Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regularity properties of functional equations and inequalities

Identifieur interne : 001999 ( Istex/Corpus ); précédent : 001998; suivant : 001A00

Regularity properties of functional equations and inequalities

Auteurs : Karl-Goswin Grosse-Erdmann

Source :

RBID : ISTEX:AF5109B4D456E24567006A47CE18213D345CB6B7

Abstract

Summary: By a well-known theorem of Lebesgue and Fréchet every measurable additive real function is continuous. This result was improved by Ostrowski who showed that a (Jensen-) convex real function must be continuous if it is bounded above on a set of positive Lebesgue measure. Recently, R. Trautner provided a short and elegant proof of the Lebesgue—Fréchet theorem based on a representation theorem for sequences on the real line. We consider here a locally compact topological groupX with some Haar measure. Then the following generalizes Trautner's theorem: Theorem.Let M be a measurable subset of X of positive finite Haar measure. Then there is a neighbourhood W of the identity e such that for each sequence (z n )in W there is a subsequence (z nk )and points y and x k in M with z nk =x k ·y −1 for k ∈ℕ. Using this theorem we obtain the following extensions of the theorems of Lebesgue and Fréchet and of Ostrowski. Theorem.Let R and T be topological spaces. Suppose that R has a countable base and that X is metrizable. If g: X → R and H: R × X → T are mappings where g is measurable on a set M of positive finite Haar measure and H is continuous in its first variable, then any solution f: X → T of f(x · y) = H(g)(x), y) for x, y∈X is continuous. Theorem.Let G: X × X → ℝ be a mapping. If there is a subset M of X of positive finite Haar measure such that for each y∈X the mapping x ↦ G(x, y) is bounded above on M, then any solution f: x → ℞ of f(x · y) ⩽ G(x, y) for x, y∈X is locally bounded above. We also prove category analogues of the above results and obtain similar results for general binary mappings in place of the group operation in the argument off.

Url:
DOI: 10.1007/BF01836446

Links to Exploration step

ISTEX:AF5109B4D456E24567006A47CE18213D345CB6B7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regularity properties of functional equations and inequalities</title>
<author>
<name sortKey="Grosse Erdmann, Karl Goswin" sort="Grosse Erdmann, Karl Goswin" uniqKey="Grosse Erdmann K" first="Karl-Goswin" last="Grosse-Erdmann">Karl-Goswin Grosse-Erdmann</name>
<affiliation>
<mods:affiliation>Fachbereich IV—Mathematik, Universität Trier, Postfach 3825, D-5500, Trier, West Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AF5109B4D456E24567006A47CE18213D345CB6B7</idno>
<date when="1989" year="1989">1989</date>
<idno type="doi">10.1007/BF01836446</idno>
<idno type="url">https://api.istex.fr/document/AF5109B4D456E24567006A47CE18213D345CB6B7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001999</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001999</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Regularity properties of functional equations and inequalities</title>
<author>
<name sortKey="Grosse Erdmann, Karl Goswin" sort="Grosse Erdmann, Karl Goswin" uniqKey="Grosse Erdmann K" first="Karl-Goswin" last="Grosse-Erdmann">Karl-Goswin Grosse-Erdmann</name>
<affiliation>
<mods:affiliation>Fachbereich IV—Mathematik, Universität Trier, Postfach 3825, D-5500, Trier, West Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">aequationes mathematicae</title>
<title level="j" type="abbrev">Aeq. Math.</title>
<idno type="ISSN">0001-9054</idno>
<idno type="eISSN">1420-8903</idno>
<imprint>
<publisher>Birkhäuser-Verlag</publisher>
<pubPlace>Basel</pubPlace>
<date type="published" when="1989-06-01">1989-06-01</date>
<biblScope unit="volume">37</biblScope>
<biblScope unit="issue">2-3</biblScope>
<biblScope unit="page" from="233">233</biblScope>
<biblScope unit="page" to="251">251</biblScope>
</imprint>
<idno type="ISSN">0001-9054</idno>
</series>
<idno type="istex">AF5109B4D456E24567006A47CE18213D345CB6B7</idno>
<idno type="DOI">10.1007/BF01836446</idno>
<idno type="ArticleID">BF01836446</idno>
<idno type="ArticleID">Art8</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0001-9054</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Summary: By a well-known theorem of Lebesgue and Fréchet every measurable additive real function is continuous. This result was improved by Ostrowski who showed that a (Jensen-) convex real function must be continuous if it is bounded above on a set of positive Lebesgue measure. Recently, R. Trautner provided a short and elegant proof of the Lebesgue—Fréchet theorem based on a representation theorem for sequences on the real line. We consider here a locally compact topological groupX with some Haar measure. Then the following generalizes Trautner's theorem: Theorem.Let M be a measurable subset of X of positive finite Haar measure. Then there is a neighbourhood W of the identity e such that for each sequence (z n )in W there is a subsequence (z nk )and points y and x k in M with z nk =x k ·y −1 for k ∈ℕ. Using this theorem we obtain the following extensions of the theorems of Lebesgue and Fréchet and of Ostrowski. Theorem.Let R and T be topological spaces. Suppose that R has a countable base and that X is metrizable. If g: X → R and H: R × X → T are mappings where g is measurable on a set M of positive finite Haar measure and H is continuous in its first variable, then any solution f: X → T of f(x · y) = H(g)(x), y) for x, y∈X is continuous. Theorem.Let G: X × X → ℝ be a mapping. If there is a subset M of X of positive finite Haar measure such that for each y∈X the mapping x ↦ G(x, y) is bounded above on M, then any solution f: x → ℞ of f(x · y) ⩽ G(x, y) for x, y∈X is locally bounded above. We also prove category analogues of the above results and obtain similar results for general binary mappings in place of the group operation in the argument off.</div>
</front>
</TEI>
<istex>
<corpusName>springer</corpusName>
<author>
<json:item>
<name>Karl-Goswin Grosse-Erdmann</name>
<affiliations>
<json:string>Fachbereich IV—Mathematik, Universität Trier, Postfach 3825, D-5500, Trier, West Germany</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>BF01836446</json:string>
<json:string>Art8</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Summary: By a well-known theorem of Lebesgue and Fréchet every measurable additive real function is continuous. This result was improved by Ostrowski who showed that a (Jensen-) convex real function must be continuous if it is bounded above on a set of positive Lebesgue measure. Recently, R. Trautner provided a short and elegant proof of the Lebesgue—Fréchet theorem based on a representation theorem for sequences on the real line. We consider here a locally compact topological groupX with some Haar measure. Then the following generalizes Trautner's theorem: Theorem.Let M be a measurable subset of X of positive finite Haar measure. Then there is a neighbourhood W of the identity e such that for each sequence (z n )in W there is a subsequence (z nk )and points y and x k in M with z nk =x k ·y −1 for k ∈ℕ. Using this theorem we obtain the following extensions of the theorems of Lebesgue and Fréchet and of Ostrowski. Theorem.Let R and T be topological spaces. Suppose that R has a countable base and that X is metrizable. If g: X → R and H: R × X → T are mappings where g is measurable on a set M of positive finite Haar measure and H is continuous in its first variable, then any solution f: X → T of f(x · y) = H(g)(x), y) for x, y∈X is continuous. Theorem.Let G: X × X → ℝ be a mapping. If there is a subset M of X of positive finite Haar measure such that for each y∈X the mapping x ↦ G(x, y) is bounded above on M, then any solution f: x → ℞ of f(x · y) ⩽ G(x, y) for x, y∈X is locally bounded above. We also prove category analogues of the above results and obtain similar results for general binary mappings in place of the group operation in the argument off.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>425 x 641 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1677</abstractCharCount>
<pdfWordCount>8252</pdfWordCount>
<pdfCharCount>35174</pdfCharCount>
<pdfPageCount>19</pdfPageCount>
<abstractWordCount>321</abstractWordCount>
</qualityIndicators>
<title>Regularity properties of functional equations and inequalities</title>
<refBibs>
<json:item>
<host>
<author>
<json:item>
<name>Aczi~l </name>
</json:item>
<json:item>
<name>J </name>
</json:item>
</author>
<title>Lectures on functional equations and their applications</title>
<publicationDate>1966</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>Borwein </name>
</json:item>
<json:item>
<name>D </name>
</json:item>
<json:item>
<name>Ditor </name>
</json:item>
<json:item>
<name>S,Z </name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>498</last>
<first>497</first>
</pages>
<author></author>
<title>Canad. Math. Bull</title>
<publicationDate>1978</publicationDate>
</host>
<title>Translates of sequences in sets of positive measure</title>
<publicationDate>1978</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>N Bouraaki</name>
</json:item>
</author>
<host>
<author></author>
<title>~l~ments de math~matique</title>
<publicationDate>1952</publicationDate>
</host>
<title>Livre VI: Int6gration</title>
<publicationDate>1952</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Fri~chet </name>
</json:item>
<json:item>
<name>M </name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>393</last>
<first>390</first>
</pages>
<issue>16</issue>
<author></author>
<title>Enseign. Math</title>
<publicationDate>1913</publicationDate>
</host>
<title>Pri la funkcia ekvacio f(x + y) = f(x) + f(y)</title>
<publicationDate>1913</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Fremlin </name>
</json:item>
<json:item>
<name>D,H </name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>405</last>
<first>387</first>
</pages>
<author></author>
<title>Manuscripta Math</title>
<publicationDate>1980</publicationDate>
</host>
<title>Measurable functions and almost continuous functions</title>
<publicationDate>1980</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Grosse-Erdmann </name>
</json:item>
<json:item>
<name>K.-G </name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>300</last>
<first>299</first>
</pages>
<author></author>
<title>Aequationes Math</title>
<publicationDate>1988</publicationDate>
</host>
<title>Solution (P179S2)</title>
<publicationDate>1988</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Grosse-Erdmann </name>
</json:item>
<json:item>
<name>K.-G </name>
</json:item>
</author>
<host>
<author></author>
<title>Colloq. Math</title>
</host>
<title>An extension of the Steinhaus-Weil theorem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Guerraggio </name>
</json:item>
<json:item>
<name>A </name>
</json:item>
<json:item>
<name>Paganoni </name>
</json:item>
<json:item>
<name>L </name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>245</last>
<first>239</first>
</pages>
<author></author>
<title>Riv. Mat. Univ. Parma (4)</title>
<publicationDate>1978</publicationDate>
</host>
<title>Su una classe difunzioni convesse</title>
<publicationDate>1978</publicationDate>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>Halmos </name>
</json:item>
<json:item>
<name>P,R </name>
</json:item>
</author>
<publicationDate>1950</publicationDate>
</host>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>E Hewltt</name>
</json:item>
<json:item>
<name>K,A Ross</name>
</json:item>
</author>
<title>Abstract harmonic analysis</title>
<publicationDate>1979</publicationDate>
</host>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>Hille </name>
</json:item>
<json:item>
<name>E </name>
</json:item>
<json:item>
<name>Phillips </name>
</json:item>
<json:item>
<name>R,S </name>
</json:item>
</author>
<title>Functional analysis and semi-groups</title>
<publicationDate>1957</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>Ionescu Tulcea</name>
</json:item>
<json:item>
<name>C </name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>61</last>
<first>55</first>
</pages>
<author></author>
<title>Ark. Mat</title>
<publicationDate>1960</publicationDate>
</host>
<title>Suboperative functions and semi-groups of operators</title>
<publicationDate>1960</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Jarai </name>
</json:item>
<json:item>
<name>A </name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>288</last>
<first>286</first>
</pages>
<author></author>
<title>Aequationes Math</title>
<publicationDate>1979</publicationDate>
</host>
<title>Remark (P179SI)</title>
<publicationDate>1979</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>I Jaio</name>
</json:item>
<json:item>
<name>A </name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>66</last>
<first>52</first>
</pages>
<author></author>
<title>Aequationes Math</title>
<publicationDate>1982</publicationDate>
</host>
<title>Regularity properties offanctional equations</title>
<publicationDate>1982</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Kemperman </name>
</json:item>
<json:item>
<name>J,H B </name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>56</last>
<first>28</first>
</pages>
<author></author>
<title>Trans. Amer. Math. Soc</title>
<publicationDate>1957</publicationDate>
</host>
<title>A general functional equation</title>
<publicationDate>1957</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Kestelman </name>
</json:item>
<json:item>
<name>H </name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>136</last>
<first>130</first>
</pages>
<author></author>
<title>J. London Math. Soc</title>
<publicationDate>1947</publicationDate>
</host>
<title>The convergent sequences belonging to a set</title>
<publicationDate>1947</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Kominek </name>
</json:item>
<json:item>
<name>Z </name>
</json:item>
<json:item>
<name>Miller </name>
</json:item>
<json:item>
<name>H,I </name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>337</last>
<first>40</first>
</pages>
<author></author>
<title>Glas. Mat. Ser. III</title>
<publicationDate>1985</publicationDate>
</host>
<title>Some remarks on a theorem ofSteinhaus</title>
<publicationDate>1985</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Kuczma </name>
</json:item>
<json:item>
<name>M </name>
</json:item>
</author>
<host>
<author></author>
<title>Pafistwowe Wydawnictwo Naukowe</title>
<publicationDate>1985</publicationDate>
</host>
<title>An introduction to the theory of fanctional equations and inequalities</title>
<publicationDate>1985</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Kuczma </name>
</json:item>
<json:item>
<name>M,E </name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>107</last>
<first>95</first>
</pages>
<author></author>
<title>Colloq. Math</title>
<publicationDate>1978</publicationDate>
</host>
<title>Differentiation of implicit functions and Steinhaus' theorem in topological measure spaces</title>
<publicationDate>1978</publicationDate>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>Kuratowski </name>
</json:item>
<json:item>
<name>C Topologie</name>
</json:item>
</author>
<publicationDate>1958</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>H Leaesgue</name>
</json:item>
</author>
<host>
<volume>42</volume>
<pages>
<last>539</last>
<first>532</first>
</pages>
<author></author>
<title>Atti Accad. Sci. Torino</title>
<publicationDate>1907</publicationDate>
</host>
<title>Sur les transformations ponctuelles transformant les plans en plans qu'on peut ddfinir par des proc~d~s analytiques</title>
<publicationDate>1907</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Marczewski </name>
</json:item>
<json:item>
<name>E </name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>263</last>
<first>256</first>
</pages>
<author></author>
<title>Prace Mat</title>
<publicationDate>1955</publicationDate>
</host>
<title>On translations of sets and a theorem of Steinhaus</title>
<publicationDate>1955</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>E,J Mcshane</name>
</json:item>
</author>
<host>
<pages>
<last>380</last>
<first>51</first>
</pages>
<issue>2</issue>
<author></author>
<title>Ann. of Math</title>
<publicationDate>1950</publicationDate>
</host>
<title>Images of sets satisfying the condition of Baire</title>
<publicationDate>1950</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Mehdi </name>
</json:item>
<json:item>
<name>M,R </name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>326</last>
<first>321</first>
</pages>
<author></author>
<title>J. London Math. Soc</title>
<publicationDate>1964</publicationDate>
</host>
<title>On convex functions</title>
<publicationDate>1964</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Ostrowski </name>
</json:item>
<json:item>
<name>A </name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>62</last>
<first>54</first>
</pages>
<issue>0929</issue>
<author></author>
<title>Jahresber. Deutsch. Math.-Verein</title>
</host>
<title>Ober die Fanktionalgleichang der Exponentialfanktion and verwandte Funktionalgleichungen</title>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>Oxtoby </name>
</json:item>
<json:item>
<name>J,C </name>
</json:item>
</author>
<title>Measure and category</title>
<publicationDate>1971</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>Paganoni </name>
</json:item>
<json:item>
<name>L </name>
</json:item>
<json:item>
<name>Una Di Un Teorema Di Steinhaus</name>
</json:item>
</author>
<host>
<volume>108</volume>
<pages>
<last>273</last>
<first>262</first>
</pages>
<author></author>
<title>lstit. Lombardo Accad. Sci. Lett. Rend. A</title>
<publicationDate>1974</publicationDate>
</host>
<publicationDate>1974</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Paganoni </name>
</json:item>
<json:item>
<name>L Sulla Equivalenza Fra Misurabilitti E Continuitfl Per Le Soluzioni Di Una Classe Di Equazioni Funzionali</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>188</last>
<first>175</first>
</pages>
<issue>3</issue>
<author></author>
<title>Riv. Mat. Univ. Parma</title>
<publicationDate>1974</publicationDate>
</host>
<publicationDate>1974</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Pei " Rls </name>
</json:item>
<json:item>
<name>B,J </name>
</json:item>
</author>
<host>
<pages>
<last>293</last>
<first>52</first>
</pages>
<issue>2</issue>
<author></author>
<title>Ann. of Math</title>
<publicationDate>1950</publicationDate>
</host>
<title>On the continuity and openness of homomorphisms in topological groups</title>
<publicationDate>1950</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>S Plccard</name>
</json:item>
</author>
<host>
<volume>13</volume>
<author></author>
<title>M6m. Univ. Neuchfitel</title>
<publicationDate>1939</publicationDate>
</host>
<title>Sur les ensembles de distances des ensembles de points d'un espace Euclidien</title>
<publicationDate>1939</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Sander </name>
</json:item>
<json:item>
<name>W </name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>25</last>
<first>11</first>
</pages>
<author></author>
<title>Manuscripta Math</title>
<publicationDate>1975</publicationDate>
</host>
<title>Verallgemeinerungen eines Satzes yon S. Piccard</title>
<publicationDate>1975</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Sander </name>
</json:item>
<json:item>
<name>W Verallgemeinerungen Eines Satzes Yon</name>
</json:item>
<json:item>
<name>H Steinhaus</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>42</last>
<first>25</first>
</pages>
<issue>20</issue>
<author></author>
<title>Manuscripta Math. Erratum: Manuscripta Math</title>
<publicationDate>1976</publicationDate>
</host>
<publicationDate>1976</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Sander </name>
</json:item>
<json:item>
<name>W </name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>369</last>
<first>357</first>
</pages>
<author></author>
<title>Verallgemeinerte Cauchy-Funktionalgleichungen. Aequationes Math</title>
<publicationDate>1978</publicationDate>
</host>
<publicationDate>1978</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Sander </name>
</json:item>
<json:item>
<name>W Regularitiitseigenschaften Yon Funktionalungleichungen</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>247</last>
<first>237</first>
</pages>
<issue>33</issue>
<author></author>
<title>Glas. Mat. Set. III</title>
<publicationDate>1978</publicationDate>
</host>
<publicationDate>1978</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Sander </name>
</json:item>
<json:item>
<name>W </name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<first>283</first>
</pages>
<author></author>
<title>Aequations Math</title>
<publicationDate>1979</publicationDate>
</host>
<title>Problem (P179)</title>
<publicationDate>1979</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Sander </name>
</json:item>
<json:item>
<name>W </name>
</json:item>
</author>
<host>
<volume>92</volume>
<pages>
<last>73</last>
<first>61</first>
</pages>
<author></author>
<title>Monatsh. Math</title>
<publicationDate>1981</publicationDate>
</host>
<title>Eine Funktionalgleichung fiir operatorwertige Funktionen</title>
<publicationDate>1981</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Sander </name>
</json:item>
<json:item>
<name>W </name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>276</last>
<first>271</first>
</pages>
<author></author>
<title>Manuscripta Math</title>
<publicationDate>1982</publicationDate>
</host>
<title>Boundedness properties for functional inequalities</title>
<publicationDate>1982</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Sander </name>
</json:item>
<json:item>
<name>W </name>
</json:item>
</author>
<host>
<pages>
<last>157</last>
<first>149</first>
</pages>
<author></author>
<title>Monatsh. Math. 95</title>
<publicationDate>1983</publicationDate>
</host>
<title>Some functional inequalities</title>
<publicationDate>1983</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>W Sierpiiqski</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>336</last>
<first>334</first>
</pages>
<author></author>
<title>Hamel. Fund. Math</title>
<publicationDate>1924</publicationDate>
</host>
<title>Sur une propri~td des fonctions de M</title>
<publicationDate>1924</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Steinhaus </name>
</json:item>
<json:item>
<name>H </name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>104</last>
<first>93</first>
</pages>
<author></author>
<title>Fund. Math</title>
<publicationDate>1920</publicationDate>
</host>
<title>Sur les distances des points des ensembles de mesure positive</title>
<publicationDate>1920</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Trautner </name>
</json:item>
<json:item>
<name>R </name>
</json:item>
</author>
<host>
<pages>
<last>127</last>
<first>38</first>
</pages>
<issue>2</issue>
<author></author>
<title>Quart. J. Math. Oxford Ser</title>
<publicationDate>1987</publicationDate>
</host>
<title>A covering principle in real analysis</title>
<publicationDate>1987</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Well </name>
</json:item>
<json:item>
<name>A </name>
</json:item>
</author>
<host>
<pages>
<last>5500</last>
<first>19</first>
</pages>
<author></author>
<title>Fachbereich IV--Mathematik</title>
<publicationDate>1940</publicationDate>
</host>
<title>L'intdgration clans les groupes topologiques et ses applications</title>
<publicationDate>1940</publicationDate>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>37</volume>
<pages>
<last>251</last>
<first>233</first>
</pages>
<issn>
<json:string>0001-9054</json:string>
</issn>
<issue>2-3</issue>
<subject>
<json:item>
<value>Analysis</value>
</json:item>
<json:item>
<value>Combinatorics</value>
</json:item>
</subject>
<journalId>
<json:string>10</json:string>
</journalId>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1420-8903</json:string>
</eissn>
<title>aequationes mathematicae</title>
<publicationDate>1989</publicationDate>
<copyrightDate>1989</copyrightDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>mathematics, applied</json:string>
<json:string>mathematics</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>mathematics & statistics</json:string>
<json:string>general mathematics</json:string>
</scienceMetrix>
</categories>
<publicationDate>1989</publicationDate>
<copyrightDate>1989</copyrightDate>
<doi>
<json:string>10.1007/BF01836446</json:string>
</doi>
<id>AF5109B4D456E24567006A47CE18213D345CB6B7</id>
<score>0.63149273</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/AF5109B4D456E24567006A47CE18213D345CB6B7/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/AF5109B4D456E24567006A47CE18213D345CB6B7/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/AF5109B4D456E24567006A47CE18213D345CB6B7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Regularity properties of functional equations and inequalities</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Birkhäuser-Verlag</publisher>
<pubPlace>Basel</pubPlace>
<availability>
<p>Birkhäuser Verlag, 1989</p>
</availability>
<date>1987-07-24</date>
</publicationStmt>
<notesStmt>
<note>Research Papers</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Regularity properties of functional equations and inequalities</title>
<author xml:id="author-1">
<persName>
<forename type="first">Karl-Goswin</forename>
<surname>Grosse-Erdmann</surname>
</persName>
<affiliation>Fachbereich IV—Mathematik, Universität Trier, Postfach 3825, D-5500, Trier, West Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">aequationes mathematicae</title>
<title level="j" type="abbrev">Aeq. Math.</title>
<idno type="journal-ID">10</idno>
<idno type="pISSN">0001-9054</idno>
<idno type="eISSN">1420-8903</idno>
<idno type="issue-article-count">16</idno>
<idno type="volume-issue-count">3</idno>
<imprint>
<publisher>Birkhäuser-Verlag</publisher>
<pubPlace>Basel</pubPlace>
<date type="published" when="1989-06-01"></date>
<biblScope unit="volume">37</biblScope>
<biblScope unit="issue">2-3</biblScope>
<biblScope unit="page" from="233">233</biblScope>
<biblScope unit="page" to="251">251</biblScope>
</imprint>
</monogr>
<idno type="istex">AF5109B4D456E24567006A47CE18213D345CB6B7</idno>
<idno type="DOI">10.1007/BF01836446</idno>
<idno type="ArticleID">BF01836446</idno>
<idno type="ArticleID">Art8</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1987-07-24</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Summary: By a well-known theorem of Lebesgue and Fréchet every measurable additive real function is continuous. This result was improved by Ostrowski who showed that a (Jensen-) convex real function must be continuous if it is bounded above on a set of positive Lebesgue measure. Recently, R. Trautner provided a short and elegant proof of the Lebesgue—Fréchet theorem based on a representation theorem for sequences on the real line. We consider here a locally compact topological groupX with some Haar measure. Then the following generalizes Trautner's theorem: Theorem.Let M be a measurable subset of X of positive finite Haar measure. Then there is a neighbourhood W of the identity e such that for each sequence (z n )in W there is a subsequence (z nk )and points y and x k in M with z nk =x k ·y −1 for k ∈ℕ. Using this theorem we obtain the following extensions of the theorems of Lebesgue and Fréchet and of Ostrowski. Theorem.Let R and T be topological spaces. Suppose that R has a countable base and that X is metrizable. If g: X → R and H: R × X → T are mappings where g is measurable on a set M of positive finite Haar measure and H is continuous in its first variable, then any solution f: X → T of f(x · y) = H(g)(x), y) for x, y∈X is continuous. Theorem.Let G: X × X → ℝ be a mapping. If there is a subset M of X of positive finite Haar measure such that for each y∈X the mapping x ↦ G(x, y) is bounded above on M, then any solution f: x → ℞ of f(x · y) ⩽ G(x, y) for x, y∈X is locally bounded above. We also prove category analogues of the above results and obtain similar results for general binary mappings in place of the group operation in the argument off.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Mathematics</head>
<item>
<term>Analysis</term>
</item>
<item>
<term>Combinatorics</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1987-07-24">Created</change>
<change when="1989-06-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-11-22">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-01-20">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/AF5109B4D456E24567006A47CE18213D345CB6B7/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Springer, Publisher found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Birkhäuser-Verlag</PublisherName>
<PublisherLocation>Basel</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>10</JournalID>
<JournalPrintISSN>0001-9054</JournalPrintISSN>
<JournalElectronicISSN>1420-8903</JournalElectronicISSN>
<JournalTitle>aequationes mathematicae</JournalTitle>
<JournalAbbreviatedTitle>Aeq. Math.</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Type="Primary">Mathematics</JournalSubject>
<JournalSubject Type="Secondary">Analysis</JournalSubject>
<JournalSubject Type="Secondary">Combinatorics</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo VolumeType="Regular" TocLevels="0">
<VolumeIDStart>37</VolumeIDStart>
<VolumeIDEnd>37</VolumeIDEnd>
<VolumeIssueCount>3</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Combined">
<IssueInfo TocLevels="0">
<IssueIDStart>2</IssueIDStart>
<IssueIDEnd>3</IssueIDEnd>
<IssueArticleCount>16</IssueArticleCount>
<IssueHistory>
<CoverDate>
<DateString>1989</DateString>
<Year>1989</Year>
<Month>6</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Birkhäuser Verlag</CopyrightHolderName>
<CopyrightYear>1989</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="Art8">
<ArticleInfo Language="En" ArticleType="OriginalPaper" NumberingStyle="Unnumbered" TocLevels="0" ContainsESM="No">
<ArticleID>BF01836446</ArticleID>
<ArticleDOI>10.1007/BF01836446</ArticleDOI>
<ArticleSequenceNumber>8</ArticleSequenceNumber>
<ArticleTitle Language="En">Regularity properties of functional equations and inequalities</ArticleTitle>
<ArticleCategory>Research Papers</ArticleCategory>
<ArticleFirstPage>233</ArticleFirstPage>
<ArticleLastPage>251</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2005</Year>
<Month>5</Month>
<Day>20</Day>
</RegistrationDate>
<Received>
<Year>1987</Year>
<Month>7</Month>
<Day>24</Day>
</Received>
<Accepted>
<Year>1989</Year>
<Month>1</Month>
<Day>6</Day>
</Accepted>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Birkhäuser Verlag</CopyrightHolderName>
<CopyrightYear>1989</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
<ArticleContext>
<JournalID>10</JournalID>
<VolumeIDStart>37</VolumeIDStart>
<VolumeIDEnd>37</VolumeIDEnd>
<IssueIDStart>2</IssueIDStart>
<IssueIDEnd>3</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Karl-Goswin</GivenName>
<FamilyName>Grosse-Erdmann</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgDivision>Fachbereich IV—Mathematik</OrgDivision>
<OrgName>Universität Trier</OrgName>
<OrgAddress>
<Postbox>Postfach 3825</Postbox>
<Postcode>D-5500</Postcode>
<City>Trier</City>
<Country>West Germany</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Summary</Heading>
<Para>By a well-known theorem of Lebesgue and Fréchet every measurable additive real function is continuous. This result was improved by Ostrowski who showed that a (Jensen-) convex real function must be continuous if it is bounded above on a set of positive Lebesgue measure. Recently, R. Trautner provided a short and elegant proof of the Lebesgue—Fréchet theorem based on a representation theorem for sequences on the real line.</Para>
<Para>We consider here a locally compact topological group
<Emphasis Type="Italic">X</Emphasis>
with some Haar measure. Then the following generalizes Trautner's theorem:</Para>
<Para>
<Emphasis Type="SmallCaps">Theorem</Emphasis>
.
<Emphasis Type="Italic">Let M be a measurable subset of X of positive finite Haar measure. Then there is a neighbourhood W of the identity e such that for each sequence (z</Emphasis>
<Subscript>
<Emphasis Type="Italic">n</Emphasis>
</Subscript>
)
<Emphasis Type="Italic">in W there is a subsequence (z</Emphasis>
<Subscript>
<Emphasis Type="Italic">nk</Emphasis>
</Subscript>
)
<Emphasis Type="Italic">and points y and x</Emphasis>
<Subscript>
<Emphasis Type="Italic">k</Emphasis>
</Subscript>
<Emphasis Type="Italic">in M with z</Emphasis>
<Subscript>
<Emphasis Type="Italic">nk</Emphasis>
</Subscript>
=
<Emphasis Type="Italic">x</Emphasis>
<Subscript>
<Emphasis Type="Italic">k</Emphasis>
</Subscript>
·
<Emphasis Type="Italic">y</Emphasis>
<Superscript>−1</Superscript>
<Emphasis Type="Italic">for k ∈ℕ.</Emphasis>
</Para>
<Para>Using this theorem we obtain the following extensions of the theorems of Lebesgue and Fréchet and of Ostrowski.</Para>
<Para>
<Emphasis Type="SmallCaps">Theorem</Emphasis>
.
<Emphasis Type="Italic">Let R and T be topological spaces. Suppose that R has a countable base and that X is metrizable. If g: X → R and H: R × X → T are mappings where g is measurable on a set M of positive finite Haar measure and H is continuous in its first variable, then any solution f: X → T of f(x · y) = H(g)(x), y) for x, y∈X is continuous.</Emphasis>
</Para>
<Para>
<Emphasis Type="SmallCaps">Theorem</Emphasis>
.
<Emphasis Type="Italic">Let G: X × X → ℝ be a mapping. If there is a subset M of X of positive finite Haar measure such that for each y∈X the mapping x ↦ G(x, y) is bounded above on M, then any solution f: x → ℞ of f(x · y) ⩽ G(x, y) for x, y∈X is locally bounded above.</Emphasis>
</Para>
<Para>We also prove category analogues of the above results and obtain similar results for general binary mappings in place of the group operation in the argument of
<Emphasis Type="Italic">f.</Emphasis>
</Para>
</Abstract>
<KeywordGroup Language="En">
<Heading>AMS (1980) subject classification</Heading>
<Keyword>Primary 39B70</Keyword>
<Keyword>Secondary 39C05</Keyword>
</KeywordGroup>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Regularity properties of functional equations and inequalities</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Regularity properties of functional equations and inequalities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Karl-Goswin</namePart>
<namePart type="family">Grosse-Erdmann</namePart>
<affiliation>Fachbereich IV—Mathematik, Universität Trier, Postfach 3825, D-5500, Trier, West Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper"></genre>
<originInfo>
<publisher>Birkhäuser-Verlag</publisher>
<place>
<placeTerm type="text">Basel</placeTerm>
</place>
<dateCreated encoding="w3cdtf">1987-07-24</dateCreated>
<dateIssued encoding="w3cdtf">1989-06-01</dateIssued>
<copyrightDate encoding="w3cdtf">1989</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Summary: By a well-known theorem of Lebesgue and Fréchet every measurable additive real function is continuous. This result was improved by Ostrowski who showed that a (Jensen-) convex real function must be continuous if it is bounded above on a set of positive Lebesgue measure. Recently, R. Trautner provided a short and elegant proof of the Lebesgue—Fréchet theorem based on a representation theorem for sequences on the real line. We consider here a locally compact topological groupX with some Haar measure. Then the following generalizes Trautner's theorem: Theorem.Let M be a measurable subset of X of positive finite Haar measure. Then there is a neighbourhood W of the identity e such that for each sequence (z n )in W there is a subsequence (z nk )and points y and x k in M with z nk =x k ·y −1 for k ∈ℕ. Using this theorem we obtain the following extensions of the theorems of Lebesgue and Fréchet and of Ostrowski. Theorem.Let R and T be topological spaces. Suppose that R has a countable base and that X is metrizable. If g: X → R and H: R × X → T are mappings where g is measurable on a set M of positive finite Haar measure and H is continuous in its first variable, then any solution f: X → T of f(x · y) = H(g)(x), y) for x, y∈X is continuous. Theorem.Let G: X × X → ℝ be a mapping. If there is a subset M of X of positive finite Haar measure such that for each y∈X the mapping x ↦ G(x, y) is bounded above on M, then any solution f: x → ℞ of f(x · y) ⩽ G(x, y) for x, y∈X is locally bounded above. We also prove category analogues of the above results and obtain similar results for general binary mappings in place of the group operation in the argument off.</abstract>
<note>Research Papers</note>
<relatedItem type="host">
<titleInfo>
<title>aequationes mathematicae</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Aeq. Math.</title>
</titleInfo>
<genre type="journal" displayLabel="Archive Journal"></genre>
<originInfo>
<dateIssued encoding="w3cdtf">1989-06-01</dateIssued>
<copyrightDate encoding="w3cdtf">1989</copyrightDate>
</originInfo>
<subject>
<genre>Mathematics</genre>
<topic>Analysis</topic>
<topic>Combinatorics</topic>
</subject>
<identifier type="ISSN">0001-9054</identifier>
<identifier type="eISSN">1420-8903</identifier>
<identifier type="JournalID">10</identifier>
<identifier type="IssueArticleCount">16</identifier>
<identifier type="VolumeIssueCount">3</identifier>
<part>
<date>1989</date>
<detail type="volume">
<number>37</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2-3</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>233</start>
<end>251</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Birkhäuser Verlag, 1989</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">AF5109B4D456E24567006A47CE18213D345CB6B7</identifier>
<identifier type="DOI">10.1007/BF01836446</identifier>
<identifier type="ArticleID">BF01836446</identifier>
<identifier type="ArticleID">Art8</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Birkhäuser Verlag, 1989</accessCondition>
<recordInfo>
<recordContentSource>SPRINGER</recordContentSource>
<recordOrigin>Birkhäuser Verlag, 1989</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001999 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001999 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:AF5109B4D456E24567006A47CE18213D345CB6B7
   |texte=   Regularity properties of functional equations and inequalities
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024