Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM

Identifieur interne : 001C05 ( Istex/Corpus ); précédent : 001C04; suivant : 001C06

Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM

Auteurs : T. Ernsdorf ; D. Schröder ; S. Adams ; G. Heinemann ; R. Timmermann ; S. Danilov

Source :

RBID : ISTEX:3420B6B0F94606F968C7DE1510D757B330CA2768

Abstract

The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea‐ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea‐Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6‐hourly NCEP reanalyses 1 (1.875° × 1.875°), 6‐hourly NCEP reanalyses 2 (1.875° × 1.875°), 6‐hourly analyses from the GME (Global Model of the German Weather Service) (0.5° × 0.5°) and high‐resolution hourly COSMO (Consortium for Small‐Scale Modeling) data (5 km × 5 km). In all FESOM simulations, except for those with 6‐hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast‐ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea‐ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km3 to 7.8 km3 during 1 April to 9 May 2011 and from 25.7 km3 to 66.2 km3 during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.

Url:
DOI: 10.1029/2010JC006725

Links to Exploration step

ISTEX:3420B6B0F94606F968C7DE1510D757B330CA2768

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM</title>
<author>
<name sortKey="Ernsdorf, T" sort="Ernsdorf, T" uniqKey="Ernsdorf T" first="T." last="Ernsdorf">T. Ernsdorf</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: ernsdorf@uni‐trier.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schroder, D" sort="Schroder, D" uniqKey="Schroder D" first="D." last="Schröder">D. Schröder</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centre for Polar Observation and Modelling, Sea Ice Dynamics and Thermodynamics, Pearson Building, University College London, London, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Adams, S" sort="Adams, S" uniqKey="Adams S" first="S." last="Adams">S. Adams</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Heinemann, G" sort="Heinemann, G" uniqKey="Heinemann G" first="G." last="Heinemann">G. Heinemann</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Timmermann, R" sort="Timmermann, R" uniqKey="Timmermann R" first="R." last="Timmermann">R. Timmermann</name>
<affiliation>
<mods:affiliation>Division of Climate Sciences, Ocean Dynamics and Sea Ice Physics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Danilov, S" sort="Danilov, S" uniqKey="Danilov S" first="S." last="Danilov">S. Danilov</name>
<affiliation>
<mods:affiliation>Division of Climate Sciences, Ocean Dynamics and Sea Ice Physics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3420B6B0F94606F968C7DE1510D757B330CA2768</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1029/2010JC006725</idno>
<idno type="url">https://api.istex.fr/document/3420B6B0F94606F968C7DE1510D757B330CA2768/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001C05</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001C05</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM</title>
<author>
<name sortKey="Ernsdorf, T" sort="Ernsdorf, T" uniqKey="Ernsdorf T" first="T." last="Ernsdorf">T. Ernsdorf</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: ernsdorf@uni‐trier.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schroder, D" sort="Schroder, D" uniqKey="Schroder D" first="D." last="Schröder">D. Schröder</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Centre for Polar Observation and Modelling, Sea Ice Dynamics and Thermodynamics, Pearson Building, University College London, London, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Adams, S" sort="Adams, S" uniqKey="Adams S" first="S." last="Adams">S. Adams</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Heinemann, G" sort="Heinemann, G" uniqKey="Heinemann G" first="G." last="Heinemann">G. Heinemann</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Timmermann, R" sort="Timmermann, R" uniqKey="Timmermann R" first="R." last="Timmermann">R. Timmermann</name>
<affiliation>
<mods:affiliation>Division of Climate Sciences, Ocean Dynamics and Sea Ice Physics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Danilov, S" sort="Danilov, S" uniqKey="Danilov S" first="S." last="Danilov">S. Danilov</name>
<affiliation>
<mods:affiliation>Division of Climate Sciences, Ocean Dynamics and Sea Ice Physics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Oceans</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2011-12">2011-12</date>
<biblScope unit="volume">116</biblScope>
<biblScope unit="issue">C12</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">3420B6B0F94606F968C7DE1510D757B330CA2768</idno>
<idno type="DOI">10.1029/2010JC006725</idno>
<idno type="ArticleID">2010JC006725</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea‐ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea‐Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6‐hourly NCEP reanalyses 1 (1.875° × 1.875°), 6‐hourly NCEP reanalyses 2 (1.875° × 1.875°), 6‐hourly analyses from the GME (Global Model of the German Weather Service) (0.5° × 0.5°) and high‐resolution hourly COSMO (Consortium for Small‐Scale Modeling) data (5 km × 5 km). In all FESOM simulations, except for those with 6‐hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast‐ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea‐ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km3 to 7.8 km3 during 1 April to 9 May 2011 and from 25.7 km3 to 66.2 km3 during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>T. Ernsdorf</name>
<affiliations>
<json:string>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</json:string>
<json:string>E-mail: ernsdorf@uni‐trier.de</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. Schröder</name>
<affiliations>
<json:string>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</json:string>
<json:string>Centre for Polar Observation and Modelling, Sea Ice Dynamics and Thermodynamics, Pearson Building, University College London, London, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. Adams</name>
<affiliations>
<json:string>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. Heinemann</name>
<affiliations>
<json:string>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Timmermann</name>
<affiliations>
<json:string>Division of Climate Sciences, Ocean Dynamics and Sea Ice Physics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. Danilov</name>
<affiliations>
<json:string>Division of Climate Sciences, Ocean Dynamics and Sea Ice Physics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Laptev Sea</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>atmospheric forcing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>polynya</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sea ice modeling</value>
</json:item>
</subject>
<articleId>
<json:string>2010JC006725</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<qualityIndicators>
<score>9.5</score>
<pdfVersion>1.6</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1658</abstractCharCount>
<pdfWordCount>9399</pdfWordCount>
<pdfCharCount>56137</pdfCharCount>
<pdfPageCount>18</pdfPageCount>
<abstractWordCount>271</abstractWordCount>
</qualityIndicators>
<title>Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>S. Adams</name>
</json:item>
<json:item>
<name>S. Willmes</name>
</json:item>
<json:item>
<name>G. Heinemann</name>
</json:item>
<json:item>
<name>P. Rozman</name>
</json:item>
<json:item>
<name>R. Timmermann</name>
</json:item>
<json:item>
<name>D. Schröder</name>
</json:item>
</author>
<host>
<volume>30</volume>
<author></author>
<title>Polar Res.</title>
</host>
<title>Evaluation of simulated sea‐ice concentrations from sea‐ice/ocean models using satellite data and polynya classification methods</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Y. Alexandrov</name>
</json:item>
<json:item>
<name>T. Martin</name>
</json:item>
<json:item>
<name>J. Kolatschek</name>
</json:item>
<json:item>
<name>H. Eicken</name>
</json:item>
<json:item>
<name>M. Kreyscher</name>
</json:item>
<json:item>
<name>A. P. Makshtas</name>
</json:item>
</author>
<host>
<volume>105</volume>
<pages>
<last>17,159</last>
<first>17,143</first>
</pages>
<issue>C7</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Sea ice circulation in the Laptev Sea and ice export to the Arctic Ocean: Results from satellite remote sensing and numerical modeling</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Andersen</name>
</json:item>
<json:item>
<name>R. Tonboe</name>
</json:item>
<json:item>
<name>L. Kaleschke</name>
</json:item>
<json:item>
<name>G. Heygster</name>
</json:item>
<json:item>
<name>L. T. Pedersen</name>
</json:item>
</author>
<host>
<volume>112</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Intercomparison of passive microwave sea ice concentration retrievals over the high‐concentration Arctic sea ice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. R. Arrigo</name>
</json:item>
<json:item>
<name>G. L. van Dijken</name>
</json:item>
</author>
<host>
<volume>51</volume>
<pages>
<last>138</last>
<first>117</first>
</pages>
<author></author>
<title>Deep Sea Res., Part II</title>
</host>
<title>Annual changes in sea ice, chlorophyll a, and primary production in the Ross Sea, Antarctica</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Freshwater input and fast ice in the East Siberian Arctic–results from surface and satellite observations as well as sensitivity studies using a thermodynamic fast‐ice model</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Bareiss</name>
</json:item>
<json:item>
<name>K. Görgen</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>54</last>
<first>28</first>
</pages>
<author></author>
<title>Global Planet. Change</title>
</host>
<title>Spatial and temporal variability of sea ice in the Laptev Sea: Analysis and review of satellite passive‐microwave data and model results, 1979 to 2002</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. F. Blumberg</name>
</json:item>
<json:item>
<name>G. L. Mellor</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>16</last>
<first>1</first>
</pages>
<author></author>
<title>Three‐Dimensional Coastal Ocean Models</title>
</host>
<title>A description of a three‐dimensional coastal ocean circulation model</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Brix</name>
</json:item>
<json:item>
<name>R. Gerdes</name>
</json:item>
</author>
<host>
<volume>108</volume>
<issue>C2</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>North Atlantic Deep Water and Antarctic Bottom Water: Their interaction and influence on the variability of the global ocean circulation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Danilov</name>
</json:item>
<json:item>
<name>G. Kivman</name>
</json:item>
<json:item>
<name>J. Schröter</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>150</last>
<first>125</first>
</pages>
<issue>2</issue>
<author></author>
<title>Ocean Modell.</title>
</host>
<title>A finite element ocean model: Principles and evaluation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Danilov</name>
</json:item>
<json:item>
<name>G. Kivman</name>
</json:item>
<json:item>
<name>J. Schröter</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>49</last>
<first>35</first>
</pages>
<author></author>
<title>Ocean Modell.</title>
</host>
<title>Evaluation of an eddy‐permitting finite‐element ocean model in the North Atlantic</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. A. Dare</name>
</json:item>
<json:item>
<name>B. W. Atkinson</name>
</json:item>
</author>
<host>
<volume>94</volume>
<pages>
<last>88</last>
<first>65</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Atmospheric response to spatial variations in concentration and size of polynyas in the southern ocean sea‐ice zone</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Dethleff</name>
</json:item>
<json:item>
<name>P. Loewe</name>
</json:item>
<json:item>
<name>E. Kleine</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>243</last>
<first>225</first>
</pages>
<author></author>
<title>Cold Reg. Sci. Technol.</title>
</host>
<title>The Laptev Sea flaw lead–detailed investigations on ice formation and export during 1991/1992 winter season</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I. A. Dmitrenko</name>
</json:item>
<json:item>
<name>K. Tyshko</name>
</json:item>
<json:item>
<name>S. Kirillov</name>
</json:item>
<json:item>
<name>J. Hoelemann</name>
</json:item>
<json:item>
<name>H. Eicken</name>
</json:item>
<json:item>
<name>H. Kassens</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>27</last>
<first>9</first>
</pages>
<author></author>
<title>Global Planet. Change</title>
</host>
<title>Impact of flaw polynyas on the hydrography of the Laptev Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I. A. Dmitrenko</name>
</json:item>
<json:item>
<name>S. A. Kirillov</name>
</json:item>
<json:item>
<name>B. Tremblay</name>
</json:item>
<json:item>
<name>D. Bauch</name>
</json:item>
<json:item>
<name>S. Willmes</name>
</json:item>
</author>
<host>
<volume>36</volume>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Sea‐ice production over the Laptev Sea shelf inferred from historical summer‐to‐winter hydrographic observations of 1960s‐1990s</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Dorn</name>
</json:item>
<json:item>
<name>K. Dethloff</name>
</json:item>
<json:item>
<name>A. Rinke</name>
</json:item>
<json:item>
<name>S. Frickenhaus</name>
</json:item>
<json:item>
<name>R. Gerdes</name>
</json:item>
<json:item>
<name>M. Karcher</name>
</json:item>
<json:item>
<name>F. Kauker</name>
</json:item>
</author>
<host>
<volume>112</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Sensitivities and uncertainties in a coupled regional atmosphere–ocean‐ice model with respect to the simulation of Arctic sea ice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Drüe</name>
</json:item>
<json:item>
<name>G. Heinemann</name>
</json:item>
</author>
<host>
<volume>95</volume>
<pages>
<last>149</last>
<first>139</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Accuracy assessment of sea‐ice concentrations from MODIS using in‐situ measurements</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Ebner</name>
</json:item>
<json:item>
<name>D. Schröder</name>
</json:item>
<json:item>
<name>G. Heinemann</name>
</json:item>
</author>
<host>
<volume>30</volume>
<author></author>
<title>Polar Res.</title>
</host>
<title>Impact of Laptev Sea polynyas on the atmospheric boundary layer and ice production using idealized mesoscale simulations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Fichefet</name>
</json:item>
<json:item>
<name>H. Goosse</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>1018</last>
<first>1015</first>
</pages>
<issue>8</issue>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>A numerical investigation of the spring Ross Sea polynya</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Fieg</name>
</json:item>
<json:item>
<name>R. Gerdes</name>
</json:item>
<json:item>
<name>E. Fahrbach</name>
</json:item>
<json:item>
<name>A. Beszczynska‐Möller</name>
</json:item>
<json:item>
<name>U. Schauer</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>502</last>
<first>491</first>
</pages>
<author></author>
<title>Ocean Dyn.</title>
</host>
<title>Simulation of ocean volume transports through Fram Strait 1995–2005</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. R. Gent</name>
</json:item>
<json:item>
<name>J. C. McWilliams</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>155</last>
<first>150</first>
</pages>
<author></author>
<title>J. Phys. Oceanogr.</title>
</host>
<title>Isopycnal mixing in ocean circulation models</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Gerdes</name>
</json:item>
<json:item>
<name>M. J. Karcher</name>
</json:item>
<json:item>
<name>F. Kauker</name>
</json:item>
<json:item>
<name>U. Schauer</name>
</json:item>
</author>
<host>
<volume>30</volume>
<issue>19</issue>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Causes and development of repeated Arctic Ocean warming events</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Goosse</name>
</json:item>
<json:item>
<name>T. Fichefet</name>
</json:item>
</author>
<host>
<volume>104</volume>
<pages>
<last>23,355</last>
<first>23,337</first>
</pages>
<issue>C10</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Importance of ice‐ocean interactions for the global ocean circulation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Heinemann</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>601</last>
<first>589</first>
</pages>
<issue>5</issue>
<author></author>
<title>Meteorol. Z.</title>
</host>
<title>The polar regions: A natural laboratory for boundary layer meteorology—A review</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Heinemann</name>
</json:item>
<json:item>
<name>A. Helbig</name>
</json:item>
<json:item>
<name>T. Ernsdorf</name>
</json:item>
</author>
<host>
<pages>
<last>19</last>
<first>8</first>
</pages>
<author></author>
<title>Russisch‐Deutsche Zusammenarbeit: System Laptev‐See, Zwischenbericht 2008, Fahrbericht der Expedition TRANSDRIFT XIII</title>
</host>
<title>Meteorological measurements at the ice edge of the West New Siberian Polynya</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. D. Hibler III</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>846</last>
<first>815</first>
</pages>
<issue>4</issue>
<author></author>
<title>J. Phys. Oceanogr.</title>
</host>
<title>A dynamic thermodynamic sea ice model</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. C. Hunke</name>
</json:item>
<json:item>
<name>J. K. Dukowicz</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>1867</last>
<first>1849</first>
</pages>
<author></author>
<title>J. Phys. Oceanogr.</title>
</host>
<title>An elastic‐viscous‐plastic model for sea ice dynamics</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. R. Jackett</name>
</json:item>
<json:item>
<name>T. J. McDougall</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>389</last>
<first>381</first>
</pages>
<author></author>
<title>J. Atmos. Oceanic Technol.</title>
</host>
<title>Stabilization of hydrographic data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. A. Johnson</name>
</json:item>
<json:item>
<name>I. V. Polyakov</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>2020</last>
<first>2017</first>
</pages>
<issue>10</issue>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>The Laptev Sea as a source for recent Arctic Ocean salinity changes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Kalnay</name>
</json:item>
</author>
<host>
<volume>77</volume>
<pages>
<last>471</last>
<first>437</first>
</pages>
<issue>3</issue>
<author></author>
<title>Bull. Am. Meteorol. Soc.</title>
</host>
<title>The NCEP/NCAR 40‐year reanalysis project</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Kanamitsu</name>
</json:item>
<json:item>
<name>W. Ebisuzaki</name>
</json:item>
<json:item>
<name>J. Woollen</name>
</json:item>
<json:item>
<name>S. K. Yang</name>
</json:item>
<json:item>
<name>J. J. Hnilo</name>
</json:item>
<json:item>
<name>M. Fiorino</name>
</json:item>
<json:item>
<name>G. L. Potter</name>
</json:item>
</author>
<host>
<volume>83</volume>
<pages>
<last>1643</last>
<first>1631</first>
</pages>
<issue>11</issue>
<author></author>
<title>Bull. Am. Meteorol. Soc.</title>
</host>
<title>NCEP‐DOE AMIP‐II reanalysis (R‐2)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. J. Karcher</name>
</json:item>
<json:item>
<name>R. Gerdes</name>
</json:item>
<json:item>
<name>F. Kauker</name>
</json:item>
<json:item>
<name>C. Köberle</name>
</json:item>
</author>
<host>
<volume>108</volume>
<issue>C2</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Arctic warming: Evolution and spreading of the 1990s warm event in the Nordic Seas and the Arctic Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. P. Karklin</name>
</json:item>
<json:item>
<name>I. D. Karelin</name>
</json:item>
<json:item>
<name>Y. A. Gorbunov</name>
</json:item>
<json:item>
<name>S. M. Losev</name>
</json:item>
</author>
<host>
<pages>
<last>300</last>
<first>280</first>
</pages>
<author></author>
<title>Remote Sensing of Sea Ice in the Northern Sea Route: Studies and Applications</title>
</host>
<title>Eastern part of the northern sea route</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Kern</name>
</json:item>
<json:item>
<name>G. Spreen</name>
</json:item>
<json:item>
<name>L. Kaleschke</name>
</json:item>
<json:item>
<name>S. De La Rosa Höhn</name>
</json:item>
<json:item>
<name>G. Heygster</name>
</json:item>
</author>
<host>
<volume>46</volume>
<pages>
<last>418</last>
<first>409</first>
</pages>
<issue>1</issue>
<author></author>
<title>Ann. Glaciol.</title>
</host>
<title>Polynya Signature Simulation Method polynya area in comparison to AMSR‐E 89 GHz sea‐ice concentrations in the Ross Sea and off the Adélie Coast, Antarctica, for 2002–2005: First results</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. R. Key</name>
</json:item>
<json:item>
<name>J. B. Collins</name>
</json:item>
<json:item>
<name>C. Fowler</name>
</json:item>
<json:item>
<name>R. S. Stone</name>
</json:item>
</author>
<host>
<volume>61</volume>
<pages>
<last>309</last>
<first>302</first>
</pages>
<issue>2</issue>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>High‐latitude surface temperature estimates from thermal satellite data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Köberle</name>
</json:item>
<json:item>
<name>R. Gerdes</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>2858</last>
<first>2843</first>
</pages>
<issue>17</issue>
<author></author>
<title>J. Clim.</title>
</host>
<title>Mechanisms determining the variability of Arctic sea ice conditions and export</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. König‐Langlo</name>
</json:item>
<json:item>
<name>E. Augstein</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>347</last>
<first>343</first>
</pages>
<issue>6</issue>
<author></author>
<title>Meteorol. Z.</title>
</host>
<title>Parametrization of the downward longwave radiation at the Earth's surface in polar regions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Lemke</name>
</json:item>
</author>
<host>
<volume>292</volume>
<pages>
<last>1671</last>
<first>1670</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Open windows to the polar oceans</title>
</json:item>
<json:item>
<host>
<author></author>
<title>A numerical model for short‐term sea ice forecasting in the Arctic</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Majewski</name>
</json:item>
<json:item>
<name>B. Ritter</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>112</last>
<first>111</first>
</pages>
<issue>3–4</issue>
<author></author>
<title>Promet Meteorol. Fortbildung</title>
</host>
<title>Das Global‐Modell GME, Die neue Modellkette des DWD I</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Markus</name>
</json:item>
<json:item>
<name>B. Burns</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>4487</last>
<first>4473</first>
</pages>
<issue>C3</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>A method to estimate subpixel‐scale coastal polynyas with satellite passive microwave data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. J. Marsland</name>
</json:item>
<json:item>
<name>N. L. Bindoff</name>
</json:item>
<json:item>
<name>G. D. Williams</name>
</json:item>
<json:item>
<name>W. F. Budd</name>
</json:item>
</author>
<host>
<volume>109</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Modeling water mass formation in the Mertz Glacier Polynya and Adélie Depression, East Antarctica</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. J. Marsland</name>
</json:item>
<json:item>
<name>J. A. Church</name>
</json:item>
<json:item>
<name>N. L. Bindoff</name>
</json:item>
<json:item>
<name>G. D. Williams</name>
</json:item>
</author>
<host>
<volume>112</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Antarctic coastal polynya response to climate change</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Martin</name>
</json:item>
</author>
<host>
<pages>
<last>2247</last>
<first>2241</first>
</pages>
<author></author>
<title>Encyclopedia of Ocean Sciences</title>
</host>
<title>Polynyas</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Martin</name>
</json:item>
<json:item>
<name>R. Gerdes</name>
</json:item>
</author>
<host>
<volume>112</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Sea ice drift variability in Arctic Ocean Model Intercomparison Project models and observations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Maslowski</name>
</json:item>
<json:item>
<name>B. Newton</name>
</json:item>
<json:item>
<name>P. Schlosser</name>
</json:item>
<json:item>
<name>A. Semtner</name>
</json:item>
<json:item>
<name>D. Martinson</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>3746</last>
<first>3743</first>
</pages>
<issue>22</issue>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Modeling recent climate variability in the Arctic Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. H. Morison</name>
</json:item>
<json:item>
<name>M. G. McPhee</name>
</json:item>
<json:item>
<name>G. A. Maykut</name>
</json:item>
</author>
<host>
<volume>92</volume>
<pages>
<last>7011</last>
<first>6987</first>
</pages>
<issue>C7</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Boundary layer, upper ocean and ice observations in the Greenland Sea marginal ice zone</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Oelke</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>1136</last>
<first>1113</first>
</pages>
<issue>5</issue>
<author></author>
<title>Int. J. Remote Sens.</title>
</host>
<title>Atmospheric signatures in sea‐ice concentration estimates from passive microwaves</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. C. Pacanowski</name>
</json:item>
<json:item>
<name>S. G. H. Philander</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>1451</last>
<first>1443</first>
</pages>
<author></author>
<title>J. Phys. Oceanogr.</title>
</host>
<title>Parametrization of vertical mixing in numerical models of the tropical oceans</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. L. Parkinson</name>
</json:item>
<json:item>
<name>W. M. Washington</name>
</json:item>
</author>
<host>
<volume>84</volume>
<pages>
<last>337</last>
<first>311</first>
</pages>
<issue>C1</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>A large‐scale numerical model of sea ice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. H. Redi</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>1158</last>
<first>1154</first>
</pages>
<author></author>
<title>J. Phys. Oceanogr.</title>
</host>
<title>Oceanic isopycnal mixing by coordinate rotation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I. A. Renfrew</name>
</json:item>
<json:item>
<name>J. C. King</name>
</json:item>
</author>
<host>
<volume>94</volume>
<pages>
<last>356</last>
<first>335</first>
</pages>
<issue>3</issue>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>A simple model of the convective internal boundary layer and its application to surface heat flux estimates within polynyas</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I. G. Rigor</name>
</json:item>
<json:item>
<name>R. L. Colony</name>
</json:item>
</author>
<host>
<volume>202</volume>
<pages>
<last>110</last>
<first>89</first>
</pages>
<author></author>
<title>Sci. Total Environ.</title>
</host>
<title>Sea‐ice production and transport of pollutants in the Laptev Sea, 1979–1993</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Roberts</name>
</json:item>
<json:item>
<name>I. Allison</name>
</json:item>
<json:item>
<name>V. I. Lytle</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>384</last>
<first>377</first>
</pages>
<issue>1</issue>
<author></author>
<title>Ann. Glaciol.</title>
</host>
<title>Sensible‐ and latent‐heat‐flux estimates over the Mertz Glacier polynya, East Antarctica, from in‐flight measurements</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Rollenhagen</name>
</json:item>
<json:item>
<name>R. Timmermann</name>
</json:item>
<json:item>
<name>T. Janjić</name>
</json:item>
<json:item>
<name>J. Schröter</name>
</json:item>
<json:item>
<name>S. Danilov</name>
</json:item>
</author>
<host>
<volume>114</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Assimilation of sea ice motion in a finite‐element sea ice model</title>
</json:item>
<json:item>
<host>
<author></author>
<title>The role of the Laptev Sea landfast sea‐ice in an Arctic ocean‐sea ice coupled model</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Schättler, U., G. Doms, and C. Schraff (2008), A Description of the Nonhydrostatic Regional COSMO‐Model, Part VII: User's Guide, Dtsch. Wetterdienst, Offenbach, Germany.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Schröder</name>
</json:item>
<json:item>
<name>G. Heinemann</name>
</json:item>
<json:item>
<name>S. Willmes</name>
</json:item>
</author>
<host>
<volume>30</volume>
<author></author>
<title>Polar Res.</title>
</host>
<title>The impact of a thermodynamic sea‐ice module in the COSMO numerical weather prediction model on simulations for the Laptev Sea, Siberian Arctic</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. J. Semtner</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>389</last>
<first>379</first>
</pages>
<issue>3</issue>
<author></author>
<title>J. Phys. Oceanogr.</title>
</host>
<title>A model for the thermodynamic growth of sea ice in numerical investigations of climate</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. D. Smith</name>
</json:item>
<json:item>
<name>R. D. Muench</name>
</json:item>
<json:item>
<name>C. H. Pease</name>
</json:item>
</author>
<host>
<volume>95</volume>
<pages>
<last>9479</last>
<first>9461</first>
</pages>
<issue>C6</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Polynyas and leads: An overview of physical processes and environment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Spreen</name>
</json:item>
<json:item>
<name>L. Kaleschke</name>
</json:item>
<json:item>
<name>G. Heygster</name>
</json:item>
</author>
<host>
<volume>113</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Sea ice remote sensing using AMSR‐E 89 GHz channels</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Steppeler</name>
</json:item>
<json:item>
<name>G. Doms</name>
</json:item>
<json:item>
<name>U. Schättler</name>
</json:item>
<json:item>
<name>H. W. Bitzer</name>
</json:item>
<json:item>
<name>A. Cassmann</name>
</json:item>
<json:item>
<name>U. Damrath</name>
</json:item>
<json:item>
<name>G. Gregoric</name>
</json:item>
</author>
<host>
<volume>82</volume>
<pages>
<last>96</last>
<first>75</first>
</pages>
<author></author>
<title>Meteorol. Atmos. Phys.</title>
</host>
<title>Meso‐gamma scale forecasts using the nonhydrostatic model LM</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Timmermann</name>
</json:item>
<json:item>
<name>P. Lemke</name>
</json:item>
<json:item>
<name>C. Kottmeier</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>1264</last>
<first>1251</first>
</pages>
<author></author>
<title>J. Phys. Oceanogr.</title>
</host>
<title>Formation and maintenance of a polynya in the Weddell Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Timmermann</name>
</json:item>
<json:item>
<name>S. Danilov</name>
</json:item>
<json:item>
<name>J. Schröter</name>
</json:item>
<json:item>
<name>C. Böning</name>
</json:item>
<json:item>
<name>D. Sidorenko</name>
</json:item>
<json:item>
<name>K. Rollenhagen</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>129</last>
<first>114</first>
</pages>
<issue>3–4</issue>
<author></author>
<title>Ocean Modell.</title>
</host>
<title>Ocean circulation and sea ice distribution in a finite element global sea ice‐ocean model</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. J. Williams</name>
</json:item>
<json:item>
<name>E. C. Carmack</name>
</json:item>
<json:item>
<name>R. G. Ingram</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>85</last>
<first>55</first>
</pages>
<author></author>
<title>Polynyas: Windows to the World</title>
</host>
<title>Physical oceanography of polynyas</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Willmes</name>
</json:item>
<json:item>
<name>T. Krumpen</name>
</json:item>
<json:item>
<name>S. Adams</name>
</json:item>
<json:item>
<name>L. Rabenstein</name>
</json:item>
<json:item>
<name>C. Haas</name>
</json:item>
<json:item>
<name>J. Hoelemann</name>
</json:item>
<json:item>
<name>S. Hendricks</name>
</json:item>
<json:item>
<name>G. Heinemann</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<last>210</last>
<first>196</first>
</pages>
<issue>S1</issue>
<author></author>
<title>Can. J. Rem. Sens.</title>
</host>
<title>Cross‐validation of polynya monitoring methods from multi‐sensor satellite and airborne data: A case study</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Willmes</name>
</json:item>
<json:item>
<name>S. Adams</name>
</json:item>
<json:item>
<name>D. Schröder</name>
</json:item>
<json:item>
<name>G. Heinemann</name>
</json:item>
</author>
<host>
<volume>30</volume>
<author></author>
<title>Polar Res.</title>
</host>
<title>Spatiotemporal variability of sea‐ice coverage, polynya dynamics and ice production in the Laptev Sea between 1979 and 2008</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Yao</name>
</json:item>
<json:item>
<name>C. L. Tang</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>201</last>
<first>187</first>
</pages>
<issue>3</issue>
<author></author>
<title>Atmos. Ocean</title>
</host>
<title>The formation and maintenance of the North Water Polynya</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. F. Zakharov</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>821</last>
<first>815</first>
</pages>
<issue>1</issue>
<author></author>
<title>Oceanology, Engl. Transl.</title>
</host>
<title>The role of flaw leads off the edge of fast ice in the hydrological and ice regime of the Laptev Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Zhang</name>
</json:item>
<json:item>
<name>D. A. Rothrock</name>
</json:item>
</author>
<host>
<volume>131</volume>
<pages>
<last>861</last>
<first>845</first>
</pages>
<issue>5</issue>
<author></author>
<title>Mon. Weather Rev.</title>
</host>
<title>Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Zhang</name>
</json:item>
<json:item>
<name>W. Maslowski</name>
</json:item>
<json:item>
<name>A. J. Semtner</name>
</json:item>
</author>
<host>
<volume>104</volume>
<pages>
<last>18,429</last>
<first>18,409</first>
</pages>
<issue>C8</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Impact of mesoscale ocean currents on sea ice in high‐resolution Arctic ice and ocean simulations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. W. Zillman</name>
</json:item>
</author>
<host>
<volume>26</volume>
<author></author>
<title>Meteorol. Stud.</title>
</host>
<title>A study of some aspects of the radiation and heat budgets of the southern hemisphere oceans</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>116</volume>
<publisherId>
<json:string>JGRC</json:string>
</publisherId>
<pages>
<total>18</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>C12</issue>
<subject>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Sea ice</value>
</json:item>
<json:item>
<value>Polynas</value>
</json:item>
<json:item>
<value>Remote sensing</value>
</json:item>
<json:item>
<value>Dynamics</value>
</json:item>
<json:item>
<value>Modeling</value>
</json:item>
<json:item>
<value>INFORMATICS</value>
</json:item>
<json:item>
<value>Modeling</value>
</json:item>
<json:item>
<value>NATURAL HAZARDS</value>
</json:item>
<json:item>
<value>Physical modeling</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: PHYSICAL</value>
</json:item>
<json:item>
<value>Ice mechanics and air/sea/ice exchange processes</value>
</json:item>
<json:item>
<value>Ice mechanics and air/sea/ice exchange processes</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Oceans</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202c</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1029/2010JC006725</json:string>
</doi>
<id>3420B6B0F94606F968C7DE1510D757B330CA2768</id>
<score>1.1466142</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/3420B6B0F94606F968C7DE1510D757B330CA2768/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/3420B6B0F94606F968C7DE1510D757B330CA2768/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3420B6B0F94606F968C7DE1510D757B330CA2768/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 2011 by the American Geophysical Union</p>
</availability>
<date>2011</date>
</publicationStmt>
<notesStmt>
<note>Tab‐delimited Table 1a.Tab‐delimited Table 1b.Tab‐delimited Table 2a.Tab‐delimited Table 2b.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM</title>
<author xml:id="author-1">
<persName>
<forename type="first">T.</forename>
<surname>Ernsdorf</surname>
</persName>
<email>ernsdorf@uni‐trier.de</email>
<affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">D.</forename>
<surname>Schröder</surname>
</persName>
<affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</affiliation>
<affiliation>Centre for Polar Observation and Modelling, Sea Ice Dynamics and Thermodynamics, Pearson Building, University College London, London, UK</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">S.</forename>
<surname>Adams</surname>
</persName>
<affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">G.</forename>
<surname>Heinemann</surname>
</persName>
<affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">R.</forename>
<surname>Timmermann</surname>
</persName>
<affiliation>Division of Climate Sciences, Ocean Dynamics and Sea Ice Physics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">S.</forename>
<surname>Danilov</surname>
</persName>
<affiliation>Division of Climate Sciences, Ocean Dynamics and Sea Ice Physics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Oceans</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202c</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2011-12"></date>
<biblScope unit="volume">116</biblScope>
<biblScope unit="issue">C12</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">3420B6B0F94606F968C7DE1510D757B330CA2768</idno>
<idno type="DOI">10.1029/2010JC006725</idno>
<idno type="ArticleID">2010JC006725</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea‐ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea‐Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6‐hourly NCEP reanalyses 1 (1.875° × 1.875°), 6‐hourly NCEP reanalyses 2 (1.875° × 1.875°), 6‐hourly analyses from the GME (Global Model of the German Weather Service) (0.5° × 0.5°) and high‐resolution hourly COSMO (Consortium for Small‐Scale Modeling) data (5 km × 5 km). In all FESOM simulations, except for those with 6‐hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast‐ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea‐ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km3 to 7.8 km3 during 1 April to 9 May 2011 and from 25.7 km3 to 66.2 km3 during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.</p>
</abstract>
<abstract style="short">
<p>Estimations of polynya sea‐ice production strongly depend on atmospheric forcing data The ABL over polynyas shows significant differences between the forcing data Model forcing data are required which take the impact of polynyas into account</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Laptev Sea</term>
</item>
<item>
<term>atmospheric forcing</term>
</item>
<item>
<term>polynya</term>
</item>
<item>
<term>sea ice modeling</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>CRYOSPHERE</term>
</item>
<item>
<term>Sea ice</term>
</item>
<item>
<term>Polynas</term>
</item>
<item>
<term>Remote sensing</term>
</item>
<item>
<term>Dynamics</term>
</item>
<item>
<term>Modeling</term>
</item>
<item>
<term>INFORMATICS</term>
</item>
<item>
<term>Modeling</term>
</item>
<item>
<term>NATURAL HAZARDS</term>
</item>
<item>
<term>Physical modeling</term>
</item>
<item>
<term>OCEANOGRAPHY: PHYSICAL</term>
</item>
<item>
<term>Ice mechanics and air/sea/ice exchange processes</term>
</item>
<item>
<term>Ice mechanics and air/sea/ice exchange processes</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-10-13">Received</change>
<change when="2011-10-16">Registration</change>
<change when="2011-12">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/3420B6B0F94606F968C7DE1510D757B330CA2768/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrc11938">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202c</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRC"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS">Journal of Geophysical Research: Oceans</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="120">
<doi>10.1002/jgrc.v116.C12</doi>
<idGroup>
<id type="focusSection" value="3"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Oceans</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="116">116</numbering>
<numbering type="journalIssue">C12</numbering>
</numberingGroup>
<coverDate startDate="2011-12">December 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="70" status="forIssue">
<doi>10.1029/2010JC006725</doi>
<idGroup>
<id type="editorialOffice" value="2010JC006725"></id>
<id type="society" value="C12038"></id>
<id type="unit" value="JGRC11938"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="18"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2011 by the American Geophysical Union</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2010-10-13"></event>
<event type="manuscriptRevised" date="2011-10-07"></event>
<event type="manuscriptAccepted" date="2011-10-16"></event>
<event type="firstOnline" date="2011-12-24"></event>
<event type="publishedOnlineFinalForm" date="2011-12-24"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv5.2_TO_WileyML3Gv1.0.3 version:1.1; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2013-01-24"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0750">Sea ice</subject>
<subject href="http://psi.agu.org/taxonomy5/0752">Polynas</subject>
<subject href="http://psi.agu.org/taxonomy5/0758">Remote sensing</subject>
<subject href="http://psi.agu.org/taxonomy5/0774">Dynamics</subject>
<subject href="http://psi.agu.org/taxonomy5/0798">Modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1900">INFORMATICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1952">Modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4316">Physical modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrc11938-cit-0000" type="self">
<author>
<familyName>Ernsdorf</familyName>
,
<givenNames>T.</givenNames>
</author>
,
<author>
<givenNames>D.</givenNames>
<familyName>Schröder</familyName>
</author>
,
<author>
<givenNames>S.</givenNames>
<familyName>Adams</familyName>
</author>
,
<author>
<givenNames>G.</givenNames>
<familyName>Heinemann</familyName>
</author>
,
<author>
<givenNames>R.</givenNames>
<familyName>Timmermann</familyName>
</author>
, and
<author>
<givenNames>S.</givenNames>
<familyName>Danilov</familyName>
</author>
(
<pubYear year="2011">2011</pubYear>
),
<articleTitle>Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>116</vol>
, C12038, doi:
<accessionId ref="info:doi/10.1029/2010JC006725">10.1029/2010JC006725</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRC.JGRC11938.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="10400"></count>
<count type="figureTotal" number="8"></count>
<count type="tableTotal" number="4"></count>
</countGroup>
<titleGroup>
<title type="main">Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM</title>
<title type="shortAuthors">ERNSDORF ET AL.</title>
<title type="short">IMPACT OF ATMOSPHERIC FORCING DATA</title>
</titleGroup>
<creators>
<creator xml:id="jgrc11938-cr-0001" creatorRole="author" affiliationRef="#jgrc11938-aff-0001">
<personName>
<givenNames>T.</givenNames>
<familyName>Ernsdorf</familyName>
</personName>
<contactDetails>
<email normalForm="ernsdorf@uni-trier.de">ernsdorf@uni‐trier.de</email>
</contactDetails>
</creator>
<creator xml:id="jgrc11938-cr-0002" creatorRole="author" affiliationRef="#jgrc11938-aff-0001 #jgrc11938-aff-0002">
<personName>
<givenNames>D.</givenNames>
<familyName>Schröder</familyName>
</personName>
</creator>
<creator xml:id="jgrc11938-cr-0003" creatorRole="author" affiliationRef="#jgrc11938-aff-0001">
<personName>
<givenNames>S.</givenNames>
<familyName>Adams</familyName>
</personName>
</creator>
<creator xml:id="jgrc11938-cr-0004" creatorRole="author" affiliationRef="#jgrc11938-aff-0001">
<personName>
<givenNames>G.</givenNames>
<familyName>Heinemann</familyName>
</personName>
</creator>
<creator xml:id="jgrc11938-cr-0005" creatorRole="author" affiliationRef="#jgrc11938-aff-0003">
<personName>
<givenNames>R.</givenNames>
<familyName>Timmermann</familyName>
</personName>
</creator>
<creator xml:id="jgrc11938-cr-0006" creatorRole="author" affiliationRef="#jgrc11938-aff-0003">
<personName>
<givenNames>S.</givenNames>
<familyName>Danilov</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="jgrc11938-aff-0001" countryCode="DE" type="organization">
<unparsedAffiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="jgrc11938-aff-0002" countryCode="GB" type="organization">
<unparsedAffiliation>Centre for Polar Observation and Modelling, Sea Ice Dynamics and Thermodynamics, Pearson Building, University College London, London, UK</unparsedAffiliation>
</affiliation>
<affiliation xml:id="jgrc11938-aff-0003" countryCode="DE" type="organization">
<unparsedAffiliation>Division of Climate Sciences, Ocean Dynamics and Sea Ice Physics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrc11938-kwd-0001">Laptev Sea</keyword>
<keyword xml:id="jgrc11938-kwd-0002">atmospheric forcing</keyword>
<keyword xml:id="jgrc11938-kwd-0003">polynya</keyword>
<keyword xml:id="jgrc11938-kwd-0004">sea ice modeling</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrc11938:jgrc11938-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1a.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrc11938:jgrc11938-sup-0002-t02"></mediaResource>
<caption>Tab‐delimited Table 1b.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrc11938:jgrc11938-sup-0003-t03"></mediaResource>
<caption>Tab‐delimited Table 2a.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrc11938:jgrc11938-sup-0004-t04"></mediaResource>
<caption>Tab‐delimited Table 2b.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrc11938-para-0001" label="1">The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea‐ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea‐Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6‐hourly NCEP reanalyses 1 (1.875° × 1.875°), 6‐hourly NCEP reanalyses 2 (1.875° × 1.875°), 6‐hourly analyses from the GME (Global Model of the German Weather Service) (0.5° × 0.5°) and high‐resolution hourly COSMO (Consortium for Small‐Scale Modeling) data (5 km × 5 km). In all FESOM simulations, except for those with 6‐hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast‐ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea‐ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km
<sup>3</sup>
to 7.8 km
<sup>3</sup>
during 1 April to 9 May 2011 and from 25.7 km
<sup>3</sup>
to 66.2 km
<sup>3</sup>
during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.</p>
</abstract>
<abstract type="short">
<title type="main">Key Points</title>
<p xml:id="jgrc11938-para-0002">
<list style="bulleted">
<listItem>Estimations of polynya sea‐ice production strongly depend on atmospheric forcing data</listItem>
<listItem>The ABL over polynyas shows significant differences between the forcing data</listItem>
<listItem>Model forcing data are required which take the impact of polynyas into account</listItem>
</list>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>IMPACT OF ATMOSPHERIC FORCING DATA</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM</title>
</titleInfo>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Ernsdorf</namePart>
<affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</affiliation>
<affiliation>E-mail: ernsdorf@uni‐trier.de</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Schröder</namePart>
<affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</affiliation>
<affiliation>Centre for Polar Observation and Modelling, Sea Ice Dynamics and Thermodynamics, Pearson Building, University College London, London, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Adams</namePart>
<affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Heinemann</namePart>
<affiliation>Department of Environmental Meteorology, Faculty of Geosciences, University of Trier, Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Timmermann</namePart>
<affiliation>Division of Climate Sciences, Ocean Dynamics and Sea Ice Physics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Danilov</namePart>
<affiliation>Division of Climate Sciences, Ocean Dynamics and Sea Ice Physics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2011-12</dateIssued>
<dateCaptured encoding="w3cdtf">2010-10-13</dateCaptured>
<dateValid encoding="w3cdtf">2011-10-16</dateValid>
<edition>Ernsdorf, T., D. Schröder, S. Adams, G. Heinemann, R. Timmermann, and S. Danilov (2011), Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM, J. Geophys. Res., 116, C12038, doi:10.1029/2010JC006725.</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">8</extent>
<extent unit="tables">4</extent>
<extent unit="words">10400</extent>
</physicalDescription>
<abstract>The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea‐ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea‐Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6‐hourly NCEP reanalyses 1 (1.875° × 1.875°), 6‐hourly NCEP reanalyses 2 (1.875° × 1.875°), 6‐hourly analyses from the GME (Global Model of the German Weather Service) (0.5° × 0.5°) and high‐resolution hourly COSMO (Consortium for Small‐Scale Modeling) data (5 km × 5 km). In all FESOM simulations, except for those with 6‐hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast‐ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea‐ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km3 to 7.8 km3 during 1 April to 9 May 2011 and from 25.7 km3 to 66.2 km3 during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.</abstract>
<abstract type="short">Estimations of polynya sea‐ice production strongly depend on atmospheric forcing data The ABL over polynyas shows significant differences between the forcing data Model forcing data are required which take the impact of polynyas into account</abstract>
<note type="additional physical form">Tab‐delimited Table 1a.Tab‐delimited Table 1b.Tab‐delimited Table 2a.Tab‐delimited Table 2b.</note>
<subject>
<genre>keywords</genre>
<topic>Laptev Sea</topic>
<topic>atmospheric forcing</topic>
<topic>polynya</topic>
<topic>sea ice modeling</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Oceans</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0750">Sea ice</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0752">Polynas</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0758">Remote sensing</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0774">Dynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0798">Modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1900">INFORMATICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1952">Modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4316">Physical modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202c</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRC</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>116</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>C12</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>18</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">3420B6B0F94606F968C7DE1510D757B330CA2768</identifier>
<identifier type="DOI">10.1029/2010JC006725</identifier>
<identifier type="ArticleID">2010JC006725</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2011 by the American Geophysical Union</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001C05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3420B6B0F94606F968C7DE1510D757B330CA2768
   |texte=   Impact of atmospheric forcing data on simulations of the Laptev Sea polynya dynamics using the sea‐ice ocean model FESOM
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024