Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simulation and analysis of runoff from a partly glaciated meso‐scale catchment area in Patagonia using an artificial neural network

Identifieur interne : 000E50 ( Main/Curation ); précédent : 000E49; suivant : 000E51

Simulation and analysis of runoff from a partly glaciated meso‐scale catchment area in Patagonia using an artificial neural network

Auteurs : Tobias Sauter [Allemagne] ; Christoph Schneider [Allemagne] ; Rolf Kilian [Allemagne] ; Michael Moritz [Allemagne]

Source :

RBID : ISTEX:014B387FB0B0B6539CB7D33E2211B7D981C42B81

Descripteurs français

English descriptors

Abstract

In this study, a model based on an artificial neural network (ANN) was developed to forecast the runoff of a meso‐scale, partly glaciated (40%), Alpine catchment area in the southernmost Andes in Patagonia, Chile. The study area is located in a maritime climate with a mean annual air temperature of + 5·7 °C and about 5500 mm of precipitation per year at sea level. The multilayer feed‐forward network is designed to make use of the Levenberg‐Marquardt algorithm to increase the speed of computation (convergence). Using climate data recorded at an automatic weather station nearby as well as water level records measured simultaneously, the ANN model was trained and verified using independent training and validation datasets. Parameters and the corresponding time lags were determined by statistical methods such as partial, cross‐ and autocorrelation. The results of the simulation confirm that the proposed model was able to identify the underlying non‐linear relationships between the input parameters and the observed discharge. The correlation during validation shows a significant correlation coefficient of 0·98, and an RMSE of 0·02 m respectively. However, it is almost impossible to decipher the internal behaviour of ANN due to its black‐box character. Nevertheless, valuable insights were gained in the complex input–output relationships, and the occurrence of dependencies between different input variables were detected using global sensitivity analysis (GSA). The results of the GSA were compared with those of multiple linear regression (MLR). While the performance of the ANN is much better than the MLR, both models return similar results in terms of the dependency of the discharge upon input variables. It was found that despite the large proportion of glaciated surface area within the catchment, discharge is mainly controlled by precipitation (49%). Furthermore, the runoff is slightly influenced by temperature (19%), global radiation (15%) and wind speed (16%). While the ANN proves to be a very efficient tool for simulating runoff in glacerized, Alpine catchments from meteorological data, the GSA method, as outlined and used in this paper, offers a useful approach of analysing ANN output. Copyright © 2008 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/hyp.7210

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:014B387FB0B0B6539CB7D33E2211B7D981C42B81

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Simulation and analysis of runoff from a partly glaciated meso‐scale catchment area in Patagonia using an artificial neural network</title>
<author>
<name sortKey="Sauter, Tobias" sort="Sauter, Tobias" uniqKey="Sauter T" first="Tobias" last="Sauter">Tobias Sauter</name>
</author>
<author>
<name sortKey="Schneider, Christoph" sort="Schneider, Christoph" uniqKey="Schneider C" first="Christoph" last="Schneider">Christoph Schneider</name>
</author>
<author>
<name sortKey="Kilian, Rolf" sort="Kilian, Rolf" uniqKey="Kilian R" first="Rolf" last="Kilian">Rolf Kilian</name>
</author>
<author>
<name sortKey="Moritz, Michael" sort="Moritz, Michael" uniqKey="Moritz M" first="Michael" last="Moritz">Michael Moritz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:014B387FB0B0B6539CB7D33E2211B7D981C42B81</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1002/hyp.7210</idno>
<idno type="url">https://api.istex.fr/document/014B387FB0B0B6539CB7D33E2211B7D981C42B81/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001973</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001973</idno>
<idno type="wicri:Area/Istex/Curation">001857</idno>
<idno type="wicri:Area/Istex/Checkpoint">000397</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000397</idno>
<idno type="wicri:doubleKey">0885-6087:2009:Sauter T:simulation:and:analysis</idno>
<idno type="wicri:Area/Main/Merge">000F24</idno>
<idno type="wicri:Area/Main/Curation">000E50</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Simulation and analysis of runoff from a partly glaciated meso‐scale catchment area in Patagonia using an artificial neural network</title>
<author>
<name sortKey="Sauter, Tobias" sort="Sauter, Tobias" uniqKey="Sauter T" first="Tobias" last="Sauter">Tobias Sauter</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Geography, RWTH Aachen University, D‐52056 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr" wicri:curation="lc">Allemagne</country>
<wicri:regionArea>Department of Geography, RWTH Aachen University, D‐52056 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Christoph" sort="Schneider, Christoph" uniqKey="Schneider C" first="Christoph" last="Schneider">Christoph Schneider</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Geography, RWTH Aachen University, D‐52056 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kilian, Rolf" sort="Kilian, Rolf" uniqKey="Kilian R" first="Rolf" last="Kilian">Rolf Kilian</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Geology FB VI, D‐54286 Trier</wicri:regionArea>
<wicri:noRegion>54286 Trier</wicri:noRegion>
<wicri:noRegion>D‐54286 Trier</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moritz, Michael" sort="Moritz, Michael" uniqKey="Moritz M" first="Michael" last="Moritz">Michael Moritz</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Physical Geography, Werthmannstrasse 4</wicri:regionArea>
<wicri:noRegion>Werthmannstrasse 4</wicri:noRegion>
<wicri:noRegion>Werthmannstrasse 4</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Hydrological Processes</title>
<title level="j" type="sub">An International Journal</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="ISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2009-03-30">2009-03-30</date>
<biblScope unit="volume">23</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="1019">1019</biblScope>
<biblScope unit="page" to="1030">1030</biblScope>
</imprint>
<idno type="ISSN">0885-6087</idno>
</series>
<idno type="istex">014B387FB0B0B6539CB7D33E2211B7D981C42B81</idno>
<idno type="DOI">10.1002/hyp.7210</idno>
<idno type="ArticleID">HYP7210</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0885-6087</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Global Sensitivity Analysis</term>
<term>Patagonia</term>
<term>South America</term>
<term>artificial neural network</term>
<term>rainfall‐runoff modelling</term>
<term>stream‐flow forecasting</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Amérique du Sud</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, a model based on an artificial neural network (ANN) was developed to forecast the runoff of a meso‐scale, partly glaciated (40%), Alpine catchment area in the southernmost Andes in Patagonia, Chile. The study area is located in a maritime climate with a mean annual air temperature of + 5·7 °C and about 5500 mm of precipitation per year at sea level. The multilayer feed‐forward network is designed to make use of the Levenberg‐Marquardt algorithm to increase the speed of computation (convergence). Using climate data recorded at an automatic weather station nearby as well as water level records measured simultaneously, the ANN model was trained and verified using independent training and validation datasets. Parameters and the corresponding time lags were determined by statistical methods such as partial, cross‐ and autocorrelation. The results of the simulation confirm that the proposed model was able to identify the underlying non‐linear relationships between the input parameters and the observed discharge. The correlation during validation shows a significant correlation coefficient of 0·98, and an RMSE of 0·02 m respectively. However, it is almost impossible to decipher the internal behaviour of ANN due to its black‐box character. Nevertheless, valuable insights were gained in the complex input–output relationships, and the occurrence of dependencies between different input variables were detected using global sensitivity analysis (GSA). The results of the GSA were compared with those of multiple linear regression (MLR). While the performance of the ANN is much better than the MLR, both models return similar results in terms of the dependency of the discharge upon input variables. It was found that despite the large proportion of glaciated surface area within the catchment, discharge is mainly controlled by precipitation (49%). Furthermore, the runoff is slightly influenced by temperature (19%), global radiation (15%) and wind speed (16%). While the ANN proves to be a very efficient tool for simulating runoff in glacerized, Alpine catchments from meteorological data, the GSA method, as outlined and used in this paper, offers a useful approach of analysing ANN output. Copyright © 2008 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000E50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:014B387FB0B0B6539CB7D33E2211B7D981C42B81
   |texte=   Simulation and analysis of runoff from a partly glaciated meso‐scale catchment area in Patagonia using an artificial neural network
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024