Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis

Identifieur interne : 001996 ( Istex/Corpus ); précédent : 001995; suivant : 001997

Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis

Auteurs : Volker C. Radeloff ; David J. Mladenoff ; Mark S. Boyce

Source :

RBID : ISTEX:7C56FA574BB059A270FD2AC16FF432B5591DC490

Abstract

Insect defoliation is a major disturbance force in forested ecosystems. Monitoring outbreaks, and estimating the areas affected, is therefore important for both forest managers and forest ecologists. The objective of our study was to classify jack pine budworm defoliation levels in Landsat TM imagery recorded previous to and during the 1990–1995 outbreak in our 450,000 ha study area in northwestern Wisconsin (USA). Many previous studies correlated insect defoliation and remotely sensed imagery with moderate to good success, but it often remained unclear if actual defoliation effects or other forest attributes correlated with defoliation were detected. For example, a larger deciduous component in mixed jack pine stands will limit budworm populations and thereby defoliation. The deciduous component in stands is a determining factor for insect defoliation, whereas needle discoloration and tree mortality are their effect. We used pre-outbreak Landsat TM data (1987) to identify determining factors for jack pine budworm population levels and peak-outbreak imagery (1993) for detecting actual defoliation. Our satellite data were atmospherically corrected using a radiative transfer model (5S). Spectral mixture analysis was performed using spectrometer measurements of jack pine needles and bark as representations of surface materials (“endmembers”). The explanatory power of the resulting fraction images was evaluated using jack pine budworm population data collected at 33 sampling points. Near-infrared reflectance (NIR) increased in defoliated stands between 1987 and 1993, but single date NIR in each year was negatively correlated with budworm levels in 1993 (r=−0.69 and −0.47). This was because hardwood trees within jack pine stands caused higher NIR reflectance but limited jack pine budworm populations. The 10% NIR difference between pure and mixed jack pine stands outweighed the 3–5% increase in NIR due to defoliation and necessitated stratification of the satellite data by tree species. Spectral mixture analysis performed on pure jack pine stands resulted in a strong negative correlation between the 1993 green needle fraction and the 1993 budworm population data (r=−0.94). This study was, to our knowledge, the first that applied spectral mixture analysis for forest damage detection, and also the first to use insect population measurements as independent field data. These methods, and the separation of determinants and effects of jack pine budworm defoliation, enabled us to detect actual defoliation with high accuracy.

Url:
DOI: 10.1016/S0034-4257(99)00008-5

Links to Exploration step

ISTEX:7C56FA574BB059A270FD2AC16FF432B5591DC490

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis</title>
<author>
<name sortKey="Radeloff, Volker C" sort="Radeloff, Volker C" uniqKey="Radeloff V" first="Volker C." last="Radeloff">Volker C. Radeloff</name>
<affiliation>
<mods:affiliation>E-mail: radeloff@facstaff.wisc.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Forest Ecology and Management, University of Wisconsin–Madison, Madison, WI USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mladenoff, David J" sort="Mladenoff, David J" uniqKey="Mladenoff D" first="David J." last="Mladenoff">David J. Mladenoff</name>
<affiliation>
<mods:affiliation>Department of Forest Ecology and Management, University of Wisconsin–Madison, Madison, WI USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boyce, Mark S" sort="Boyce, Mark S" uniqKey="Boyce M" first="Mark S." last="Boyce">Mark S. Boyce</name>
<affiliation>
<mods:affiliation>College of Natural Resources, University of Wisconsin–Stevens Point, Stevens Point, WI USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7C56FA574BB059A270FD2AC16FF432B5591DC490</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0034-4257(99)00008-5</idno>
<idno type="url">https://api.istex.fr/document/7C56FA574BB059A270FD2AC16FF432B5591DC490/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001996</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001996</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis</title>
<author>
<name sortKey="Radeloff, Volker C" sort="Radeloff, Volker C" uniqKey="Radeloff V" first="Volker C." last="Radeloff">Volker C. Radeloff</name>
<affiliation>
<mods:affiliation>E-mail: radeloff@facstaff.wisc.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Forest Ecology and Management, University of Wisconsin–Madison, Madison, WI USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mladenoff, David J" sort="Mladenoff, David J" uniqKey="Mladenoff D" first="David J." last="Mladenoff">David J. Mladenoff</name>
<affiliation>
<mods:affiliation>Department of Forest Ecology and Management, University of Wisconsin–Madison, Madison, WI USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boyce, Mark S" sort="Boyce, Mark S" uniqKey="Boyce M" first="Mark S." last="Boyce">Mark S. Boyce</name>
<affiliation>
<mods:affiliation>College of Natural Resources, University of Wisconsin–Stevens Point, Stevens Point, WI USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Remote Sensing of Environment</title>
<title level="j" type="abbrev">RSE</title>
<idno type="ISSN">0034-4257</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">69</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="156">156</biblScope>
<biblScope unit="page" to="169">169</biblScope>
</imprint>
<idno type="ISSN">0034-4257</idno>
</series>
<idno type="istex">7C56FA574BB059A270FD2AC16FF432B5591DC490</idno>
<idno type="DOI">10.1016/S0034-4257(99)00008-5</idno>
<idno type="PII">S0034-4257(99)00008-5</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0034-4257</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Insect defoliation is a major disturbance force in forested ecosystems. Monitoring outbreaks, and estimating the areas affected, is therefore important for both forest managers and forest ecologists. The objective of our study was to classify jack pine budworm defoliation levels in Landsat TM imagery recorded previous to and during the 1990–1995 outbreak in our 450,000 ha study area in northwestern Wisconsin (USA). Many previous studies correlated insect defoliation and remotely sensed imagery with moderate to good success, but it often remained unclear if actual defoliation effects or other forest attributes correlated with defoliation were detected. For example, a larger deciduous component in mixed jack pine stands will limit budworm populations and thereby defoliation. The deciduous component in stands is a determining factor for insect defoliation, whereas needle discoloration and tree mortality are their effect. We used pre-outbreak Landsat TM data (1987) to identify determining factors for jack pine budworm population levels and peak-outbreak imagery (1993) for detecting actual defoliation. Our satellite data were atmospherically corrected using a radiative transfer model (5S). Spectral mixture analysis was performed using spectrometer measurements of jack pine needles and bark as representations of surface materials (“endmembers”). The explanatory power of the resulting fraction images was evaluated using jack pine budworm population data collected at 33 sampling points. Near-infrared reflectance (NIR) increased in defoliated stands between 1987 and 1993, but single date NIR in each year was negatively correlated with budworm levels in 1993 (r=−0.69 and −0.47). This was because hardwood trees within jack pine stands caused higher NIR reflectance but limited jack pine budworm populations. The 10% NIR difference between pure and mixed jack pine stands outweighed the 3–5% increase in NIR due to defoliation and necessitated stratification of the satellite data by tree species. Spectral mixture analysis performed on pure jack pine stands resulted in a strong negative correlation between the 1993 green needle fraction and the 1993 budworm population data (r=−0.94). This study was, to our knowledge, the first that applied spectral mixture analysis for forest damage detection, and also the first to use insect population measurements as independent field data. These methods, and the separation of determinants and effects of jack pine budworm defoliation, enabled us to detect actual defoliation with high accuracy.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Volker C. Radeloff</name>
<affiliations>
<json:string>E-mail: radeloff@facstaff.wisc.edu</json:string>
<json:string>Department of Forest Ecology and Management, University of Wisconsin–Madison, Madison, WI USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>David J. Mladenoff</name>
<affiliations>
<json:string>Department of Forest Ecology and Management, University of Wisconsin–Madison, Madison, WI USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mark S. Boyce</name>
<affiliations>
<json:string>College of Natural Resources, University of Wisconsin–Stevens Point, Stevens Point, WI USA</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Insect defoliation is a major disturbance force in forested ecosystems. Monitoring outbreaks, and estimating the areas affected, is therefore important for both forest managers and forest ecologists. The objective of our study was to classify jack pine budworm defoliation levels in Landsat TM imagery recorded previous to and during the 1990–1995 outbreak in our 450,000 ha study area in northwestern Wisconsin (USA). Many previous studies correlated insect defoliation and remotely sensed imagery with moderate to good success, but it often remained unclear if actual defoliation effects or other forest attributes correlated with defoliation were detected. For example, a larger deciduous component in mixed jack pine stands will limit budworm populations and thereby defoliation. The deciduous component in stands is a determining factor for insect defoliation, whereas needle discoloration and tree mortality are their effect. We used pre-outbreak Landsat TM data (1987) to identify determining factors for jack pine budworm population levels and peak-outbreak imagery (1993) for detecting actual defoliation. Our satellite data were atmospherically corrected using a radiative transfer model (5S). Spectral mixture analysis was performed using spectrometer measurements of jack pine needles and bark as representations of surface materials (“endmembers”). The explanatory power of the resulting fraction images was evaluated using jack pine budworm population data collected at 33 sampling points. Near-infrared reflectance (NIR) increased in defoliated stands between 1987 and 1993, but single date NIR in each year was negatively correlated with budworm levels in 1993 (r=−0.69 and −0.47). This was because hardwood trees within jack pine stands caused higher NIR reflectance but limited jack pine budworm populations. The 10% NIR difference between pure and mixed jack pine stands outweighed the 3–5% increase in NIR due to defoliation and necessitated stratification of the satellite data by tree species. Spectral mixture analysis performed on pure jack pine stands resulted in a strong negative correlation between the 1993 green needle fraction and the 1993 budworm population data (r=−0.94). This study was, to our knowledge, the first that applied spectral mixture analysis for forest damage detection, and also the first to use insect population measurements as independent field data. These methods, and the separation of determinants and effects of jack pine budworm defoliation, enabled us to detect actual defoliation with high accuracy.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>594 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>2557</abstractCharCount>
<pdfWordCount>8235</pdfWordCount>
<pdfCharCount>53758</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>371</abstractWordCount>
</qualityIndicators>
<title>Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis</title>
<pii>
<json:string>S0034-4257(99)00008-5</json:string>
</pii>
<refBibs>
<json:item>
<author>
<json:item>
<name>J.B. Adams</name>
</json:item>
<json:item>
<name>D.E. Sabol</name>
</json:item>
<json:item>
<name>V. Kapos</name>
</json:item>
</author>
<host>
<volume>52</volume>
<pages>
<last>154</last>
<first>137</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Classification of multispectral images based on fractions of endmembers</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F.J. Ahern</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>1468</last>
<first>1451</first>
</pages>
<author></author>
<title>Int. J. Remote Sens.</title>
</host>
<title>The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F.J. Ahern</name>
</json:item>
<json:item>
<name>T. Erdle</name>
</json:item>
<json:item>
<name>D.A. Maclean</name>
</json:item>
<json:item>
<name>I.D. Kneppeck</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>400</last>
<first>387</first>
</pages>
<author></author>
<title>Int. J. Remote Sens.</title>
</host>
<title>A quantitative relationship between forest growth rates and Thematic Mapper reflectance measurements</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.D. Ashley</name>
</json:item>
<json:item>
<name>J. Rea</name>
</json:item>
<json:item>
<name>L. Wright</name>
</json:item>
</author>
<host>
<volume>42</volume>
<pages>
<last>1272</last>
<first>1265</first>
</pages>
<author></author>
<title>Photogramm. Eng. Remote Sens.</title>
</host>
<title>Spruce budworm damage evaluation using aerial photography</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.C. Borel</name>
</json:item>
<json:item>
<name>S.A.W. Gerstl</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>416</last>
<first>403</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Nonlinear spectral mixing models for vegetative and soil surfaces</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M.P. Buchheim</name>
</json:item>
<json:item>
<name>A.L. Maclean</name>
</json:item>
<json:item>
<name>T.M. Lillesand</name>
</json:item>
</author>
<host>
<volume>51</volume>
<pages>
<last>1122</last>
<first>1115</first>
</pages>
<author></author>
<title>Photogramm. Eng. Remote Sens.</title>
</host>
<title>Forest cover type mapping and spruce budworm defoliation detection using simulated SPOT imagery</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.B. Collins</name>
</json:item>
<json:item>
<name>C.E. Woodcock</name>
</json:item>
</author>
<host>
<volume>50</volume>
<pages>
<last>279</last>
<first>267</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Change detection using the Gramm–Schmidt transformation applied to mapping forest mortality</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.B. Collins</name>
</json:item>
<json:item>
<name>C.E. Woodcock</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>77</last>
<first>66</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Lansat TM data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.R. Coppin</name>
</json:item>
<json:item>
<name>M.E. Bauer</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>927</last>
<first>918</first>
</pages>
<author></author>
<title>IEEE Trans. Geosci. Remote Sens.</title>
</host>
<title>Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.R. Coppin</name>
</json:item>
<json:item>
<name>M.E. Bauer</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>234</last>
<first>207</first>
</pages>
<author></author>
<title>Remote Sens. Rev.</title>
</host>
<title>Digital change detection in forest ecosystems with remotely sensed imagery</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.M. Cross</name>
</json:item>
<json:item>
<name>J.J. Settle</name>
</json:item>
<json:item>
<name>N.A. Drake</name>
</json:item>
<json:item>
<name>R. Paivinen</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>1129</last>
<first>1119</first>
</pages>
<author></author>
<title>Int. J. Remote Sens.</title>
</host>
<title>Subpixel measurements of tropical forest cover using AVHRR data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.G. Dekker</name>
</json:item>
<json:item>
<name>M. Donze</name>
</json:item>
</author>
<host>
<pages>
<last>317</last>
<first>295</first>
</pages>
<author></author>
<title>Imaging Spectrometry–-A Tool for Environmental Observations</title>
</host>
<title>Imaging spectrometry as a research tool for inland water resources analysis</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Ekstrand</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>692</last>
<first>685</first>
</pages>
<author></author>
<title>IEEE Trans. Geosci. Remote Sens.</title>
</host>
<title>Detection of moderate damage on Norway spruce using Landsat TM and digital stand data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Ekstrand</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>302</last>
<first>291</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Assessment of forest damage with Landsat TM</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.M. Foody</name>
</json:item>
<json:item>
<name>D.P. Cox</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>631</last>
<first>619</first>
</pages>
<author></author>
<title>Int. J. Remote Sens.</title>
</host>
<title>Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.M. Foody</name>
</json:item>
<json:item>
<name>R.M. Lucas</name>
</json:item>
<json:item>
<name>P.J. Curran</name>
</json:item>
<json:item>
<name>M. Honzak</name>
</json:item>
</author>
<host>
<volume>131</volume>
<pages>
<last>154</last>
<first>143</first>
</pages>
<author></author>
<title>Plant Ecol.</title>
</host>
<title>Mapping tropical forest fractional cover from coarse spatial resolution remote sensing imagery</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.E. Franklin</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>182</last>
<first>178</first>
</pages>
<author></author>
<title>Can. J. Remote Sens.</title>
</host>
<title>Classification of hemlock looper defoliation using SPOT HRV imagery</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.E. Franklin</name>
</json:item>
<json:item>
<name>A.G. Raske</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>48</last>
<first>37</first>
</pages>
<author></author>
<title>Can. J. Remote Sens.</title>
</host>
<title>Satellite remote sensing of spruce budworm forest defoliation in western Newfoundland</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.E. Franklin</name>
</json:item>
<json:item>
<name>R.H. Waring</name>
</json:item>
<json:item>
<name>R.W. McCreight</name>
</json:item>
<json:item>
<name>W.B. Cohen</name>
</json:item>
<json:item>
<name>M. Fiorella</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>308</last>
<first>299</first>
</pages>
<author></author>
<title>Can. J. Remote Sens.</title>
</host>
<title>Aerial and satellite sensor detection and classification of western spruce budworm defoliation in a subalpine forest</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Fung</name>
</json:item>
<json:item>
<name>E. LeDrew</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>1658</last>
<first>1649</first>
</pages>
<author></author>
<title>Photogramm. Eng. Remote Sens.</title>
</host>
<title>Application of principal components analysis to change detection</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Gong</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>29</last>
<first>22</first>
</pages>
<author></author>
<title>Can. J. Remote Sens.</title>
</host>
<title>Change detection using principal component analysis and fuzzy set theory</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Green</name>
</json:item>
<json:item>
<name>D. Kempka</name>
</json:item>
<json:item>
<name>L. Lackey</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>337</last>
<first>331</first>
</pages>
<author></author>
<title>Photogramm. Eng. Remote Sens.</title>
</host>
<title>Using remote sensing to detect and monitor land-cover and land-use change</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>F.G. Hall</name>
</json:item>
<json:item>
<name>Y.E. Shimabukuro</name>
</json:item>
<json:item>
<name>K.F. Huemmrich</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>1013</last>
<first>993</first>
</pages>
<author></author>
<title>Ecol. Appl.</title>
</host>
<title>Remote sensing of forest biophysical structure using mixture decomposition and geometric reflectance models</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.J. Hall</name>
</json:item>
<json:item>
<name>P.H. Crown</name>
</json:item>
<json:item>
<name>S.J. Titus</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>142</last>
<first>135</first>
</pages>
<author></author>
<title>Can. J. Remote Sens.</title>
</host>
<title>Change detection methodology for aspen defoliation with Landsat MSS digital data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.J. Hall</name>
</json:item>
<json:item>
<name>S.J. Titus</name>
</json:item>
<json:item>
<name>W.J.A. Volney</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>1346</last>
<first>1337</first>
</pages>
<author></author>
<title>Can. J. For. Res.</title>
</host>
<title>Estimating top-kill volumes with large-scale photos on trees defoliated by the jack pine budworm</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Häne</name>
</json:item>
</author>
<host>
<volume>222</volume>
<pages>
<last>111</last>
<first>1</first>
</pages>
<author></author>
<title>Acta For. Fenn.</title>
</host>
<title>Spectral interpretation of changes in forests using satellite scanner images</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Herrmann</name>
</json:item>
<json:item>
<name>B.N. Rock</name>
</json:item>
<json:item>
<name>U. Ammer</name>
</json:item>
<json:item>
<name>H.N. Paley</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>149</last>
<first>129</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Preliminary assessment of airborne spectrometer and airborne thematic mapper data acquired for forest decline areas in the Federal Republic of Germany</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Hill</name>
</json:item>
<json:item>
<name>W. Mehl</name>
</json:item>
<json:item>
<name>V.C. Radeloff</name>
</json:item>
</author>
<host>
<pages>
<last>151</last>
<first>143</first>
</pages>
<author></author>
<title>Sensors and Environmental Applications of Remote Sensing</title>
</host>
<title>Improved forest mapping by combining corrections of atmospheric and topographic effects in Landsat TM imagery</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.F. Hopkins</name>
</json:item>
<json:item>
<name>A.L. Maclean</name>
</json:item>
<json:item>
<name>T.M. Lillesand</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>68</last>
<first>61</first>
</pages>
<author></author>
<title>Photogramm. Eng. Remote Sens.</title>
</host>
<title>Assessment of Thematic Mapper imagery for forestry applications under Lake States conditions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.J. Hurcom</name>
</json:item>
<json:item>
<name>A.R. Harrison</name>
</json:item>
<json:item>
<name>M. Taberner</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>214</last>
<first>203</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Assessment of biophysical vegetation properties through spectral decomposition techniques</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.A. Johnson</name>
</json:item>
<json:item>
<name>S.L. Gutsell</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>750</last>
<first>745</first>
</pages>
<author></author>
<title>J. Veg. Sci.</title>
</host>
<title>Heat budget and fire behaviour associated with the opening of serotinous cones in two Pinus species</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.E. Joria</name>
</json:item>
<json:item>
<name>S.C. Ahearn</name>
</json:item>
<json:item>
<name>M. Connor</name>
</json:item>
</author>
<host>
<volume>57</volume>
<pages>
<last>1612</last>
<first>1605</first>
</pages>
<author></author>
<title>Photogramm. Eng. Remote Sens.</title>
</host>
<title>A comparison of the SPOT and Landsat Thematic Mapper satellite systems for detecting gypsy moth defoliation in Michigan</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.F. Lambin</name>
</json:item>
<json:item>
<name>A.H. Strahler</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>244</last>
<first>231</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Change-vector analysis in multitemporal space</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.G. Leckie</name>
</json:item>
<json:item>
<name>D.P. Ostaff</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>275</last>
<first>259</first>
</pages>
<author></author>
<title>For. Sci.</title>
</host>
<title>Classification of airborne Multispectral Scanner data for mapping current defoliation caused by the spruce budworm</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.G. Leckie</name>
</json:item>
<json:item>
<name>D.P. Ostaff</name>
</json:item>
<json:item>
<name>P.M. Teillet</name>
</json:item>
<json:item>
<name>G. Fedosjews</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>600</last>
<first>582</first>
</pages>
<author></author>
<title>For. Sci.</title>
</host>
<title>Spectral characteristics of tree components of balsam fir and spruce damaged by spruce budworm</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.G. Leckie</name>
</json:item>
<json:item>
<name>X. Yuan</name>
</json:item>
<json:item>
<name>D.P. Ostaff</name>
</json:item>
<json:item>
<name>H. Piene</name>
</json:item>
<json:item>
<name>D.A. MacLean</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>136</last>
<first>125</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Analysis of high resolution multispectral MEIS imagery for spruce budworm damage assessment on a single tree basis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.E. Luther</name>
</json:item>
<json:item>
<name>S.E. Franklin</name>
</json:item>
<json:item>
<name>J. Judak</name>
</json:item>
<json:item>
<name>J.P. Meades</name>
</json:item>
</author>
<host>
<volume>59</volume>
<pages>
<last>91</last>
<first>77</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Forecasting the susceptibility and vulnerability of balsam fir stands to insect defoliation with Landsat Thematic Mapper data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.A. Macomber</name>
</json:item>
<json:item>
<name>C.E. Woodcock</name>
</json:item>
</author>
<host>
<volume>50</volume>
<pages>
<last>266</last>
<first>255</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Mapping and monitoring conifer mortality using remote sensing in the Lake Tahoe valley</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.G. McCullough</name>
</json:item>
<json:item>
<name>L.D. Marshal</name>
</json:item>
<json:item>
<name>L.J. Buss</name>
</json:item>
<json:item>
<name>J. Kouki</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>2190</last>
<first>2180</first>
</pages>
<author></author>
<title>Can. J. For. Res.</title>
</host>
<title>Relating jack pine budworm damage to stand inventory variables in northern Michigan</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.M. Muchoney</name>
</json:item>
<json:item>
<name>B.N. Haack</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>1251</last>
<first>1243</first>
</pages>
<author></author>
<title>Photogramm. Eng. Remote Sens.</title>
</host>
<title>Change detection for monitoring forest defoliation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Mukai</name>
</json:item>
<json:item>
<name>T. Sugimura</name>
</json:item>
<json:item>
<name>H. Watanabe</name>
</json:item>
<json:item>
<name>K. Wakamori</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>81</last>
<first>77</first>
</pages>
<author></author>
<title>Photogramm. Eng. Remote Sens.</title>
</host>
<title>Extraction of areas infested by pine bark beetle using Landsat MSS data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.F. Nelson</name>
</json:item>
</author>
<host>
<volume>49</volume>
<pages>
<last>1314</last>
<first>1303</first>
</pages>
<author></author>
<title>Photogramm. Eng. Remote Sens.</title>
</host>
<title>Detecting forest canopy change due to insect activity using Landsat MSS</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Proy</name>
</json:item>
<json:item>
<name>D. Tanré</name>
</json:item>
<json:item>
<name>P.Y. Deschamps</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>32</last>
<first>21</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Evaluation of topographic effects in remotely sensed data</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>V.C. Radeloff</name>
</json:item>
<json:item>
<name>D.J. Mladenoff</name>
</json:item>
<json:item>
<name>K.L. Manies</name>
</json:item>
<json:item>
<name>M.S. Boyce</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>205</last>
<first>189</first>
</pages>
<author></author>
<title>Trans. Wisc. Acad. Sci. Arts Lett.</title>
</host>
<title>Using historical data to analyze forest landscape restoration potential</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D.A. Roberts</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>269</last>
<first>255</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.N. Rock</name>
</json:item>
<json:item>
<name>J.E. Vogelmann</name>
</json:item>
<json:item>
<name>D.L. Williams</name>
</json:item>
<json:item>
<name>A.F. Vogelmann</name>
</json:item>
<json:item>
<name>T. Hoshizaki</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<last>445</last>
<first>439</first>
</pages>
<author></author>
<title>BioScience</title>
</host>
<title>Remote detection of forest damage</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.D. Royle</name>
</json:item>
<json:item>
<name>R.G. Lathrop</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>335</last>
<first>327</first>
</pages>
<author></author>
<title>For. Sci.</title>
</host>
<title>Monitoring hemlock forest health in New Jersey using Landsat TM data and change detection techniques</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.J. Settle</name>
</json:item>
<json:item>
<name>N.A. Drake</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>1177</last>
<first>1159</first>
</pages>
<author></author>
<title>Int. J. Remote Sens.</title>
</host>
<title>Linear mixing and the estimation of ground cover portions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Singh</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>1003</last>
<first>989</first>
</pages>
<author></author>
<title>Int. J. Remote Sens.</title>
</host>
<title>Digital change detection techniques using remotely sensed data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Sirois</name>
</json:item>
<json:item>
<name>F.J. Ahern</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>110</last>
<first>104</first>
</pages>
<author></author>
<title>Can. J. Remote Sens.</title>
</host>
<title>An investigation of SPOT HRV for detecting recent mountain pine beetle mortality</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.O. Smith</name>
</json:item>
<json:item>
<name>S.O. Ustin</name>
</json:item>
<json:item>
<name>J.B. Adams</name>
</json:item>
<json:item>
<name>A.R. Gillespie</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>26</last>
<first>1</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Vegetation in deserts. I</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Q. Su</name>
</json:item>
<json:item>
<name>D.A. MacLean</name>
</json:item>
<json:item>
<name>T.D. Needham</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>1628</last>
<first>1620</first>
</pages>
<author></author>
<title>Can. J. For. Res.</title>
</host>
<title>The influence of hardwood content on balsam fir defoliation by spruce budworm</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Tanré</name>
</json:item>
<json:item>
<name>M. Herman</name>
</json:item>
<json:item>
<name>P.Y. Deschamps</name>
</json:item>
<json:item>
<name>A. De Leffe</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>3594</last>
<first>3587</first>
</pages>
<author></author>
<title>Appl. Opt.</title>
</host>
<title>Atmospheric modelling of the background contribution upon space measurements of ground reflectance, including bi-directional properties</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Tanré</name>
</json:item>
<json:item>
<name>P.Y. Deschamps</name>
</json:item>
<json:item>
<name>P. Duhaut</name>
</json:item>
<json:item>
<name>M. Herman</name>
</json:item>
</author>
<host>
<volume>92</volume>
<pages>
<last>12,006</last>
<first>12,000</first>
</pages>
<issue>D10</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Adjacency effect produced by the atmospheric scattering in Thematic Mapper data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.E. Vogelmann</name>
</json:item>
<json:item>
<name>B.N. Rock</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>246</last>
<first>227</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Assessing forest damage in high-elevation coniferous forests in Vermont and New Hampshire using Thematic Mapper data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.E. Vogelmann</name>
</json:item>
<json:item>
<name>B.N. Rock</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>225</last>
<first>217</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Use of Thematic Mapper data for the detection of forest damage caused by the Pear Thrips</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>C.A. Wessman</name>
</json:item>
<json:item>
<name>C.A. Bateson</name>
</json:item>
<json:item>
<name>T.L. Benning</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>511</last>
<first>493</first>
</pages>
<author></author>
<title>Ecol. Appl.</title>
</host>
<title>Detecting fire and grazing patterns in tallgrass prairie using spectral mixture analysis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.E. Westman</name>
</json:item>
<json:item>
<name>C.V. Price</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>1311</last>
<first>1305</first>
</pages>
<author></author>
<title>Photogramm. Eng. Remote Sens.</title>
</host>
<title>Detecting air pollution stress in southern California vegetation using Landsat Thematic Mapper band data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.L. Williams</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>93</last>
<first>79</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>A comparison of spectral reflectance properties at the needle, branch, and canopy level for selected conifer species</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.L. Williams</name>
</json:item>
<json:item>
<name>R.F. Nelson</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>138</last>
<first>120</first>
</pages>
<author></author>
<title>IEEE Trans. Geosci. Remote Sens.</title>
</host>
<title>Use of remotely sensed data for assessing forest stand conditions in the eastern United States</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.T. Wolter</name>
</json:item>
<json:item>
<name>D.J. Mladenoff</name>
</json:item>
<json:item>
<name>G.E. Host</name>
</json:item>
<json:item>
<name>T.R. Crow</name>
</json:item>
</author>
<host>
<volume>61</volume>
<pages>
<last>1143</last>
<first>1129</first>
</pages>
<author></author>
<title>Photogramm. Eng. Remote Sens.</title>
</host>
<title>Improved forest classification in the Northern Lake States using multi-temporal Landsat imagery</title>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>69</volume>
<pii>
<json:string>S0034-4257(00)X0054-5</json:string>
</pii>
<pages>
<last>169</last>
<first>156</first>
</pages>
<issn>
<json:string>0034-4257</json:string>
</issn>
<issue>2</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Remote Sensing of Environment</title>
<publicationDate>1999</publicationDate>
</host>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0034-4257(99)00008-5</json:string>
</doi>
<id>7C56FA574BB059A270FD2AC16FF432B5591DC490</id>
<score>0.016344927</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/7C56FA574BB059A270FD2AC16FF432B5591DC490/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/7C56FA574BB059A270FD2AC16FF432B5591DC490/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7C56FA574BB059A270FD2AC16FF432B5591DC490/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis</title>
<title level="a" type="sub">Separating Effects from Determinants</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Elsevier Science Inc.</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Figure 1: Location of the Pine Barrens study area in northwestern Wisconsin, USA. The 33 jack pine budworm sampling plots are shown as points. The rectangle encompasses areas of most severe defoliation examined in detail in Figure 9</note>
<note type="content">Figure 2: Spectrometer measurements of lakes tested for parametrizing the atmospheric correction</note>
<note type="content">Figure 3: Spectrometer measurements used to characterize the endmembers for the spectral mixture analysis: (a) jack pine bark and (b) dry jack pine needles, green jack pine needles, and green aspen leaves</note>
<note type="content">Figure 4: Correlation factors for lake/reference spectra pairs (circles) and estimated visibility (boxes) for different combination of the Ångstrom parameters b (x-axis) and n (y-axis)</note>
<note type="content">Figure 5: Reflectance of two coniferous stands after atmospheric corrections with different pairs of Ångstrom parameters</note>
<note type="content">Figure 6: Reflectance of six nondefoliated jack pine stands in the atmospherically corrected (1993) and radiometrically matched (1987) satellite data, plus reflectance of three jack pine stands measured with a spectrometer mounted on a helicopter during the BOREAS field campaign</note>
<note type="content">Figure 7: Reflectance of six heavily defoliated jack pine stands in the atmospherically corrected (1993) and radiometrically matched (1987) satellite data</note>
<note type="content">Figure 8: Relationship between budworm population levels recorded at the peak of the outbreak (1993) and NIR reflectance of forest surrounding the sampling plots measured in the imagery of a) 1993 and b) 1987. (■: pure jack pine stands; +: mixed jack pine stands)</note>
<note type="content">Figure 9: Color-composite of the images fractions (red: bark, green: green vegetation, blue: shade) for pure jack pine stands in the central part of the Pine Barrens, where defoliation levels were highest (compare Fig. 1 for the location of the map within our study area). Red and yellow areas (A) exhibited highest defoliation, characterized by a high bark and low green needle fraction, and were subsequently salvaged cut. The green areas (B) contain the highest vegetation fractions. These stands were classified as jack pine by Wolter et al. (1995), and thus included in our analysis, but field checking revealed that they had been falsely classified red pine. Red pine was not defoliated and the spectral mixture analysis did distinguish these stands by calculating a very high green needle fraction. The blue areas (C) are characterized by strong shade fractions. Defoliation in these areas was lower, and these stands survived the outbreak</note>
<note type="content">Table 1: Regression Factors for the Radiometric Matching between the Atmospherically Corrected Imagery (August 1993) and the Two Other Satellite Imagesa</note>
<note type="content">Table 2: Resulting Fractions and Errors of Spectral Mixture Analyses with Various 3-Endmember Sets Always Containing a Shade, a Nonphotosynthetic Vegetation (NPV), and a Green Vegetation Endmembera</note>
<note type="content">Table 3: Correlation Coefficients (r) of Different Fractions with the 1993 Budworm Population Data at 10 Sampling Points in Pure Jack Pine Stands</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis</title>
<title level="a" type="sub">Separating Effects from Determinants</title>
<author xml:id="author-1">
<persName>
<forename type="first">Volker C.</forename>
<surname>Radeloff</surname>
</persName>
<email>radeloff@facstaff.wisc.edu</email>
<affiliation>Address correspondence to V. C. Radeloff, Dept. of Forest Ecology and Management, Univ. of Wisconsin–Madison, 1630 Linden Dr., Madison, WI 53706, USA.</affiliation>
<affiliation>Department of Forest Ecology and Management, University of Wisconsin–Madison, Madison, WI USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">David J.</forename>
<surname>Mladenoff</surname>
</persName>
<affiliation>Department of Forest Ecology and Management, University of Wisconsin–Madison, Madison, WI USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Mark S.</forename>
<surname>Boyce</surname>
</persName>
<affiliation>College of Natural Resources, University of Wisconsin–Stevens Point, Stevens Point, WI USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Remote Sensing of Environment</title>
<title level="j" type="abbrev">RSE</title>
<idno type="pISSN">0034-4257</idno>
<idno type="PII">S0034-4257(00)X0054-5</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">69</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="156">156</biblScope>
<biblScope unit="page" to="169">169</biblScope>
</imprint>
</monogr>
<idno type="istex">7C56FA574BB059A270FD2AC16FF432B5591DC490</idno>
<idno type="DOI">10.1016/S0034-4257(99)00008-5</idno>
<idno type="PII">S0034-4257(99)00008-5</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Insect defoliation is a major disturbance force in forested ecosystems. Monitoring outbreaks, and estimating the areas affected, is therefore important for both forest managers and forest ecologists. The objective of our study was to classify jack pine budworm defoliation levels in Landsat TM imagery recorded previous to and during the 1990–1995 outbreak in our 450,000 ha study area in northwestern Wisconsin (USA). Many previous studies correlated insect defoliation and remotely sensed imagery with moderate to good success, but it often remained unclear if actual defoliation effects or other forest attributes correlated with defoliation were detected. For example, a larger deciduous component in mixed jack pine stands will limit budworm populations and thereby defoliation. The deciduous component in stands is a determining factor for insect defoliation, whereas needle discoloration and tree mortality are their effect. We used pre-outbreak Landsat TM data (1987) to identify determining factors for jack pine budworm population levels and peak-outbreak imagery (1993) for detecting actual defoliation. Our satellite data were atmospherically corrected using a radiative transfer model (5S). Spectral mixture analysis was performed using spectrometer measurements of jack pine needles and bark as representations of surface materials (“endmembers”). The explanatory power of the resulting fraction images was evaluated using jack pine budworm population data collected at 33 sampling points. Near-infrared reflectance (NIR) increased in defoliated stands between 1987 and 1993, but single date NIR in each year was negatively correlated with budworm levels in 1993 (r=−0.69 and −0.47). This was because hardwood trees within jack pine stands caused higher NIR reflectance but limited jack pine budworm populations. The 10% NIR difference between pure and mixed jack pine stands outweighed the 3–5% increase in NIR due to defoliation and necessitated stratification of the satellite data by tree species. Spectral mixture analysis performed on pure jack pine stands resulted in a strong negative correlation between the 1993 green needle fraction and the 1993 budworm population data (r=−0.94). This study was, to our knowledge, the first that applied spectral mixture analysis for forest damage detection, and also the first to use insect population measurements as independent field data. These methods, and the separation of determinants and effects of jack pine budworm defoliation, enabled us to detect actual defoliation with high accuracy.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1999-01-07">Modified</change>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/7C56FA574BB059A270FD2AC16FF432B5591DC490/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3ab" NDATA="IMAGE" name="gr3ab"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>RSE</jid>
<aid>5268</aid>
<ce:pii>S0034-4257(99)00008-5</ce:pii>
<ce:doi>10.1016/S0034-4257(99)00008-5</ce:doi>
<ce:copyright type="full-transfer" year="1999">Elsevier Science Inc.</ce:copyright>
</item-info>
<head>
<ce:title>Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis</ce:title>
<ce:subtitle>Separating Effects from Determinants</ce:subtitle>
<ce:author-group>
<ce:author>
<ce:given-name>Volker C.</ce:given-name>
<ce:surname>Radeloff</ce:surname>
<ce:cross-ref refid="AFF1">*</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>radeloff@facstaff.wisc.edu</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>David J.</ce:given-name>
<ce:surname>Mladenoff</ce:surname>
<ce:cross-ref refid="AFF1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Mark S.</ce:given-name>
<ce:surname>Boyce</ce:surname>
<ce:cross-ref refid="AFF2"></ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>*</ce:label>
<ce:textfn>Department of Forest Ecology and Management, University of Wisconsin–Madison, Madison, WI USA</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label></ce:label>
<ce:textfn>College of Natural Resources, University of Wisconsin–Stevens Point, Stevens Point, WI USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Address correspondence to V. C. Radeloff, Dept. of Forest Ecology and Management, Univ. of Wisconsin–Madison, 1630 Linden Dr., Madison, WI 53706, USA.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="2" month="9" year="1998"></ce:date-received>
<ce:date-revised day="7" month="1" year="1999"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Insect defoliation is a major disturbance force in forested ecosystems. Monitoring outbreaks, and estimating the areas affected, is therefore important for both forest managers and forest ecologists. The objective of our study was to classify jack pine budworm defoliation levels in Landsat TM imagery recorded previous to and during the 1990–1995 outbreak in our 450,000 ha study area in northwestern Wisconsin (USA). Many previous studies correlated insect defoliation and remotely sensed imagery with moderate to good success, but it often remained unclear if actual defoliation effects or other forest attributes correlated with defoliation were detected. For example, a larger deciduous component in mixed jack pine stands will limit budworm populations and thereby defoliation. The deciduous component in stands is a determining factor for insect defoliation, whereas needle discoloration and tree mortality are their effect. We used pre-outbreak Landsat TM data (1987) to identify determining factors for jack pine budworm population levels and peak-outbreak imagery (1993) for detecting actual defoliation. Our satellite data were atmospherically corrected using a radiative transfer model (5S). Spectral mixture analysis was performed using spectrometer measurements of jack pine needles and bark as representations of surface materials (“endmembers”). The explanatory power of the resulting fraction images was evaluated using jack pine budworm population data collected at 33 sampling points. Near-infrared reflectance (NIR) increased in defoliated stands between 1987 and 1993, but single date NIR in each year was negatively correlated with budworm levels in 1993 (
<ce:italic>r</ce:italic>
=−0.69 and −0.47). This was because hardwood trees within jack pine stands caused higher NIR reflectance but limited jack pine budworm populations. The 10% NIR difference between pure and mixed jack pine stands outweighed the 3–5% increase in NIR due to defoliation and necessitated stratification of the satellite data by tree species. Spectral mixture analysis performed on pure jack pine stands resulted in a strong negative correlation between the 1993 green needle fraction and the 1993 budworm population data (
<ce:italic>r</ce:italic>
=−0.94). This study was, to our knowledge, the first that applied spectral mixture analysis for forest damage detection, and also the first to use insect population measurements as independent field data. These methods, and the separation of determinants and effects of jack pine budworm defoliation, enabled us to detect actual defoliation with high accuracy.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis</title>
<subTitle>Separating Effects from Determinants</subTitle>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis</title>
<subTitle>Separating Effects from Determinants</subTitle>
</titleInfo>
<name type="personal">
<namePart type="given">Volker C.</namePart>
<namePart type="family">Radeloff</namePart>
<affiliation>E-mail: radeloff@facstaff.wisc.edu</affiliation>
<affiliation>Department of Forest Ecology and Management, University of Wisconsin–Madison, Madison, WI USA</affiliation>
<description>Address correspondence to V. C. Radeloff, Dept. of Forest Ecology and Management, Univ. of Wisconsin–Madison, 1630 Linden Dr., Madison, WI 53706, USA.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David J.</namePart>
<namePart type="family">Mladenoff</namePart>
<affiliation>Department of Forest Ecology and Management, University of Wisconsin–Madison, Madison, WI USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark S.</namePart>
<namePart type="family">Boyce</namePart>
<affiliation>College of Natural Resources, University of Wisconsin–Stevens Point, Stevens Point, WI USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<dateModified encoding="w3cdtf">1999-01-07</dateModified>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Insect defoliation is a major disturbance force in forested ecosystems. Monitoring outbreaks, and estimating the areas affected, is therefore important for both forest managers and forest ecologists. The objective of our study was to classify jack pine budworm defoliation levels in Landsat TM imagery recorded previous to and during the 1990–1995 outbreak in our 450,000 ha study area in northwestern Wisconsin (USA). Many previous studies correlated insect defoliation and remotely sensed imagery with moderate to good success, but it often remained unclear if actual defoliation effects or other forest attributes correlated with defoliation were detected. For example, a larger deciduous component in mixed jack pine stands will limit budworm populations and thereby defoliation. The deciduous component in stands is a determining factor for insect defoliation, whereas needle discoloration and tree mortality are their effect. We used pre-outbreak Landsat TM data (1987) to identify determining factors for jack pine budworm population levels and peak-outbreak imagery (1993) for detecting actual defoliation. Our satellite data were atmospherically corrected using a radiative transfer model (5S). Spectral mixture analysis was performed using spectrometer measurements of jack pine needles and bark as representations of surface materials (“endmembers”). The explanatory power of the resulting fraction images was evaluated using jack pine budworm population data collected at 33 sampling points. Near-infrared reflectance (NIR) increased in defoliated stands between 1987 and 1993, but single date NIR in each year was negatively correlated with budworm levels in 1993 (r=−0.69 and −0.47). This was because hardwood trees within jack pine stands caused higher NIR reflectance but limited jack pine budworm populations. The 10% NIR difference between pure and mixed jack pine stands outweighed the 3–5% increase in NIR due to defoliation and necessitated stratification of the satellite data by tree species. Spectral mixture analysis performed on pure jack pine stands resulted in a strong negative correlation between the 1993 green needle fraction and the 1993 budworm population data (r=−0.94). This study was, to our knowledge, the first that applied spectral mixture analysis for forest damage detection, and also the first to use insect population measurements as independent field data. These methods, and the separation of determinants and effects of jack pine budworm defoliation, enabled us to detect actual defoliation with high accuracy.</abstract>
<note type="content">Figure 1: Location of the Pine Barrens study area in northwestern Wisconsin, USA. The 33 jack pine budworm sampling plots are shown as points. The rectangle encompasses areas of most severe defoliation examined in detail in Figure 9</note>
<note type="content">Figure 2: Spectrometer measurements of lakes tested for parametrizing the atmospheric correction</note>
<note type="content">Figure 3: Spectrometer measurements used to characterize the endmembers for the spectral mixture analysis: (a) jack pine bark and (b) dry jack pine needles, green jack pine needles, and green aspen leaves</note>
<note type="content">Figure 4: Correlation factors for lake/reference spectra pairs (circles) and estimated visibility (boxes) for different combination of the Ångstrom parameters b (x-axis) and n (y-axis)</note>
<note type="content">Figure 5: Reflectance of two coniferous stands after atmospheric corrections with different pairs of Ångstrom parameters</note>
<note type="content">Figure 6: Reflectance of six nondefoliated jack pine stands in the atmospherically corrected (1993) and radiometrically matched (1987) satellite data, plus reflectance of three jack pine stands measured with a spectrometer mounted on a helicopter during the BOREAS field campaign</note>
<note type="content">Figure 7: Reflectance of six heavily defoliated jack pine stands in the atmospherically corrected (1993) and radiometrically matched (1987) satellite data</note>
<note type="content">Figure 8: Relationship between budworm population levels recorded at the peak of the outbreak (1993) and NIR reflectance of forest surrounding the sampling plots measured in the imagery of a) 1993 and b) 1987. (■: pure jack pine stands; +: mixed jack pine stands)</note>
<note type="content">Figure 9: Color-composite of the images fractions (red: bark, green: green vegetation, blue: shade) for pure jack pine stands in the central part of the Pine Barrens, where defoliation levels were highest (compare Fig. 1 for the location of the map within our study area). Red and yellow areas (A) exhibited highest defoliation, characterized by a high bark and low green needle fraction, and were subsequently salvaged cut. The green areas (B) contain the highest vegetation fractions. These stands were classified as jack pine by Wolter et al. (1995), and thus included in our analysis, but field checking revealed that they had been falsely classified red pine. Red pine was not defoliated and the spectral mixture analysis did distinguish these stands by calculating a very high green needle fraction. The blue areas (C) are characterized by strong shade fractions. Defoliation in these areas was lower, and these stands survived the outbreak</note>
<note type="content">Table 1: Regression Factors for the Radiometric Matching between the Atmospherically Corrected Imagery (August 1993) and the Two Other Satellite Imagesa</note>
<note type="content">Table 2: Resulting Fractions and Errors of Spectral Mixture Analyses with Various 3-Endmember Sets Always Containing a Shade, a Nonphotosynthetic Vegetation (NPV), and a Green Vegetation Endmembera</note>
<note type="content">Table 3: Correlation Coefficients (r) of Different Fractions with the 1993 Budworm Population Data at 10 Sampling Points in Pure Jack Pine Stands</note>
<relatedItem type="host">
<titleInfo>
<title>Remote Sensing of Environment</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>RSE</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">199908</dateIssued>
</originInfo>
<identifier type="ISSN">0034-4257</identifier>
<identifier type="PII">S0034-4257(00)X0054-5</identifier>
<part>
<date>199908</date>
<detail type="volume">
<number>69</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>87</start>
<end>196</end>
</extent>
<extent unit="pages">
<start>156</start>
<end>169</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">7C56FA574BB059A270FD2AC16FF432B5591DC490</identifier>
<identifier type="DOI">10.1016/S0034-4257(99)00008-5</identifier>
<identifier type="PII">S0034-4257(99)00008-5</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Elsevier Science Inc.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science Inc., ©1999</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001996 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001996 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7C56FA574BB059A270FD2AC16FF432B5591DC490
   |texte=   Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024