation journalière</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Daily variation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Variación diaria</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Fiabilité</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Reliability</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Fiabilidad</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Conception optimale</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Optimal design</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Concepción optimal</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Luxembourg</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Luxembourg</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Luxemburgo</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Devenir polluant</s0>
<s5>35</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Pollutant behavior</s0>
<s5>35</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Evolución contaminante</s0>
<s5>35</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Europe</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Europe</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Europa</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>346</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 11-0501862 INIST</NO>
<ET>Xenobiotic removal efficiencies in wastewater treatment plants: Residence time distributions as a guiding principle for sampling strategies</ET>
<AU>MAJEWSKY (Marius); GALLE (Tom); BAYERLE (Michael); GOEL (Rajeev); FISCHER (Klaus); VANROLLEGHEM (Peter A.)</AU>
<AF>Resource Center for Environmental Technologies (CRTE), CRP Henri Tudor, 66, rue de Luxembourg/4221 Esch-sur-Alzette/Luxembourg (1 aut., 2 aut., 3 aut.); Hydromantis, Environmental Software Solutions, Inc., 1 James Street South, Suite #1601/Hamilton, ON L8P 4R5/Canada (4 aut.); Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21/54296 Trier/Allemagne (5 aut.); ModelEAU, Département de génie civil et de génie des eaux, Université Laval/Quebec, QC G1V 0A6/Canada (6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Water research : (Oxford); ISSN 0043-1354; Coden WATRAG; Royaume-Uni; Da. 2011; Vol. 45; No. 18; Pp. 6152-6162; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>The effect of mixing regimes and residence time distribution (RTD) on solute transport in wastewater treatment plants (WWTPs) is well understood in environmental engineering. Nevertheless, it is frequently neglected in sampling design and data analysis for the investigation of polar xenobiotic removal efficiencies in WWTPs. Most studies on the latter use 24-h composite samples in influent and effluent. The effluent sampling period is often shifted by the mean hydraulic retention time assuming that this allows a total coverage of the influent load. However, this assumption disregards mixing regime characteristics as well as flow and concentration variability in evaluating xenobiotic removal performances and may consequently lead to biased estimates or even negative elimination efficiencies. The present study aims at developing a modeling approach to estimate xenobiotic removal efficiencies from monitoring data taking the hydraulic RTD in WWTPs into consideration. For this purpose, completely mixed tanks-in-series were applied to address hydraulic mixing regimes in a Luxembourg WWTP. Hydraulic calibration for this WWTP was performed using wastewater conductivity as a tracer. The RTD mixing approach was coupled with first-order biodegradation kinetics for xenobiotics covering three classes of biodegradability during aerobic treatment. Model simulations showed that a daily influent load is distributed over more than one day in the effluent. A 24-h sampling period with an optimal time offset between influent and effluent covers less than the half of the influent load in a dry weather scenario. According to RTD calculations, an optimized sampling strategy covering four consecutive measuring days in the influent would be necessary to estimate the full-scale elimination efficiencies with sufficient accuracy. Daily variations of influent flow and concentrations can substantially affect the reliability of these sampling results. Commonly reported negative removal efficiencies for xenobiotics might therefore be a consequence of biased sampling schemes. In this regard, the present study aims at contributing to bridge the gap between environmental chemistry and engineering practices.</EA>
<CC>001D16A</CC>
<FD>Xénobiotique; Station épuration; Distribution temps séjour; Modélisation; Plan échantillonnage; Temps rétention; Performance; Traceur; Dégradation biologique; Cinétique; Biodégradabilité; Aérobie; Variation journalière; Fiabilité; Conception optimale; Luxembourg; Devenir polluant</FD>
<FG>Europe</FG>
<ED>Xenobiotic; Sewage treatment plant; Residence time distribution; Modeling; Sampling design; Retention time; Performance; Tracers; Biodegradation; Kinetics; Biodegradability; Aerobe; Daily variation; Reliability; Optimal design; Luxembourg; Pollutant behavior</ED>
<EG>Europe</EG>
<SD>Xenobiótico; Estación depuradora; Distribución tiempo estancia; Modelización; Plan muestreo; Tiempo retención; Rendimiento; Trazador; Degradación biológica; Cinética; Biodegradabilidad; Aerobio; Variación diaria; Fiabilidad; Concepción optimal; Luxemburgo; Evolución contaminante</SD>
<LO>INIST-8940A.354000507290870330</LO>
<ID>11-0501862</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000360 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000360 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0501862
   |texte=   Xenobiotic removal efficiencies in wastewater treatment plants: Residence time distributions as a guiding principle for sampling strategies
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024