Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus

Identifieur interne : 001791 ( Istex/Corpus ); précédent : 001790; suivant : 001792

Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus

Auteurs : U. B Ssler ; H. Cruse ; H. J. Pflüger

Source :

RBID : ISTEX:FCBC289A2AE60A5849C2D08B84D79FD749ADD31B

Abstract

Abstract: In Part B the tendon of the femoral chordotonal organ (receptor tendon) of a fixed leg is sinusoidally moved with different amplitudes and frequencies. This causes movements of the tibia. Figures 1–3 show the amplitudes of the tibia movements and the phase-shifts between tibia-movement and stimulus. As it is known, that a tibia-movement of about 13° corresponds to a movement of the receptor-tendon of 100 μm, a bode-plot can be constructed. Figure 4 is the first part of a three-dimensional bode-plot (amplitude ratio) which additionally shows the values of amplitudes and frequencies, at which a phase shift of 180° can be observed. The system is stable, if the gain of the system is smaller than 1 at these values. A gain equal or larger than 1 causes instability. As it can be seen in Fig. 4, the system is stable, but it is not very far from instability. In Part C an inert mass is coupled to the tibia in order to enlarge the phase-shift. After a disturbance, which causes a higher gain of the system, intact legs often show long lasting oscillations of small amplitude (Fig. 6a, b). During these oscillations the other legs are not moved. Sometimes active movements of all legs occur. Active movements of the tested legs have larger amplitudes and are always followed by small-amplitude-oscillations. Legs with cut receptor tendons and intact legs of decerebrated animals never show small-amplitude-oscillations but only active movements. Therefore it is probable that the small-amplitude-oscillations are oscillations of the feedback-system. In Part C 4 another possible explanation for these oscillations is discussed: The forces, produced by the muscles, might be represented by a noise of broad bandwidth from which the mechanical system selects only a small band given by its resonance frequency. In order to test this hypothesis, electrophysiological experiments are done (C5): During slow-amplitude-oscillations of legs with an inert mass added a spike-burst can be observed in the flexor tibiae during extension and in the extensor tibiae during flexion of the femur-tibia-joint. Sometimes no activity in the extensor can be observed. This means, that the activity in the muscles has a phase-shift of about 180° relative to the movement of the tibia: These supports the hypothesis, that the small-amplitude-oscillations are oscillations of the control system of the “Kniesehnenreflex”. In Part D it is discussed, whether the rocking-movements of the whole animal could be explained by oscillations of control systems. It is, deduced, that if this hypothesis is true, the control system in the coxa-trochanter-joint must be as near to instability as the control system of the “Kniesehnenreflex”.

Url:
DOI: 10.1007/BF00270656

Links to Exploration step

ISTEX:FCBC289A2AE60A5849C2D08B84D79FD749ADD31B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="de">Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus</title>
<author>
<name sortKey="B Ssler, U" sort="B Ssler, U" uniqKey="B Ssler U" first="U." last="B Ssler">U. B Ssler</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cruse, H" sort="Cruse, H" uniqKey="Cruse H" first="H." last="Cruse">H. Cruse</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pfluger, H J" sort="Pfluger, H J" uniqKey="Pfluger H" first="H. J." last="Pflüger">H. J. Pflüger</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FCBC289A2AE60A5849C2D08B84D79FD749ADD31B</idno>
<date when="1974" year="1974">1974</date>
<idno type="doi">10.1007/BF00270656</idno>
<idno type="url">https://api.istex.fr/document/FCBC289A2AE60A5849C2D08B84D79FD749ADD31B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001791</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001791</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="de">Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus</title>
<author>
<name sortKey="B Ssler, U" sort="B Ssler, U" uniqKey="B Ssler U" first="U." last="B Ssler">U. B Ssler</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cruse, H" sort="Cruse, H" uniqKey="Cruse H" first="H." last="Cruse">H. Cruse</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pfluger, H J" sort="Pfluger, H J" uniqKey="Pfluger H" first="H. J." last="Pflüger">H. J. Pflüger</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Kybernetik</title>
<title level="j" type="abbrev">Kybernetik</title>
<idno type="ISSN">0023-5946</idno>
<idno type="eISSN">1432-0770</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1974-06-01">1974-06-01</date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="117">117</biblScope>
<biblScope unit="page" to="125">125</biblScope>
</imprint>
<idno type="ISSN">0023-5946</idno>
</series>
<idno type="istex">FCBC289A2AE60A5849C2D08B84D79FD749ADD31B</idno>
<idno type="DOI">10.1007/BF00270656</idno>
<idno type="ArticleID">BF00270656</idno>
<idno type="ArticleID">Art7</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0023-5946</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="de">de</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: In Part B the tendon of the femoral chordotonal organ (receptor tendon) of a fixed leg is sinusoidally moved with different amplitudes and frequencies. This causes movements of the tibia. Figures 1–3 show the amplitudes of the tibia movements and the phase-shifts between tibia-movement and stimulus. As it is known, that a tibia-movement of about 13° corresponds to a movement of the receptor-tendon of 100 μm, a bode-plot can be constructed. Figure 4 is the first part of a three-dimensional bode-plot (amplitude ratio) which additionally shows the values of amplitudes and frequencies, at which a phase shift of 180° can be observed. The system is stable, if the gain of the system is smaller than 1 at these values. A gain equal or larger than 1 causes instability. As it can be seen in Fig. 4, the system is stable, but it is not very far from instability. In Part C an inert mass is coupled to the tibia in order to enlarge the phase-shift. After a disturbance, which causes a higher gain of the system, intact legs often show long lasting oscillations of small amplitude (Fig. 6a, b). During these oscillations the other legs are not moved. Sometimes active movements of all legs occur. Active movements of the tested legs have larger amplitudes and are always followed by small-amplitude-oscillations. Legs with cut receptor tendons and intact legs of decerebrated animals never show small-amplitude-oscillations but only active movements. Therefore it is probable that the small-amplitude-oscillations are oscillations of the feedback-system. In Part C 4 another possible explanation for these oscillations is discussed: The forces, produced by the muscles, might be represented by a noise of broad bandwidth from which the mechanical system selects only a small band given by its resonance frequency. In order to test this hypothesis, electrophysiological experiments are done (C5): During slow-amplitude-oscillations of legs with an inert mass added a spike-burst can be observed in the flexor tibiae during extension and in the extensor tibiae during flexion of the femur-tibia-joint. Sometimes no activity in the extensor can be observed. This means, that the activity in the muscles has a phase-shift of about 180° relative to the movement of the tibia: These supports the hypothesis, that the small-amplitude-oscillations are oscillations of the control system of the “Kniesehnenreflex”. In Part D it is discussed, whether the rocking-movements of the whole animal could be explained by oscillations of control systems. It is, deduced, that if this hypothesis is true, the control system in the coxa-trochanter-joint must be as near to instability as the control system of the “Kniesehnenreflex”.</div>
</front>
</TEI>
<istex>
<corpusName>springer</corpusName>
<author>
<json:item>
<name>U. Bässler</name>
<affiliations>
<json:string>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>H. Cruse</name>
<affiliations>
<json:string>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>H. -J. Pflüger</name>
<affiliations>
<json:string>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>BF00270656</json:string>
<json:string>Art7</json:string>
</articleId>
<language>
<json:string>ger</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: In Part B the tendon of the femoral chordotonal organ (receptor tendon) of a fixed leg is sinusoidally moved with different amplitudes and frequencies. This causes movements of the tibia. Figures 1–3 show the amplitudes of the tibia movements and the phase-shifts between tibia-movement and stimulus. As it is known, that a tibia-movement of about 13° corresponds to a movement of the receptor-tendon of 100 μm, a bode-plot can be constructed. Figure 4 is the first part of a three-dimensional bode-plot (amplitude ratio) which additionally shows the values of amplitudes and frequencies, at which a phase shift of 180° can be observed. The system is stable, if the gain of the system is smaller than 1 at these values. A gain equal or larger than 1 causes instability. As it can be seen in Fig. 4, the system is stable, but it is not very far from instability. In Part C an inert mass is coupled to the tibia in order to enlarge the phase-shift. After a disturbance, which causes a higher gain of the system, intact legs often show long lasting oscillations of small amplitude (Fig. 6a, b). During these oscillations the other legs are not moved. Sometimes active movements of all legs occur. Active movements of the tested legs have larger amplitudes and are always followed by small-amplitude-oscillations. Legs with cut receptor tendons and intact legs of decerebrated animals never show small-amplitude-oscillations but only active movements. Therefore it is probable that the small-amplitude-oscillations are oscillations of the feedback-system. In Part C 4 another possible explanation for these oscillations is discussed: The forces, produced by the muscles, might be represented by a noise of broad bandwidth from which the mechanical system selects only a small band given by its resonance frequency. In order to test this hypothesis, electrophysiological experiments are done (C5): During slow-amplitude-oscillations of legs with an inert mass added a spike-burst can be observed in the flexor tibiae during extension and in the extensor tibiae during flexion of the femur-tibia-joint. Sometimes no activity in the extensor can be observed. This means, that the activity in the muscles has a phase-shift of about 180° relative to the movement of the tibia: These supports the hypothesis, that the small-amplitude-oscillations are oscillations of the control system of the “Kniesehnenreflex”. In Part D it is discussed, whether the rocking-movements of the whole animal could be explained by oscillations of control systems. It is, deduced, that if this hypothesis is true, the control system in the coxa-trochanter-joint must be as near to instability as the control system of the “Kniesehnenreflex”.</abstract>
<qualityIndicators>
<score>7.432</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 810 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>2721</abstractCharCount>
<pdfWordCount>4432</pdfWordCount>
<pdfCharCount>30896</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>429</abstractWordCount>
</qualityIndicators>
<title>Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>U B~issler</name>
</json:item>
<json:item>
<name> B~</name>
</json:item>
<json:item>
<name>U Ssler</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>50</last>
<first>32</first>
</pages>
<issue>12</issue>
<author></author>
<title>Kybernetik Kybernetik</title>
<publicationDate>1972</publicationDate>
</host>
<title>Der ,Kniesehnenreflex" bei Carausius morosus: Obergangsfunktion und Frequenzgang Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus: Reaktionen auf passive Bewegungen der Tibia</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>U B~tssler</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>53</last>
<first>38</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1973</publicationDate>
</host>
<title>Zur Steuerung aktiver Bewegungen des Femur-Tibia- Gelenkes der Stabheuschrecke Carausius morosus</title>
<publicationDate>1973</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>N,M Kheil</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>128</last>
<first>127</first>
</pages>
<author></author>
<title>Entomol. Z</title>
<publicationDate>1900</publicationDate>
</host>
<title>Biologisches fiber Bacillus rossii</title>
<publicationDate>1900</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>G Rau</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>16</last>
<first>1</first>
</pages>
<author></author>
<title>Anthropotechn. Mitt</title>
<publicationDate>1973</publicationDate>
</host>
<title>Einige Modelliiberlegungen zur Natur des normalen Fingertremors</title>
<publicationDate>1973</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>O Reissner</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>95</last>
<first>87</first>
</pages>
<issue>55</issue>
<author></author>
<title>Z. wiss. Insekt. biol</title>
<publicationDate>1909</publicationDate>
</host>
<title>Biologische Beobachtungen an der indischen Stabheuschrecke Dixippus morosus</title>
<publicationDate>1909</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>R Rupprecht</name>
</json:item>
</author>
<host>
<pages>
<last>1438</last>
<first>1437</first>
</pages>
<author></author>
<title>Bewegungsmimikry bei Carausius morosus Br. (Phasmida)</title>
<publicationDate>1971</publicationDate>
</host>
<publicationDate>1971</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>F Steiniger</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>708</last>
<first>591</first>
</pages>
<author></author>
<title>Z. Morph. u. Okol. Tiere Prof. Dr. U. B~issler Dr. H. Cruse H. J. Pflfiger Fachbereich Biologie der Universit~it D-675 Kaiserslautern</title>
<publicationDate>1933</publicationDate>
</host>
<title>Die Erscheinungen der Katalepsie bei Stabheuschrecken und Wasserl~iufern</title>
<publicationDate>1933</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>/ Bundesrepublik Deutschland Verantwortlich F</name>
</json:item>
<json:item>
<name>Textteih Jr Den</name>
</json:item>
<json:item>
<name> Prof</name>
</json:item>
<json:item>
<name>W Dr</name>
</json:item>
<json:item>
<name>D-7400 Reichardt</name>
</json:item>
<json:item>
<name>Max-Planck-Lnstitut Fiir Biologische Tiibingen</name>
</json:item>
<json:item>
<name> Kybernetik</name>
</json:item>
</author>
<host>
<pages>
<last>030</last>
<first>237</first>
</pages>
<author></author>
<title>Spemannstr. 38. -Verantwortlich fiir den Anzeigenteil: L. Siegel</title>
<publicationDate>1974</publicationDate>
</host>
<publicationDate>1974</publicationDate>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>15</volume>
<pages>
<last>125</last>
<first>117</first>
</pages>
<issn>
<json:string>0023-5946</json:string>
</issn>
<issue>2</issue>
<subject>
<json:item>
<value>Neurosciences</value>
</json:item>
<json:item>
<value>Zoology</value>
</json:item>
</subject>
<journalId>
<json:string>422</json:string>
</journalId>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1432-0770</json:string>
</eissn>
<title>Kybernetik</title>
<publicationDate>1974</publicationDate>
<copyrightDate>1974</copyrightDate>
</host>
<publicationDate>1974</publicationDate>
<copyrightDate>1974</copyrightDate>
<doi>
<json:string>10.1007/BF00270656</json:string>
</doi>
<id>FCBC289A2AE60A5849C2D08B84D79FD749ADD31B</id>
<score>0.5632693</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/FCBC289A2AE60A5849C2D08B84D79FD749ADD31B/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/FCBC289A2AE60A5849C2D08B84D79FD749ADD31B/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/FCBC289A2AE60A5849C2D08B84D79FD749ADD31B/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="de">Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus</title>
<title level="a" type="sub" xml:lang="de">Untersuchungen zur Stabilität des Systems im inaktiven Tier</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<availability>
<p>Springer-Verlag, 1974</p>
</availability>
<date>1973-12-08</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="de">Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus</title>
<title level="a" type="sub" xml:lang="de">Untersuchungen zur Stabilität des Systems im inaktiven Tier</title>
<author xml:id="author-1">
<persName>
<forename type="first">U.</forename>
<surname>Bässler</surname>
</persName>
<affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">H.</forename>
<surname>Cruse</surname>
</persName>
<affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">H.</forename>
<surname>Pflüger</surname>
</persName>
<affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Kybernetik</title>
<title level="j" type="abbrev">Kybernetik</title>
<idno type="journal-ID">422</idno>
<idno type="pISSN">0023-5946</idno>
<idno type="eISSN">1432-0770</idno>
<idno type="issue-article-count">7</idno>
<idno type="volume-issue-count">4</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1974-06-01"></date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="117">117</biblScope>
<biblScope unit="page" to="125">125</biblScope>
</imprint>
</monogr>
<idno type="istex">FCBC289A2AE60A5849C2D08B84D79FD749ADD31B</idno>
<idno type="DOI">10.1007/BF00270656</idno>
<idno type="ArticleID">BF00270656</idno>
<idno type="ArticleID">Art7</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1973-12-08</date>
</creation>
<langUsage>
<language ident="de">de</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: In Part B the tendon of the femoral chordotonal organ (receptor tendon) of a fixed leg is sinusoidally moved with different amplitudes and frequencies. This causes movements of the tibia. Figures 1–3 show the amplitudes of the tibia movements and the phase-shifts between tibia-movement and stimulus. As it is known, that a tibia-movement of about 13° corresponds to a movement of the receptor-tendon of 100 μm, a bode-plot can be constructed. Figure 4 is the first part of a three-dimensional bode-plot (amplitude ratio) which additionally shows the values of amplitudes and frequencies, at which a phase shift of 180° can be observed. The system is stable, if the gain of the system is smaller than 1 at these values. A gain equal or larger than 1 causes instability. As it can be seen in Fig. 4, the system is stable, but it is not very far from instability. In Part C an inert mass is coupled to the tibia in order to enlarge the phase-shift. After a disturbance, which causes a higher gain of the system, intact legs often show long lasting oscillations of small amplitude (Fig. 6a, b). During these oscillations the other legs are not moved. Sometimes active movements of all legs occur. Active movements of the tested legs have larger amplitudes and are always followed by small-amplitude-oscillations. Legs with cut receptor tendons and intact legs of decerebrated animals never show small-amplitude-oscillations but only active movements. Therefore it is probable that the small-amplitude-oscillations are oscillations of the feedback-system. In Part C 4 another possible explanation for these oscillations is discussed: The forces, produced by the muscles, might be represented by a noise of broad bandwidth from which the mechanical system selects only a small band given by its resonance frequency. In order to test this hypothesis, electrophysiological experiments are done (C5): During slow-amplitude-oscillations of legs with an inert mass added a spike-burst can be observed in the flexor tibiae during extension and in the extensor tibiae during flexion of the femur-tibia-joint. Sometimes no activity in the extensor can be observed. This means, that the activity in the muscles has a phase-shift of about 180° relative to the movement of the tibia: These supports the hypothesis, that the small-amplitude-oscillations are oscillations of the control system of the “Kniesehnenreflex”. In Part D it is discussed, whether the rocking-movements of the whole animal could be explained by oscillations of control systems. It is, deduced, that if this hypothesis is true, the control system in the coxa-trochanter-joint must be as near to instability as the control system of the “Kniesehnenreflex”.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Biomedicine</head>
<item>
<term>Neurosciences</term>
</item>
<item>
<term>Zoology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1973-12-08">Created</change>
<change when="1974-06-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-11-23">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-01-21">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/FCBC289A2AE60A5849C2D08B84D79FD749ADD31B/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Springer, Publisher found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer-Verlag</PublisherName>
<PublisherLocation>Berlin/Heidelberg</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>422</JournalID>
<JournalPrintISSN>0023-5946</JournalPrintISSN>
<JournalElectronicISSN>1432-0770</JournalElectronicISSN>
<JournalTitle>Kybernetik</JournalTitle>
<JournalAbbreviatedTitle>Kybernetik</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Type="Primary">Biomedicine</JournalSubject>
<JournalSubject Type="Secondary">Neurosciences</JournalSubject>
<JournalSubject Type="Secondary">Zoology</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo VolumeType="Regular" TocLevels="0">
<VolumeIDStart>15</VolumeIDStart>
<VolumeIDEnd>15</VolumeIDEnd>
<VolumeIssueCount>4</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular">
<IssueInfo TocLevels="0">
<IssueIDStart>2</IssueIDStart>
<IssueIDEnd>2</IssueIDEnd>
<IssueArticleCount>7</IssueArticleCount>
<IssueHistory>
<CoverDate>
<DateString>21. VI. 1974</DateString>
<Year>1974</Year>
<Month>6</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Springer-Verlag</CopyrightHolderName>
<CopyrightYear>1974</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="Art7">
<ArticleInfo Language="De" ArticleType="OriginalPaper" NumberingStyle="Unnumbered" TocLevels="0" ContainsESM="No">
<ArticleID>BF00270656</ArticleID>
<ArticleDOI>10.1007/BF00270656</ArticleDOI>
<ArticleSequenceNumber>7</ArticleSequenceNumber>
<ArticleTitle Language="De">Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke
<Emphasis Type="Italic">Carausius morosus</Emphasis>
</ArticleTitle>
<ArticleSubTitle Language="De">Untersuchungen zur Stabilität des Systems im inaktiven Tier</ArticleSubTitle>
<ArticleFirstPage>117</ArticleFirstPage>
<ArticleLastPage>125</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2004</Year>
<Month>8</Month>
<Day>11</Day>
</RegistrationDate>
<Received>
<Year>1973</Year>
<Month>12</Month>
<Day>8</Day>
</Received>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Springer-Verlag</CopyrightHolderName>
<CopyrightYear>1974</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
<ArticleContext>
<JournalID>422</JournalID>
<VolumeIDStart>15</VolumeIDStart>
<VolumeIDEnd>15</VolumeIDEnd>
<IssueIDStart>2</IssueIDStart>
<IssueIDEnd>2</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>U.</GivenName>
<FamilyName>Bässler</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>H.</GivenName>
<FamilyName>Cruse</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>H.</GivenName>
<GivenName>-J.</GivenName>
<FamilyName>Pflüger</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgName>Fachbereich Biologie der Universität Trier-Kaiserslautern</OrgName>
<OrgAddress>
<Country>Germany</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>In Part B the tendon of the femoral chordotonal organ (receptor tendon) of a fixed leg is sinusoidally moved with different amplitudes and frequencies. This causes movements of the tibia. Figures 1–3 show the amplitudes of the tibia movements and the phase-shifts between tibia-movement and stimulus. As it is known, that a tibia-movement of about 13° corresponds to a movement of the receptor-tendon of 100 μm, a bode-plot can be constructed. Figure 4 is the first part of a three-dimensional bode-plot (amplitude ratio) which additionally shows the values of amplitudes and frequencies, at which a phase shift of 180° can be observed. The system is stable, if the gain of the system is smaller than 1 at these values. A gain equal or larger than 1 causes instability. As it can be seen in Fig. 4, the system is stable, but it is not very far from instability. In Part C an inert mass is coupled to the tibia in order to enlarge the phase-shift. After a disturbance, which causes a higher gain of the system, intact legs often show long lasting oscillations of small amplitude (Fig. 6a, b). During these oscillations the other legs are not moved. Sometimes active movements of all legs occur. Active movements of the tested legs have larger amplitudes and are always followed by small-amplitude-oscillations. Legs with cut receptor tendons and intact legs of decerebrated animals never show small-amplitude-oscillations but only active movements. Therefore it is probable that the small-amplitude-oscillations are oscillations of the feedback-system. In Part C 4 another possible explanation for these oscillations is discussed: The forces, produced by the muscles, might be represented by a noise of broad bandwidth from which the mechanical system selects only a small band given by its resonance frequency. In order to test this hypothesis, electrophysiological experiments are done (C5): During slow-amplitude-oscillations of legs with an inert mass added a spike-burst can be observed in the flexor tibiae during extension and in the extensor tibiae during flexion of the femur-tibia-joint. Sometimes no activity in the extensor can be observed. This means, that the activity in the muscles has a phase-shift of about 180° relative to the movement of the tibia: These supports the hypothesis, that the small-amplitude-oscillations are oscillations of the control system of the “Kniesehnenreflex”. In Part D it is discussed, whether the rocking-movements of the whole animal could be explained by oscillations of control systems. It is, deduced, that if this hypothesis is true, the control system in the coxa-trochanter-joint must be as near to instability as the control system of the “Kniesehnenreflex”.</Para>
</Abstract>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="de">
<title>Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus</title>
<subTitle>Untersuchungen zur Stabilität des Systems im inaktiven Tier</subTitle>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="de">
<title>Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus</title>
<subTitle>Untersuchungen zur Stabilität des Systems im inaktiven Tier</subTitle>
</titleInfo>
<name type="personal">
<namePart type="given">U.</namePart>
<namePart type="family">Bässler</namePart>
<affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="family">Cruse</namePart>
<affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="given">-J.</namePart>
<namePart type="family">Pflüger</namePart>
<affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper"></genre>
<originInfo>
<publisher>Springer-Verlag</publisher>
<place>
<placeTerm type="text">Berlin/Heidelberg</placeTerm>
</place>
<dateCreated encoding="w3cdtf">1973-12-08</dateCreated>
<dateIssued encoding="w3cdtf">1974-06-01</dateIssued>
<copyrightDate encoding="w3cdtf">1974</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">de</languageTerm>
<languageTerm type="code" authority="iso639-2b">ger</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Abstract: In Part B the tendon of the femoral chordotonal organ (receptor tendon) of a fixed leg is sinusoidally moved with different amplitudes and frequencies. This causes movements of the tibia. Figures 1–3 show the amplitudes of the tibia movements and the phase-shifts between tibia-movement and stimulus. As it is known, that a tibia-movement of about 13° corresponds to a movement of the receptor-tendon of 100 μm, a bode-plot can be constructed. Figure 4 is the first part of a three-dimensional bode-plot (amplitude ratio) which additionally shows the values of amplitudes and frequencies, at which a phase shift of 180° can be observed. The system is stable, if the gain of the system is smaller than 1 at these values. A gain equal or larger than 1 causes instability. As it can be seen in Fig. 4, the system is stable, but it is not very far from instability. In Part C an inert mass is coupled to the tibia in order to enlarge the phase-shift. After a disturbance, which causes a higher gain of the system, intact legs often show long lasting oscillations of small amplitude (Fig. 6a, b). During these oscillations the other legs are not moved. Sometimes active movements of all legs occur. Active movements of the tested legs have larger amplitudes and are always followed by small-amplitude-oscillations. Legs with cut receptor tendons and intact legs of decerebrated animals never show small-amplitude-oscillations but only active movements. Therefore it is probable that the small-amplitude-oscillations are oscillations of the feedback-system. In Part C 4 another possible explanation for these oscillations is discussed: The forces, produced by the muscles, might be represented by a noise of broad bandwidth from which the mechanical system selects only a small band given by its resonance frequency. In order to test this hypothesis, electrophysiological experiments are done (C5): During slow-amplitude-oscillations of legs with an inert mass added a spike-burst can be observed in the flexor tibiae during extension and in the extensor tibiae during flexion of the femur-tibia-joint. Sometimes no activity in the extensor can be observed. This means, that the activity in the muscles has a phase-shift of about 180° relative to the movement of the tibia: These supports the hypothesis, that the small-amplitude-oscillations are oscillations of the control system of the “Kniesehnenreflex”. In Part D it is discussed, whether the rocking-movements of the whole animal could be explained by oscillations of control systems. It is, deduced, that if this hypothesis is true, the control system in the coxa-trochanter-joint must be as near to instability as the control system of the “Kniesehnenreflex”.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Kybernetik</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Kybernetik</title>
</titleInfo>
<genre type="journal" displayLabel="Archive Journal"></genre>
<originInfo>
<dateIssued encoding="w3cdtf">1974-06-01</dateIssued>
<copyrightDate encoding="w3cdtf">1974</copyrightDate>
</originInfo>
<subject>
<genre>Biomedicine</genre>
<topic>Neurosciences</topic>
<topic>Zoology</topic>
</subject>
<identifier type="ISSN">0023-5946</identifier>
<identifier type="eISSN">1432-0770</identifier>
<identifier type="JournalID">422</identifier>
<identifier type="IssueArticleCount">7</identifier>
<identifier type="VolumeIssueCount">4</identifier>
<part>
<date>1974</date>
<detail type="volume">
<number>15</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>117</start>
<end>125</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag, 1974</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">FCBC289A2AE60A5849C2D08B84D79FD749ADD31B</identifier>
<identifier type="DOI">10.1007/BF00270656</identifier>
<identifier type="ArticleID">BF00270656</identifier>
<identifier type="ArticleID">Art7</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer-Verlag, 1974</accessCondition>
<recordInfo>
<recordContentSource>SPRINGER</recordContentSource>
<recordOrigin>Springer-Verlag, 1974</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001791 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001791 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:FCBC289A2AE60A5849C2D08B84D79FD749ADD31B
   |texte=   Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024