Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Adsorption and desorption of different organic matter fractions on iron oxide

Identifieur interne : 001986 ( Istex/Corpus ); précédent : 001985; suivant : 001987

Adsorption and desorption of different organic matter fractions on iron oxide

Auteurs : Baohua Gu ; Jürgen Schmitt ; Zhihong Chen ; Liyuan Liang ; John F. Mccarthy

Source :

RBID : ISTEX:0D78291329E7E77C9D68A692209B293934D43D0C

Abstract

Natural organic matter (NOM) is a complex mixture of different organic components (or fractions), yet few studies have examined the fractional adsorption of NOM on mineral surfaces. In this study, we fractionated NOM into hydrophobic (HbA) and hydrophilic (HL) subcomponents and two size fractions (with nominal molecular weights cut off at 3000 (3 K) dalton in an attempt to elucidate the adsorption and desorption mechanisms of NOM on iron oxide surfaces. Results indicated that, on a C weight basis, larger size HbA fraction was preferentially adsorbed (with a higher adsorption affinity and capacity) over smaller size HL fraction. However, on an O weight basis, less HbA fraction was adsorbed relative to the HL fraction, because HbA contained about 1.34 times more C but 0.82 times less O than the HL. These observations are consistent with results which indicate that only limited adsorption sites are available on the iron oxide surfaces and that the mechanism of HbA and HL adsorption was dominated by surface complexation-ligand exchange. FTIR and NMR spectroscopy and studies with several substituted benzoic acids/phenols further indicated that carboxyl and hydroxyl functional groups of these NOM fractions were actively involved in the reactions, and the steric arrangement of these functional groups may have played an important role in determining the adsorption of NOM fractions. Desorption studies indicated that the adsorbed NOM macromolecules on iron oxide surfaces were strongly bound at a given pH and ionic composition, resulting in a strong adsorption-desorption hysteresis. One possible explanation for the observed hysteresis is that the solution composition and equilibria are not identical between adsorption and desorption phases of the experiment because of preferential or selective adsorption of certain NOM fractions. This study implies that, due to the polydispersity of NOM, the competitive and fractional adsorption-desorption of NOM subcomponents must be considered in order to better predict NOM partitioning between the solution and solid phases and, therefore, the transport behavior of NOM in the subsurface soil environment.

Url:
DOI: 10.1016/0016-7037(94)00282-Q

Links to Exploration step

ISTEX:0D78291329E7E77C9D68A692209B293934D43D0C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Adsorption and desorption of different organic matter fractions on iron oxide</title>
<author>
<name sortKey="Gu, Baohua" sort="Gu, Baohua" uniqKey="Gu B" first="Baohua" last="Gu">Baohua Gu</name>
<affiliation>
<mods:affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmitt, Jurgen" sort="Schmitt, Jurgen" uniqKey="Schmitt J" first="Jürgen" last="Schmitt">Jürgen Schmitt</name>
<affiliation>
<mods:affiliation>Department of Hydrology, FbVI, University of Trier, 5500 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Zhihong" sort="Chen, Zhihong" uniqKey="Chen Z" first="Zhihong" last="Chen">Zhihong Chen</name>
<affiliation>
<mods:affiliation>Chemistry Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liang, Liyuan" sort="Liang, Liyuan" uniqKey="Liang L" first="Liyuan" last="Liang">Liyuan Liang</name>
<affiliation>
<mods:affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mccarthy, John F" sort="Mccarthy, John F" uniqKey="Mccarthy J" first="John F." last="Mccarthy">John F. Mccarthy</name>
<affiliation>
<mods:affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0D78291329E7E77C9D68A692209B293934D43D0C</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1016/0016-7037(94)00282-Q</idno>
<idno type="url">https://api.istex.fr/document/0D78291329E7E77C9D68A692209B293934D43D0C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001986</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001986</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Adsorption and desorption of different organic matter fractions on iron oxide</title>
<author>
<name sortKey="Gu, Baohua" sort="Gu, Baohua" uniqKey="Gu B" first="Baohua" last="Gu">Baohua Gu</name>
<affiliation>
<mods:affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmitt, Jurgen" sort="Schmitt, Jurgen" uniqKey="Schmitt J" first="Jürgen" last="Schmitt">Jürgen Schmitt</name>
<affiliation>
<mods:affiliation>Department of Hydrology, FbVI, University of Trier, 5500 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Zhihong" sort="Chen, Zhihong" uniqKey="Chen Z" first="Zhihong" last="Chen">Zhihong Chen</name>
<affiliation>
<mods:affiliation>Chemistry Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liang, Liyuan" sort="Liang, Liyuan" uniqKey="Liang L" first="Liyuan" last="Liang">Liyuan Liang</name>
<affiliation>
<mods:affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mccarthy, John F" sort="Mccarthy, John F" uniqKey="Mccarthy J" first="John F." last="Mccarthy">John F. Mccarthy</name>
<affiliation>
<mods:affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geochimica et Cosmochimica Acta</title>
<title level="j" type="abbrev">GCA</title>
<idno type="ISSN">0016-7037</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1995">1995</date>
<biblScope unit="volume">59</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="219">219</biblScope>
<biblScope unit="page" to="229">229</biblScope>
</imprint>
<idno type="ISSN">0016-7037</idno>
</series>
<idno type="istex">0D78291329E7E77C9D68A692209B293934D43D0C</idno>
<idno type="DOI">10.1016/0016-7037(94)00282-Q</idno>
<idno type="PII">0016-7037(94)00282-Q</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0016-7037</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Natural organic matter (NOM) is a complex mixture of different organic components (or fractions), yet few studies have examined the fractional adsorption of NOM on mineral surfaces. In this study, we fractionated NOM into hydrophobic (HbA) and hydrophilic (HL) subcomponents and two size fractions (with nominal molecular weights cut off at 3000 (3 K) dalton in an attempt to elucidate the adsorption and desorption mechanisms of NOM on iron oxide surfaces. Results indicated that, on a C weight basis, larger size HbA fraction was preferentially adsorbed (with a higher adsorption affinity and capacity) over smaller size HL fraction. However, on an O weight basis, less HbA fraction was adsorbed relative to the HL fraction, because HbA contained about 1.34 times more C but 0.82 times less O than the HL. These observations are consistent with results which indicate that only limited adsorption sites are available on the iron oxide surfaces and that the mechanism of HbA and HL adsorption was dominated by surface complexation-ligand exchange. FTIR and NMR spectroscopy and studies with several substituted benzoic acids/phenols further indicated that carboxyl and hydroxyl functional groups of these NOM fractions were actively involved in the reactions, and the steric arrangement of these functional groups may have played an important role in determining the adsorption of NOM fractions. Desorption studies indicated that the adsorbed NOM macromolecules on iron oxide surfaces were strongly bound at a given pH and ionic composition, resulting in a strong adsorption-desorption hysteresis. One possible explanation for the observed hysteresis is that the solution composition and equilibria are not identical between adsorption and desorption phases of the experiment because of preferential or selective adsorption of certain NOM fractions. This study implies that, due to the polydispersity of NOM, the competitive and fractional adsorption-desorption of NOM subcomponents must be considered in order to better predict NOM partitioning between the solution and solid phases and, therefore, the transport behavior of NOM in the subsurface soil environment.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Baohua Gu</name>
<affiliations>
<json:string>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jürgen Schmitt</name>
<affiliations>
<json:string>Department of Hydrology, FbVI, University of Trier, 5500 Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Zhihong Chen</name>
<affiliations>
<json:string>Chemistry Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Liyuan Liang</name>
<affiliations>
<json:string>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>John F. McCarthy</name>
<affiliations>
<json:string>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Natural organic matter (NOM) is a complex mixture of different organic components (or fractions), yet few studies have examined the fractional adsorption of NOM on mineral surfaces. In this study, we fractionated NOM into hydrophobic (HbA) and hydrophilic (HL) subcomponents and two size fractions (with nominal molecular weights cut off at 3000 (3 K) dalton in an attempt to elucidate the adsorption and desorption mechanisms of NOM on iron oxide surfaces. Results indicated that, on a C weight basis, larger size HbA fraction was preferentially adsorbed (with a higher adsorption affinity and capacity) over smaller size HL fraction. However, on an O weight basis, less HbA fraction was adsorbed relative to the HL fraction, because HbA contained about 1.34 times more C but 0.82 times less O than the HL. These observations are consistent with results which indicate that only limited adsorption sites are available on the iron oxide surfaces and that the mechanism of HbA and HL adsorption was dominated by surface complexation-ligand exchange. FTIR and NMR spectroscopy and studies with several substituted benzoic acids/phenols further indicated that carboxyl and hydroxyl functional groups of these NOM fractions were actively involved in the reactions, and the steric arrangement of these functional groups may have played an important role in determining the adsorption of NOM fractions. Desorption studies indicated that the adsorbed NOM macromolecules on iron oxide surfaces were strongly bound at a given pH and ionic composition, resulting in a strong adsorption-desorption hysteresis. One possible explanation for the observed hysteresis is that the solution composition and equilibria are not identical between adsorption and desorption phases of the experiment because of preferential or selective adsorption of certain NOM fractions. This study implies that, due to the polydispersity of NOM, the competitive and fractional adsorption-desorption of NOM subcomponents must be considered in order to better predict NOM partitioning between the solution and solid phases and, therefore, the transport behavior of NOM in the subsurface soil environment.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>576 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>2166</abstractCharCount>
<pdfWordCount>8170</pdfWordCount>
<pdfCharCount>49056</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>324</abstractWordCount>
</qualityIndicators>
<title>Adsorption and desorption of different organic matter fractions on iron oxide</title>
<pii>
<json:string>0016-7037(94)00282-Q</json:string>
</pii>
<refBibs>
<json:item>
<author>
<json:item>
<name>M. Afzal</name>
</json:item>
<json:item>
<name>M. Khan</name>
</json:item>
<json:item>
<name>H. Ahmad</name>
</json:item>
</author>
<host>
<volume>269</volume>
<pages>
<last>489</last>
<first>483</first>
</pages>
<author></author>
<title>Coll. Polym. Sci.</title>
</host>
<title>Surface characterization and heats of adsorption of chromatographic alumina gel</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.C. Amacher</name>
</json:item>
<json:item>
<name>J. Kotuby-Amacher</name>
</json:item>
<json:item>
<name>H.M. Selim</name>
</json:item>
<json:item>
<name>I.K. Iskandar</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>154</last>
<first>131</first>
</pages>
<author></author>
<title>Geoderma</title>
</host>
<title>Retention and release of metals by soils-evaluation of second models</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Amirbahman</name>
</json:item>
<json:item>
<name>T.M. Olson</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>2813</last>
<first>2807</first>
</pages>
<author></author>
<title>Environ. Sci. Technol.</title>
</host>
<title>Transport of humic mattercoated hematite in packed beds</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Baham</name>
</json:item>
<json:item>
<name>G. Sposito</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>153</last>
<first>147</first>
</pages>
<author></author>
<title>J. Environ. Qual.</title>
</host>
<title>Adsorption of dissolved organic carbon extracted from sewage sludge on montmorillonite and kaolinite in the presence of metal ions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.A. Davis</name>
</json:item>
</author>
<host>
<volume>46</volume>
<pages>
<last>2393</last>
<first>2381</first>
</pages>
<author></author>
<title>Geochim. Cosmochim. Acta</title>
</host>
<title>Adsorption of natural dissolved organic matter at the oxide/water interface</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.A. Davis</name>
</json:item>
<json:item>
<name>J.O. Leckie</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>1315</last>
<first>1309</first>
</pages>
<author></author>
<title>Environ. Sci. Technol.</title>
</host>
<title>Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.M. Di Toro</name>
</json:item>
<json:item>
<name>L.M. Horzempa</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>602</last>
<first>594</first>
</pages>
<author></author>
<title>Environ. Sci. Technol.</title>
</host>
<title>Reversible and resistent components of PCB adsorption-desorption: isotherms</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F.M. Dunnivant</name>
</json:item>
<json:item>
<name>P.M. Jardine</name>
</json:item>
<json:item>
<name>D.L. Taylor</name>
</json:item>
<json:item>
<name>J.F. McCarthy</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>444</last>
<first>437</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Amer. J.</title>
</host>
<title>Transport of naturally occurring dissolved organic carbon in laboratory columns containing aquifer material</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.Q. Gong</name>
</json:item>
<json:item>
<name>A. Parentich</name>
</json:item>
<json:item>
<name>L.H. Little</name>
</json:item>
<json:item>
<name>L.J. Warren</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>339</last>
<first>325</first>
</pages>
<author></author>
<title>Coll. Surf.</title>
</host>
<title>Diffuse reflectance infrared Fourier transform spectroscopic study of the adsorption mechanism of oleate on heamatite</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Gu</name>
</json:item>
<json:item>
<name>H.E. Doner</name>
</json:item>
</author>
<host>
<volume>57</volume>
<pages>
<last>716</last>
<first>709</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Amer. J.</title>
</host>
<title>Dispersion and aggregation of soils as influenced by organic and inorganic polymers</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Gu</name>
</json:item>
<json:item>
<name>J. Schmitt</name>
</json:item>
<json:item>
<name>Z. Chen</name>
</json:item>
<json:item>
<name>L. Liang</name>
</json:item>
<json:item>
<name>J.F. McCarthy</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>46</last>
<first>38</first>
</pages>
<author></author>
<title>Environ. Sci. Technol.</title>
</host>
<title>Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Haque</name>
</json:item>
<json:item>
<name>R. Sexton</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>827</last>
<first>818</first>
</pages>
<author></author>
<title>J. Coll. Interf. Sci.</title>
</host>
<title>Kinetic and equilibrium study of the adsorption of 2,4-dichlorophenoxy acetic acid on some surfaces</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Principles of colloid and surface chemistry</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>P.M. Jardine</name>
</json:item>
<json:item>
<name>N.L. Weber</name>
</json:item>
<json:item>
<name>J.F. McCarthy</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>1385</last>
<first>1378</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Amer. J.</title>
</host>
<title>Mechanisms of dissolved organic carbon adsorption on soil</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Kummert</name>
</json:item>
<json:item>
<name>W. Stumm</name>
</json:item>
</author>
<host>
<volume>75</volume>
<pages>
<last>385</last>
<first>373</first>
</pages>
<author></author>
<title>J. Coll. Interf Sci.</title>
</host>
<title>The surface complexation of organic acids on hydrous g-Al2O3</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N.K.K.F. Kwong</name>
</json:item>
<json:item>
<name>P.M. Huang</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>193</last>
<first>179</first>
</pages>
<author></author>
<title>Geoderma</title>
</host>
<title>Comparison of the influence of tannic acid and selected low-molecular-weight organic acids on precipitation products of aluminum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.A. Leenheer</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>587</last>
<first>578</first>
</pages>
<author></author>
<title>Environ. Sci. Technol.</title>
</host>
<title>Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and waste waters</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Liang</name>
</json:item>
<json:item>
<name>J.J. Morgan</name>
</json:item>
</author>
<host>
<volume>52</volume>
<pages>
<last>55</last>
<first>32</first>
</pages>
<author></author>
<title>Aquatic Sci.</title>
</host>
<title>Chemical aspects of iron oxide coagulation in water: laboratory studies and implications for natural systems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Liang</name>
</json:item>
<json:item>
<name>J.F. McCarthy</name>
</json:item>
<json:item>
<name>L.W. Jolley</name>
</json:item>
<json:item>
<name>J.A. McNabb</name>
</json:item>
<json:item>
<name>T.L. Mehlhorn</name>
</json:item>
</author>
<host>
<volume>57</volume>
<pages>
<last>1999</last>
<first>1987</first>
</pages>
<author></author>
<title>Geochim. Cosmochim. Acta</title>
</host>
<title>Iron dynamics: transformation of Fe(II)/Fe(III) during injection of natural organic matter in a sandy aquifer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.B. McBride</name>
</json:item>
<json:item>
<name>K.-H. Kung</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>448</last>
<first>441</first>
</pages>
<author></author>
<title>Environ. Toxicol. Chem.</title>
</host>
<title>Adsorption of phenol and substituted phenols by iron oxide</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.F. McCarthy</name>
</json:item>
<json:item>
<name>T.M. Williams</name>
</json:item>
<json:item>
<name>L. Liang</name>
</json:item>
<json:item>
<name>P.M. Jardine</name>
</json:item>
<json:item>
<name>A.V. Palumbo</name>
</json:item>
<json:item>
<name>L.W. Cooper</name>
</json:item>
<json:item>
<name>L.W. Jolley</name>
</json:item>
<json:item>
<name>D.L. Taylor</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>676</last>
<first>667</first>
</pages>
<author></author>
<title>Environ. Sci. Technol.</title>
</host>
<title>Mobility of natural organic matter in a sandy aquifer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.M. McKnight</name>
</json:item>
<json:item>
<name>K.E. Bencala</name>
</json:item>
<json:item>
<name>G.W. Zellweger</name>
</json:item>
<json:item>
<name>G.R. Aiken</name>
</json:item>
<json:item>
<name>G.L. Feder</name>
</json:item>
<json:item>
<name>K.A. Thorn</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>1396</last>
<first>1388</first>
</pages>
<author></author>
<title>Environ. Sci. Technol.</title>
</host>
<title>Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer Creek with the Snake river, Summit county, Colorado</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Principles of aquatic chemistry</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>E.M. Murphy</name>
</json:item>
<json:item>
<name>J.M. Zachara</name>
</json:item>
<json:item>
<name>S.C. Smith</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>1516</last>
<first>1507</first>
</pages>
<author></author>
<title>Environ. Sci. Technol.</title>
</host>
<title>Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.M. Murphy</name>
</json:item>
<json:item>
<name>J.M. Zachara</name>
</json:item>
<json:item>
<name>S.C. Smith</name>
</json:item>
<json:item>
<name>J.L. Phillips</name>
</json:item>
</author>
<host>
<volume>117/118</volume>
<pages>
<last>424</last>
<first>413</first>
</pages>
<author></author>
<title>Sci. Total Env.</title>
</host>
<title>The sorption of humic acids to mineral surfaces and their role in contaminant binding</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Ochs</name>
</json:item>
<json:item>
<name>B. Cosovic</name>
</json:item>
<json:item>
<name>W. Stumm</name>
</json:item>
</author>
<host>
<volume>58</volume>
<pages>
<first>693</first>
</pages>
<author></author>
<title>Geochim. Cosmochim. Acta</title>
</host>
<title>Coordinative and hydrophobic interaction of humic substances with hydrophilic Al2O3 and hydrophobic mercury surfaces</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.L. Parfltt</name>
</json:item>
<json:item>
<name>A.R. Fraser</name>
</json:item>
<json:item>
<name>V.C. Farmer</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>296</last>
<first>289</first>
</pages>
<author></author>
<title>J. Soil Sci.</title>
</host>
<title>Adsorption on hydrous oxides. III. fulvic acid and humic acid on geothite, gibbsite and imogolite</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Partyka</name>
</json:item>
<json:item>
<name>M. Lindheimer</name>
</json:item>
<json:item>
<name>S. Zaini</name>
</json:item>
<json:item>
<name>E. Keh</name>
</json:item>
<json:item>
<name>B. Brun</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>105</last>
<first>101</first>
</pages>
<author></author>
<title>Langmuir</title>
</host>
<title>Improved calorimetric method to investigate adsorption processes from solutions onto solid surfaces</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.A. Schlautman</name>
</json:item>
<json:item>
<name>J.J. Morgan</name>
</json:item>
</author>
<host>
<volume>58</volume>
<pages>
<last>4303</last>
<first>4293</first>
</pages>
<author></author>
<title>Geochim. Cosmochim. Acta</title>
</host>
<title>The adsorption of aquatic humic substances on colloidal-sized aluminum oxide particles: a study of the formation of organic coatings</title>
</json:item>
<json:item>
<author>
<json:item>
<name>U. Schwertmann</name>
</json:item>
<json:item>
<name>R.M. Taylor</name>
</json:item>
</author>
<host>
<pages>
<last>438</last>
<first>379</first>
</pages>
<author></author>
<title>Minerals in Soil Environments</title>
</host>
<title>Iron oxides</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.M. Selim</name>
</json:item>
<json:item>
<name>B. Buchter</name>
</json:item>
<json:item>
<name>L. Ma</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>1015</last>
<first>1004</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Amer. J.</title>
</host>
<title>Modeling the transport and retention of cadmium in soils: multireaction and multicomponent approaches</title>
</json:item>
<json:item>
<host>
<author></author>
<title>The surface chemistry of soils</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Stumm</name>
</json:item>
<json:item>
<name>R. Kummert</name>
</json:item>
<json:item>
<name>L. Sigg</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>312</last>
<first>291</first>
</pages>
<author></author>
<title>Croat. Chem. Acta.</title>
</host>
<title>A ligand exchange model for the adsorption of inorganic and organic ligands at hydrous oxide interfaces</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.L. Tejedor-Tejedor</name>
</json:item>
<json:item>
<name>E.C. Yost</name>
</json:item>
<json:item>
<name>M.A. Anderson</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>533</last>
<first>525</first>
</pages>
<author></author>
<title>Langmuir</title>
</host>
<title>Characterization of benzoic and phenolic complexes at the goethite/aqueous solution interface using cylindrical internal reflection Fourier transform infrared spectroscopy. 2. Bonding structures</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Tipping</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>199</last>
<first>191</first>
</pages>
<author></author>
<title>Geochim. Cosmochim. Acta</title>
</host>
<title>The adsorption of aquatic humic substances by iron oxides</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Tipping</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>89</last>
<first>81</first>
</pages>
<author></author>
<title>Chem. Geol.</title>
</host>
<title>The adsorption by geothite (a-Fe00H) of humic substances from three different lakes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.A. Vaccari</name>
</json:item>
<json:item>
<name>M. Kaouris</name>
</json:item>
</author>
<host>
<volume>A23</volume>
<pages>
<last>822</last>
<first>797</first>
</pages>
<author></author>
<title>J. Environ. Sci. Health</title>
</host>
<title>A model for irreversible adsorption hysteresis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.T. van Genuchten</name>
</json:item>
<json:item>
<name>J.M. Davidson</name>
</json:item>
<json:item>
<name>P.J. Wierenga</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>35</last>
<first>29</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Amer. J.</title>
</host>
<title>An evaluation of kinetic and equilibrium equations for the prediction of pesticide movement through porous media</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.A. Veith</name>
</json:item>
<json:item>
<name>G. Sposito</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>702</last>
<first>697</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Amer. J.</title>
</host>
<title>On the use of the Langmuir equation in the interpretation of “adsorption” phenomena</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.C. Yost</name>
</json:item>
<json:item>
<name>M.L. Tejedor-Tejedor</name>
</json:item>
<json:item>
<name>M.A. Anderson</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>828</last>
<first>822</first>
</pages>
<author></author>
<title>Environ. Sci. Technol.</title>
</host>
<title>In situ CIR-FTIR characterization of salicylate complexes at the geothite/aqueous solution interface</title>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>59</volume>
<pii>
<json:string>S0016-7037(00)X0026-9</json:string>
</pii>
<pages>
<last>229</last>
<first>219</first>
</pages>
<issn>
<json:string>0016-7037</json:string>
</issn>
<issue>2</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Geochimica et Cosmochimica Acta</title>
<publicationDate>1995</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geochemistry & geophysics</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
</categories>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1016/0016-7037(94)00282-Q</json:string>
</doi>
<id>0D78291329E7E77C9D68A692209B293934D43D0C</id>
<score>0.72234344</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/0D78291329E7E77C9D68A692209B293934D43D0C/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/0D78291329E7E77C9D68A692209B293934D43D0C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0D78291329E7E77C9D68A692209B293934D43D0C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Adsorption and desorption of different organic matter fractions on iron oxide</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1995</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Adsorption and desorption of different organic matter fractions on iron oxide</title>
<author xml:id="author-1">
<persName>
<forename type="first">Baohua</forename>
<surname>Gu</surname>
</persName>
<affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Jürgen</forename>
<surname>Schmitt</surname>
</persName>
<affiliation>Department of Hydrology, FbVI, University of Trier, 5500 Trier, Germany</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Zhihong</forename>
<surname>Chen</surname>
</persName>
<affiliation>Chemistry Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Liyuan</forename>
<surname>Liang</surname>
</persName>
<affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">John F.</forename>
<surname>McCarthy</surname>
</persName>
<affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Geochimica et Cosmochimica Acta</title>
<title level="j" type="abbrev">GCA</title>
<idno type="pISSN">0016-7037</idno>
<idno type="PII">S0016-7037(00)X0026-9</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1995"></date>
<biblScope unit="volume">59</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="219">219</biblScope>
<biblScope unit="page" to="229">229</biblScope>
</imprint>
</monogr>
<idno type="istex">0D78291329E7E77C9D68A692209B293934D43D0C</idno>
<idno type="DOI">10.1016/0016-7037(94)00282-Q</idno>
<idno type="PII">0016-7037(94)00282-Q</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1995</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Natural organic matter (NOM) is a complex mixture of different organic components (or fractions), yet few studies have examined the fractional adsorption of NOM on mineral surfaces. In this study, we fractionated NOM into hydrophobic (HbA) and hydrophilic (HL) subcomponents and two size fractions (with nominal molecular weights cut off at 3000 (3 K) dalton in an attempt to elucidate the adsorption and desorption mechanisms of NOM on iron oxide surfaces. Results indicated that, on a C weight basis, larger size HbA fraction was preferentially adsorbed (with a higher adsorption affinity and capacity) over smaller size HL fraction. However, on an O weight basis, less HbA fraction was adsorbed relative to the HL fraction, because HbA contained about 1.34 times more C but 0.82 times less O than the HL. These observations are consistent with results which indicate that only limited adsorption sites are available on the iron oxide surfaces and that the mechanism of HbA and HL adsorption was dominated by surface complexation-ligand exchange. FTIR and NMR spectroscopy and studies with several substituted benzoic acids/phenols further indicated that carboxyl and hydroxyl functional groups of these NOM fractions were actively involved in the reactions, and the steric arrangement of these functional groups may have played an important role in determining the adsorption of NOM fractions. Desorption studies indicated that the adsorbed NOM macromolecules on iron oxide surfaces were strongly bound at a given pH and ionic composition, resulting in a strong adsorption-desorption hysteresis. One possible explanation for the observed hysteresis is that the solution composition and equilibria are not identical between adsorption and desorption phases of the experiment because of preferential or selective adsorption of certain NOM fractions. This study implies that, due to the polydispersity of NOM, the competitive and fractional adsorption-desorption of NOM subcomponents must be considered in order to better predict NOM partitioning between the solution and solid phases and, therefore, the transport behavior of NOM in the subsurface soil environment.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1995">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/0D78291329E7E77C9D68A692209B293934D43D0C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>GCA</jid>
<aid>9400282Q</aid>
<ce:pii>0016-7037(94)00282-Q</ce:pii>
<ce:doi>10.1016/0016-7037(94)00282-Q</ce:doi>
<ce:copyright type="unknown" year="1995"></ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Article</ce:textfn>
</ce:dochead>
<ce:title>Adsorption and desorption of different organic matter fractions on iron oxide</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Baohua</ce:given-name>
<ce:surname>Gu</ce:surname>
<ce:ranking>
<ce:sup></ce:sup>
</ce:ranking>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Jürgen</ce:given-name>
<ce:surname>Schmitt</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Zhihong</ce:given-name>
<ce:surname>Chen</ce:surname>
<ce:cross-ref refid="AFF3">
<ce:sup>3</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Liyuan</ce:given-name>
<ce:surname>Liang</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>John F.</ce:given-name>
<ce:surname>McCarthy</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Department of Hydrology, FbVI, University of Trier, 5500 Trier, Germany</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>Chemistry Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="8" month="4" year="1994"></ce:date-received>
<ce:date-accepted day="7" month="9" year="1994"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Natural organic matter (NOM) is a complex mixture of different organic components (or fractions), yet few studies have examined the fractional adsorption of NOM on mineral surfaces. In this study, we fractionated NOM into hydrophobic (HbA) and hydrophilic (HL) subcomponents and two size fractions (with nominal molecular weights cut off at 3000 (3 K) dalton in an attempt to elucidate the adsorption and desorption mechanisms of NOM on iron oxide surfaces. Results indicated that, on a C weight basis, larger size HbA fraction was preferentially adsorbed (with a higher adsorption affinity and capacity) over smaller size HL fraction. However, on an O weight basis, less HbA fraction was adsorbed relative to the HL fraction, because HbA contained about 1.34 times more C but 0.82 times less O than the HL. These observations are consistent with results which indicate that only limited adsorption sites are available on the iron oxide surfaces and that the mechanism of HbA and HL adsorption was dominated by surface complexation-ligand exchange. FTIR and NMR spectroscopy and studies with several substituted benzoic acids/phenols further indicated that carboxyl and hydroxyl functional groups of these NOM fractions were actively involved in the reactions, and the steric arrangement of these functional groups may have played an important role in determining the adsorption of NOM fractions. Desorption studies indicated that the adsorbed NOM macromolecules on iron oxide surfaces were strongly bound at a given pH and ionic composition, resulting in a strong adsorption-desorption hysteresis. One possible explanation for the observed hysteresis is that the solution composition and equilibria are not identical between adsorption and desorption phases of the experiment because of preferential or selective adsorption of certain NOM fractions. This study implies that, due to the polydispersity of NOM, the competitive and fractional adsorption-desorption of NOM subcomponents must be considered in order to better predict NOM partitioning between the solution and solid phases and, therefore, the transport behavior of NOM in the subsurface soil environment.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Adsorption and desorption of different organic matter fractions on iron oxide</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Adsorption and desorption of different organic matter fractions on iron oxide</title>
</titleInfo>
<name type="personal">
<namePart type="given">Baohua</namePart>
<namePart type="family">Gu</namePart>
<affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jürgen</namePart>
<namePart type="family">Schmitt</namePart>
<affiliation>Department of Hydrology, FbVI, University of Trier, 5500 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihong</namePart>
<namePart type="family">Chen</namePart>
<affiliation>Chemistry Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liyuan</namePart>
<namePart type="family">Liang</namePart>
<affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John F.</namePart>
<namePart type="family">McCarthy</namePart>
<affiliation>Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1995</dateIssued>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Natural organic matter (NOM) is a complex mixture of different organic components (or fractions), yet few studies have examined the fractional adsorption of NOM on mineral surfaces. In this study, we fractionated NOM into hydrophobic (HbA) and hydrophilic (HL) subcomponents and two size fractions (with nominal molecular weights cut off at 3000 (3 K) dalton in an attempt to elucidate the adsorption and desorption mechanisms of NOM on iron oxide surfaces. Results indicated that, on a C weight basis, larger size HbA fraction was preferentially adsorbed (with a higher adsorption affinity and capacity) over smaller size HL fraction. However, on an O weight basis, less HbA fraction was adsorbed relative to the HL fraction, because HbA contained about 1.34 times more C but 0.82 times less O than the HL. These observations are consistent with results which indicate that only limited adsorption sites are available on the iron oxide surfaces and that the mechanism of HbA and HL adsorption was dominated by surface complexation-ligand exchange. FTIR and NMR spectroscopy and studies with several substituted benzoic acids/phenols further indicated that carboxyl and hydroxyl functional groups of these NOM fractions were actively involved in the reactions, and the steric arrangement of these functional groups may have played an important role in determining the adsorption of NOM fractions. Desorption studies indicated that the adsorbed NOM macromolecules on iron oxide surfaces were strongly bound at a given pH and ionic composition, resulting in a strong adsorption-desorption hysteresis. One possible explanation for the observed hysteresis is that the solution composition and equilibria are not identical between adsorption and desorption phases of the experiment because of preferential or selective adsorption of certain NOM fractions. This study implies that, due to the polydispersity of NOM, the competitive and fractional adsorption-desorption of NOM subcomponents must be considered in order to better predict NOM partitioning between the solution and solid phases and, therefore, the transport behavior of NOM in the subsurface soil environment.</abstract>
<note type="content">Section title: Article</note>
<relatedItem type="host">
<titleInfo>
<title>Geochimica et Cosmochimica Acta</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>GCA</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">199501</dateIssued>
</originInfo>
<identifier type="ISSN">0016-7037</identifier>
<identifier type="PII">S0016-7037(00)X0026-9</identifier>
<part>
<date>199501</date>
<detail type="volume">
<number>59</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>219</start>
<end>428</end>
</extent>
<extent unit="pages">
<start>219</start>
<end>229</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">0D78291329E7E77C9D68A692209B293934D43D0C</identifier>
<identifier type="DOI">10.1016/0016-7037(94)00282-Q</identifier>
<identifier type="PII">0016-7037(94)00282-Q</identifier>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001986 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001986 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0D78291329E7E77C9D68A692209B293934D43D0C
   |texte=   Adsorption and desorption of different organic matter fractions on iron oxide
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024