Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Use of near‐infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest‐floor material in soils: usefulness of a genetic algorithm

Identifieur interne : 001707 ( Istex/Corpus ); précédent : 001706; suivant : 001708

Use of near‐infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest‐floor material in soils: usefulness of a genetic algorithm

Auteurs : Michael Vohland ; Kerstin Michel ; Bernard Ludwig

Source :

RBID : ISTEX:A57092B3D2E142EFAF62E095A8AC0B259D7DCA44

English descriptors

Abstract

Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infrared spectroscopy (NIRS) for a prediction of C and N from char and forest‐floor Oa material in soils using either a partial least squares (PLS) method or a GA‐PLS approach and (2) to discuss the mechanisms of GA feature selection for the examined constituents. Calibration and validation were carried out for measured reflectance spectra in the visible and near‐IR region (400–2500 nm) on an existing set of 432 artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals), and forest‐floor Oa material. For all constituents (total C and N, C and N from all coals and from the Oa material, C derived from mixed coal, charcoal, lignite, and anthracite), the GA‐PLS approach was superior over the full‐spectrum PLS method. The RPD values (ratio of standard deviation of the laboratory results to standard error of prediction) ranged from 2.4 to 5.1 in the validation and indicated a better category of prediction for three constituents: “approximate quantitative” instead of a “distinction between high and low” for C derived from mixed coal and “good” instead of “approximate quantitative” for C and N derived from all coals. Overall, this study indicates that the approach using GA may have a greater potential than the PLS method in NIRS.

Url:
DOI: 10.1002/jpln.201000226

Links to Exploration step

ISTEX:A57092B3D2E142EFAF62E095A8AC0B259D7DCA44

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Use of near‐infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest‐floor material in soils: usefulness of a genetic algorithm</title>
<author>
<name sortKey="Vohland, Michael" sort="Vohland, Michael" uniqKey="Vohland M" first="Michael" last="Vohland">Michael Vohland</name>
<affiliation>
<mods:affiliation>Remote Sensing Department, University of Trier, Campus II, 54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Michel, Kerstin" sort="Michel, Kerstin" uniqKey="Michel K" first="Kerstin" last="Michel">Kerstin Michel</name>
<affiliation>
<mods:affiliation>Unit of Soil Biology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff‐Gudent‐Weg 8, 1131 Wien, Austria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ludwig, Bernard" sort="Ludwig, Bernard" uniqKey="Ludwig B" first="Bernard" last="Ludwig">Bernard Ludwig</name>
<affiliation>
<mods:affiliation>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A57092B3D2E142EFAF62E095A8AC0B259D7DCA44</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/jpln.201000226</idno>
<idno type="url">https://api.istex.fr/document/A57092B3D2E142EFAF62E095A8AC0B259D7DCA44/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001707</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001707</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Use of near‐infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest‐floor material in soils: usefulness of a genetic algorithm</title>
<author>
<name sortKey="Vohland, Michael" sort="Vohland, Michael" uniqKey="Vohland M" first="Michael" last="Vohland">Michael Vohland</name>
<affiliation>
<mods:affiliation>Remote Sensing Department, University of Trier, Campus II, 54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Michel, Kerstin" sort="Michel, Kerstin" uniqKey="Michel K" first="Kerstin" last="Michel">Kerstin Michel</name>
<affiliation>
<mods:affiliation>Unit of Soil Biology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff‐Gudent‐Weg 8, 1131 Wien, Austria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ludwig, Bernard" sort="Ludwig, Bernard" uniqKey="Ludwig B" first="Bernard" last="Ludwig">Bernard Ludwig</name>
<affiliation>
<mods:affiliation>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Plant Nutrition and Soil Science</title>
<title level="j" type="abbrev">Z. Pflanzenernähr. Bodenk.</title>
<idno type="ISSN">1436-8730</idno>
<idno type="eISSN">1522-2624</idno>
<imprint>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2011-10">2011-10</date>
<biblScope unit="volume">174</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="695">695</biblScope>
<biblScope unit="page" to="701">701</biblScope>
</imprint>
<idno type="ISSN">1436-8730</idno>
</series>
<idno type="istex">A57092B3D2E142EFAF62E095A8AC0B259D7DCA44</idno>
<idno type="DOI">10.1002/jpln.201000226</idno>
<idno type="ArticleID">JPLN201000226</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1436-8730</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>NIR spectroscopy</term>
<term>char</term>
<term>genetic algorithm</term>
<term>partial least squares regression</term>
<term>soil organic carbon</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infrared spectroscopy (NIRS) for a prediction of C and N from char and forest‐floor Oa material in soils using either a partial least squares (PLS) method or a GA‐PLS approach and (2) to discuss the mechanisms of GA feature selection for the examined constituents. Calibration and validation were carried out for measured reflectance spectra in the visible and near‐IR region (400–2500 nm) on an existing set of 432 artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals), and forest‐floor Oa material. For all constituents (total C and N, C and N from all coals and from the Oa material, C derived from mixed coal, charcoal, lignite, and anthracite), the GA‐PLS approach was superior over the full‐spectrum PLS method. The RPD values (ratio of standard deviation of the laboratory results to standard error of prediction) ranged from 2.4 to 5.1 in the validation and indicated a better category of prediction for three constituents: “approximate quantitative” instead of a “distinction between high and low” for C derived from mixed coal and “good” instead of “approximate quantitative” for C and N derived from all coals. Overall, this study indicates that the approach using GA may have a greater potential than the PLS method in NIRS.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Michael Vohland</name>
<affiliations>
<json:string>Remote Sensing Department, University of Trier, Campus II, 54286 Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kerstin Michel</name>
<affiliations>
<json:string>Unit of Soil Biology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff‐Gudent‐Weg 8, 1131 Wien, Austria</json:string>
</affiliations>
</json:item>
<json:item>
<name>Bernard Ludwig</name>
<affiliations>
<json:string>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</json:string>
<json:string>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>char</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>genetic algorithm</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>NIR spectroscopy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>partial least squares regression</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soil organic carbon</value>
</json:item>
</subject>
<articleId>
<json:string>JPLN201000226</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infrared spectroscopy (NIRS) for a prediction of C and N from char and forest‐floor Oa material in soils using either a partial least squares (PLS) method or a GA‐PLS approach and (2) to discuss the mechanisms of GA feature selection for the examined constituents. Calibration and validation were carried out for measured reflectance spectra in the visible and near‐IR region (400–2500 nm) on an existing set of 432 artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals), and forest‐floor Oa material. For all constituents (total C and N, C and N from all coals and from the Oa material, C derived from mixed coal, charcoal, lignite, and anthracite), the GA‐PLS approach was superior over the full‐spectrum PLS method. The RPD values (ratio of standard deviation of the laboratory results to standard error of prediction) ranged from 2.4 to 5.1 in the validation and indicated a better category of prediction for three constituents: “approximate quantitative” instead of a “distinction between high and low” for C derived from mixed coal and “good” instead of “approximate quantitative” for C and N derived from all coals. Overall, this study indicates that the approach using GA may have a greater potential than the PLS method in NIRS.</abstract>
<qualityIndicators>
<score>7.217</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 794 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1584</abstractCharCount>
<pdfWordCount>4217</pdfWordCount>
<pdfCharCount>26378</pdfCharCount>
<pdfPageCount>7</pdfPageCount>
<abstractWordCount>250</abstractWordCount>
</qualityIndicators>
<title>Use of near‐infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest‐floor material in soils: usefulness of a genetic algorithm</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>G. Barber</name>
</json:item>
<json:item>
<name>D. Givens</name>
</json:item>
<json:item>
<name>M. Kridis</name>
</json:item>
<json:item>
<name>N. Offer</name>
</json:item>
<json:item>
<name>I. Murray</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>128</last>
<first>115</first>
</pages>
<author></author>
<title>Anim. Feed Sci. Tech.</title>
</host>
<title>Prediction of the organic matter digestibility of grass silage.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Ben‐Dor</name>
</json:item>
<json:item>
<name>A. Banin</name>
</json:item>
</author>
<host>
<volume>59</volume>
<pages>
<last>372</last>
<first>364</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Am. J.</title>
</host>
<title>Near‐infrared analysis as a rapid method to simultaneously evaluate several soil properties.</title>
</json:item>
<json:item>
<host>
<author></author>
<title>BMLFUW (Bundesministerium für Land‐ und Forstwirtschaft, Umwelt und Wasserwirtschaft/Federal Ministry of Agriculture, Forestry, Environmental and Water Management) (2005): AEV Kohleverarbeitung. Vienna, Austria, p. 18.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M. W. Borer</name>
</json:item>
<json:item>
<name>X. J. Zhou</name>
</json:item>
<json:item>
<name>D. M. Hays</name>
</json:item>
<json:item>
<name>J. D. Hofer</name>
</json:item>
<json:item>
<name>K. C. White</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>650</last>
<first>641</first>
</pages>
<author></author>
<title>J. Pharma. Biomed. Anal.</title>
</host>
<title>Evaluation of key sources of variability in the measurement of pharmaceutical drug products by near infrared reflectance spectroscopy.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. A. Bowers</name>
</json:item>
<json:item>
<name>R. J. Hanks</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>138</last>
<first>130</first>
</pages>
<author></author>
<title>Soil Sci.</title>
</host>
<title>Reflection of radiant energy from soils.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Cécillon</name>
</json:item>
<json:item>
<name>B. G. Barthès</name>
</json:item>
<json:item>
<name>C. Gomez</name>
</json:item>
<json:item>
<name>D. Ertlen</name>
</json:item>
<json:item>
<name>V. Genot</name>
</json:item>
<json:item>
<name>M. Hedde</name>
</json:item>
<json:item>
<name>A. Stevens</name>
</json:item>
<json:item>
<name>J. J. Brun</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>784</last>
<first>770</first>
</pages>
<author></author>
<title>Eur. J. Soil Sci.</title>
</host>
<title>Assessment and monitoring of soil quality using near‐infrared reflectance spectroscopy (NIRS).</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. W. Chang</name>
</json:item>
<json:item>
<name>D. A. Laird</name>
</json:item>
</author>
<host>
<volume>167</volume>
<pages>
<last>116</last>
<first>110</first>
</pages>
<author></author>
<title>Soil Sci.</title>
</host>
<title>Near‐infrared reflectance spectroscopic analysis of soil C and N.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. W. Chang</name>
</json:item>
<json:item>
<name>D. A. Laird</name>
</json:item>
<json:item>
<name>M. J. Mausbach</name>
</json:item>
<json:item>
<name>C. R. Hurburgh Jr.</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>490</last>
<first>480</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Am. J.</title>
</host>
<title>Near‐infrared reflectance spectroscopy – principal components regression analyses of soil properties.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Couteaux</name>
</json:item>
<json:item>
<name>B. Berg</name>
</json:item>
<json:item>
<name>P. Rovira</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>1600</last>
<first>1587</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. N. Elliott</name>
</json:item>
<json:item>
<name>H. Worgan</name>
</json:item>
<json:item>
<name>D. Broadhurst</name>
</json:item>
<json:item>
<name>J. Draper</name>
</json:item>
<json:item>
<name>J. Scullion</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>2896</last>
<first>2888</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm‐based feature selection.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. M. Fang</name>
</json:item>
<json:item>
<name>A. M. Feng</name>
</json:item>
<json:item>
<name>M. Lin</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>330</last>
<first>327</first>
</pages>
<author></author>
<title>Spectrosc. Spect. Anal.</title>
</host>
<title>Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. G. Gregorich</name>
</json:item>
<json:item>
<name>M. H. Beare</name>
</json:item>
<json:item>
<name>U. F. McKim</name>
</json:item>
<json:item>
<name>J. O. Skjemstad</name>
</json:item>
</author>
<host>
<volume>70</volume>
<pages>
<last>985</last>
<first>975</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Am. J.</title>
</host>
<title>Chemical and biological characteristics of physically uncomplexed organic matter.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Kiem</name>
</json:item>
<json:item>
<name>H. Knicker</name>
</json:item>
<json:item>
<name>B. Ligouis</name>
</json:item>
<json:item>
<name>I. Kögel‐Knabner</name>
</json:item>
</author>
<host>
<volume>114</volume>
<pages>
<last>137</last>
<first>109</first>
</pages>
<author></author>
<title>Geoderma</title>
</host>
<title>Airborne contaminants in the refractory organic carbon fraction of arable soils in highly industrialized areas.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Leifeld</name>
</json:item>
</author>
<host>
<volume>57</volume>
<pages>
<last>857</last>
<first>846</first>
</pages>
<author></author>
<title>Eur. J. Soil Sci.</title>
</host>
<title>Application of diffuse reflectance FT‐IR spectroscopy and partial least‐squares regression to predict NMR properties of soil organic matter.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Leifeld</name>
</json:item>
<json:item>
<name>R. Reiser</name>
</json:item>
<json:item>
<name>H. R. Oberholzer</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>1218</last>
<first>1204</first>
</pages>
<author></author>
<title>Agron. J.</title>
</host>
<title>Consequences of conventional versus organic farming on soil carbon: results from a 27‐year field experiment.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Ludwig</name>
</json:item>
<json:item>
<name>P. K. Khanna</name>
</json:item>
<json:item>
<name>J. Bauhus</name>
</json:item>
<json:item>
<name>P. Hopmans</name>
</json:item>
</author>
<host>
<volume>171</volume>
<pages>
<last>132</last>
<first>121</first>
</pages>
<author></author>
<title>For. Ecol. Manage.</title>
</host>
<title>Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Ludwig</name>
</json:item>
<json:item>
<name>R. Nitschke</name>
</json:item>
<json:item>
<name>T. Terhoeven‐Urselmans</name>
</json:item>
<json:item>
<name>K. Michel</name>
</json:item>
<json:item>
<name>H. Flessa</name>
</json:item>
</author>
<host>
<volume>171</volume>
<pages>
<last>391</last>
<first>384</first>
</pages>
<author></author>
<title>J. Plant Nutr. Soil Sci.</title>
</host>
<title>Use of mid‐infrared spectroscopy in the diffuse reflectance mode for the prediction of the composition of organic matter in soil and litter.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Ludwig</name>
</json:item>
<json:item>
<name>K. Hu</name>
</json:item>
<json:item>
<name>L. Niu</name>
</json:item>
<json:item>
<name>X. Liu</name>
</json:item>
</author>
<host>
<volume>332</volume>
<pages>
<last>206</last>
<first>193</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Predictive modelling of the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted Carbon Model.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. W. McCarty</name>
</json:item>
<json:item>
<name>J. B. Reeves</name>
</json:item>
<json:item>
<name>V. B. Reeves</name>
</json:item>
<json:item>
<name>R. F. Follett</name>
</json:item>
<json:item>
<name>J. M. Kimble</name>
</json:item>
</author>
<host>
<volume>66</volume>
<pages>
<last>646</last>
<first>640</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Am. J.</title>
</host>
<title>Mid‐infrared and near‐infrared diffuse reflectance spectroscopy for soil carbon measurement.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Michel</name>
</json:item>
<json:item>
<name>C. Bruns</name>
</json:item>
<json:item>
<name>T. Terhoeven‐Urselmans</name>
</json:item>
<json:item>
<name>B. Kleikamp</name>
</json:item>
<json:item>
<name>B. Ludwig</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>259</last>
<first>251</first>
</pages>
<author></author>
<title>J. Near Infrared Spec.</title>
</host>
<title>Determination of chemical and biological properties of composts using near infrared spectroscopy.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Michel</name>
</json:item>
<json:item>
<name>T. Terhoeven‐Urselmans</name>
</json:item>
<json:item>
<name>R. Nitschke</name>
</json:item>
<json:item>
<name>P. Steffan</name>
</json:item>
<json:item>
<name>B. Ludwig</name>
</json:item>
</author>
<host>
<volume>162</volume>
<pages>
<last>70</last>
<first>63</first>
</pages>
<author></author>
<title>J. Plant Nutr. Soil Sci.</title>
</host>
<title>Near‐ and mid‐infrared spectroscopy are able to distinguish between C and N originating from different coals and forest floor Oa material in soils.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. H. Norris</name>
</json:item>
<json:item>
<name>R. F. Barnes</name>
</json:item>
<json:item>
<name>J. E. Moore</name>
</json:item>
<json:item>
<name>J. S. Shenk</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>897</last>
<first>889</first>
</pages>
<author></author>
<title>J. Anim. Sci.</title>
</host>
<title>Predicting forage quality by infrared reflectance spectroscopy.</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Osborne, B. G., Fearn, T. (1986): Near Infrared Spectroscopy in Food Analysis. John Wiley and Sons, New York.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>R. A. V. Rossel</name>
</json:item>
<json:item>
<name>D. J. J. Walvoort</name>
</json:item>
<json:item>
<name>A. B. McBratney</name>
</json:item>
<json:item>
<name>L. J. Janik</name>
</json:item>
<json:item>
<name>J. O. Skjemstad</name>
</json:item>
</author>
<host>
<volume>131</volume>
<pages>
<last>75</last>
<first>59</first>
</pages>
<author></author>
<title>Geoderma</title>
</host>
<title>Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Rumpel</name>
</json:item>
<json:item>
<name>H. Knicker</name>
</json:item>
<json:item>
<name>I. Kögel‐Knabner</name>
</json:item>
<json:item>
<name>J. O. Skjemstad</name>
</json:item>
<json:item>
<name>R. F. Hüttl</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>142</last>
<first>123</first>
</pages>
<author></author>
<title>Geoderma</title>
</host>
<title>Types and chemical composition of organic matter in reforested lignite‐rich mine soils.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Rumpel</name>
</json:item>
<json:item>
<name>L. J. Janik</name>
</json:item>
<json:item>
<name>J. O. Skjemstad</name>
</json:item>
<json:item>
<name>I. Kögel‐Knabner</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>839</last>
<first>831</first>
</pages>
<author></author>
<title>Org. Geochem.</title>
</host>
<title>Quantification of carbon derived from lignite in soils using mid‐infrared spectroscopy and partial least squares.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Saeys</name>
</json:item>
<json:item>
<name>A. M. Mouazen</name>
</json:item>
<json:item>
<name>H. Ramon</name>
</json:item>
</author>
<host>
<volume>91</volume>
<pages>
<last>402</last>
<first>393</first>
</pages>
<author></author>
<title>Biosyst. Eng.</title>
</host>
<title>Potential for onsite and online analysis of pig manure using visible and near infrared spectroscopy.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. W. I. Schmidt</name>
</json:item>
<json:item>
<name>A. G. Noack</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>793</last>
<first>777</first>
</pages>
<author></author>
<title>Global Biogeochem. Cycl.</title>
</host>
<title>Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. O. Skjemstad</name>
</json:item>
<json:item>
<name>P. Clarke</name>
</json:item>
<json:item>
<name>J. A. Taylor</name>
</json:item>
<json:item>
<name>J. M. Oades</name>
</json:item>
<json:item>
<name>S. G. McClure</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>271</last>
<first>251</first>
</pages>
<author></author>
<title>Aust. J. Soil Res.</title>
</host>
<title>The chemistry and nature of protected carbon in soil.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. O. Skjemstad</name>
</json:item>
<json:item>
<name>D. C. Reicosky</name>
</json:item>
<json:item>
<name>A. R. Wilts</name>
</json:item>
<json:item>
<name>J. A. McGowan</name>
</json:item>
</author>
<host>
<volume>66</volume>
<pages>
<last>1255</last>
<first>1249</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Am. J.</title>
</host>
<title>Charcoal carbon in US agricultural soils.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. O. Skjemstad</name>
</json:item>
<json:item>
<name>L. R. Spouncer</name>
</json:item>
<json:item>
<name>B. Cowie</name>
</json:item>
<json:item>
<name>R. S. Swift</name>
</json:item>
</author>
<host>
<volume>42</volume>
<pages>
<last>88</last>
<first>79</first>
</pages>
<author></author>
<title>Aust. J. Soil Res.</title>
</host>
<title>Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3) using measurable soil organic carbon pools.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Smith</name>
</json:item>
<json:item>
<name>J. U. Smith</name>
</json:item>
<json:item>
<name>D. S. Powlson</name>
</json:item>
<json:item>
<name>W. B. McGill</name>
</json:item>
<json:item>
<name>J. R. M. Arah</name>
</json:item>
<json:item>
<name>O. G. Chertov</name>
</json:item>
<json:item>
<name>K. Coleman</name>
</json:item>
<json:item>
<name>U. Franko</name>
</json:item>
<json:item>
<name>S. Frolking</name>
</json:item>
<json:item>
<name>D. S. Jenkinson</name>
</json:item>
<json:item>
<name>L. S. Jensen</name>
</json:item>
<json:item>
<name>R. H. Kelly</name>
</json:item>
<json:item>
<name>H. Klein‐Gunnewiek</name>
</json:item>
<json:item>
<name>A. S. Komarov</name>
</json:item>
<json:item>
<name>C. Li</name>
</json:item>
<json:item>
<name>J. A. E. Molina</name>
</json:item>
<json:item>
<name>T. Mueller</name>
</json:item>
<json:item>
<name>W. J. Parton</name>
</json:item>
<json:item>
<name>J. H. M. Thornley</name>
</json:item>
<json:item>
<name>A. P. Whitmore</name>
</json:item>
</author>
<host>
<volume>81</volume>
<pages>
<last>225</last>
<first>153</first>
</pages>
<author></author>
<title>Geoderma</title>
</host>
<title>A comparison of the performance of nine soil organic matter models using datasets from seven long‐term experiments.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. R. Stoner</name>
</json:item>
<json:item>
<name>M. F. Baumgardner</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>1165</last>
<first>1161</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Am. J.</title>
</host>
<title>Characteristic variations in reflectance of surface soils.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Terhoeven‐Urselmans</name>
</json:item>
<json:item>
<name>K. Michel</name>
</json:item>
<json:item>
<name>M. Helfrich</name>
</json:item>
<json:item>
<name>H. Flessa</name>
</json:item>
<json:item>
<name>B. Ludwig</name>
</json:item>
</author>
<host>
<volume>169</volume>
<pages>
<last>174</last>
<first>168</first>
</pages>
<author></author>
<title>J. Plant Nutr. Soil Sci.</title>
</host>
<title>Near‐infrared spectroscopy can predict the composition of organic matter in soil and litter.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Terhoeven‐Urselmans</name>
</json:item>
<json:item>
<name>H. Schmidt</name>
</json:item>
<json:item>
<name>R. G. Jörgensen</name>
</json:item>
<json:item>
<name>B. Ludwig</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>1188</last>
<first>1178</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Usefulness of near‐infrared spectroscopy to determine soil biological and chemical characteristics: importance of sample treatment.</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Tillmann, P. (2000): Kalibrationsentwicklung für NIRS‐Geräte. Cuvillier, Göttingen, Germany.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Yoshido</name>
</json:item>
<json:item>
<name>R. Leardi</name>
</json:item>
<json:item>
<name>K. Funatsu</name>
</json:item>
<json:item>
<name>K. Varmuza</name>
</json:item>
</author>
<host>
<volume>446</volume>
<pages>
<last>494</last>
<first>485</first>
</pages>
<author></author>
<title>Analytica Chimica Acta</title>
</host>
<title>Feature selection by genetic algorithms for mass spectral classifiers.</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>174</volume>
<publisherId>
<json:string>JPLN</json:string>
</publisherId>
<pages>
<total>7</total>
<last>701</last>
<first>695</first>
</pages>
<issn>
<json:string>1436-8730</json:string>
</issn>
<issue>5</issue>
<subject>
<json:item>
<value>Regular Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1522-2624</json:string>
</eissn>
<title>Journal of Plant Nutrition and Soil Science</title>
<doi>
<json:string>10.1002/(ISSN)1522-2624</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>soil science</json:string>
<json:string>plant sciences</json:string>
<json:string>agronomy</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>agriculture, fisheries & forestry</json:string>
<json:string>agronomy & agriculture</json:string>
</scienceMetrix>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1002/jpln.201000226</json:string>
</doi>
<id>A57092B3D2E142EFAF62E095A8AC0B259D7DCA44</id>
<score>0.7910118</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/A57092B3D2E142EFAF62E095A8AC0B259D7DCA44/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/A57092B3D2E142EFAF62E095A8AC0B259D7DCA44/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A57092B3D2E142EFAF62E095A8AC0B259D7DCA44/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Use of near‐infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest‐floor material in soils: usefulness of a genetic algorithm</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<availability>
<p>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</p>
</availability>
<date>2011</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Use of near‐infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest‐floor material in soils: usefulness of a genetic algorithm</title>
<author xml:id="author-1">
<persName>
<forename type="first">Michael</forename>
<surname>Vohland</surname>
</persName>
<affiliation>Remote Sensing Department, University of Trier, Campus II, 54286 Trier, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Kerstin</forename>
<surname>Michel</surname>
</persName>
<affiliation>Unit of Soil Biology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff‐Gudent‐Weg 8, 1131 Wien, Austria</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Bernard</forename>
<surname>Ludwig</surname>
</persName>
<affiliation>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</affiliation>
<affiliation>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Plant Nutrition and Soil Science</title>
<title level="j" type="abbrev">Z. Pflanzenernähr. Bodenk.</title>
<idno type="pISSN">1436-8730</idno>
<idno type="eISSN">1522-2624</idno>
<idno type="DOI">10.1002/(ISSN)1522-2624</idno>
<imprint>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2011-10"></date>
<biblScope unit="volume">174</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="695">695</biblScope>
<biblScope unit="page" to="701">701</biblScope>
</imprint>
</monogr>
<idno type="istex">A57092B3D2E142EFAF62E095A8AC0B259D7DCA44</idno>
<idno type="DOI">10.1002/jpln.201000226</idno>
<idno type="ArticleID">JPLN201000226</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infrared spectroscopy (NIRS) for a prediction of C and N from char and forest‐floor Oa material in soils using either a partial least squares (PLS) method or a GA‐PLS approach and (2) to discuss the mechanisms of GA feature selection for the examined constituents. Calibration and validation were carried out for measured reflectance spectra in the visible and near‐IR region (400–2500 nm) on an existing set of 432 artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals), and forest‐floor Oa material. For all constituents (total C and N, C and N from all coals and from the Oa material, C derived from mixed coal, charcoal, lignite, and anthracite), the GA‐PLS approach was superior over the full‐spectrum PLS method. The RPD values (ratio of standard deviation of the laboratory results to standard error of prediction) ranged from 2.4 to 5.1 in the validation and indicated a better category of prediction for three constituents: “approximate quantitative” instead of a “distinction between high and low” for C derived from mixed coal and “good” instead of “approximate quantitative” for C and N derived from all coals. Overall, this study indicates that the approach using GA may have a greater potential than the PLS method in NIRS.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>char</term>
</item>
<item>
<term>genetic algorithm</term>
</item>
<item>
<term>NIR spectroscopy</term>
</item>
<item>
<term>partial least squares regression</term>
</item>
<item>
<term>soil organic carbon</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Regular Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011-05-05">Registration</change>
<change when="2011-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/A57092B3D2E142EFAF62E095A8AC0B259D7DCA44/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>WILEY‐VCH Verlag</publisherName>
<publisherLoc>Weinheim</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1522-2624</doi>
<issn type="print">1436-8730</issn>
<issn type="electronic">1522-2624</issn>
<idGroup>
<id type="product" value="JPLN"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE ZEITSCHRIFT FUER PFLANZENERNAEHRUNG UND BODENKUNDE">Journal of Plant Nutrition and Soil Science</title>
<title type="tocForm">Journal of Plant Nutrition and Soil Science / Zeitschrift für Pflanzenernährung und Bodenkunde</title>
<title type="short">Z. Pflanzenernähr. Bodenk.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi origin="wiley" registered="yes">10.1002/jpln.v174.5</doi>
<numberingGroup>
<numbering type="journalVolume" number="174">174</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<coverDate startDate="2011-10">October, 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="4" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jpln.201000226</doi>
<idGroup>
<id type="unit" value="JPLN201000226"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="7"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Regular Article</title>
<title type="tocHeading1">Regular Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</copyright>
<eventGroup>
<event type="manuscriptAccepted" date="2011-05-05"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.10 mode:FullText" date="2011-09-23"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-08-03"></event>
<event type="firstOnline" date="2011-08-03"></event>
<event type="publishedOnlineFinalForm" date="2011-09-23"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-01"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">695</numbering>
<numbering type="pageLast">701</numbering>
</numberingGroup>
<correspondenceTo>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JPLN.JPLN201000226.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="3"></count>
<count type="tableTotal" number="3"></count>
<count type="referenceTotal" number="37"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Use of near‐infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest‐floor material in soils: usefulness of a genetic algorithm</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#a1">
<personName>
<givenNames>Michael</givenNames>
<familyName>Vohland</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#a2">
<personName>
<givenNames>Kerstin</givenNames>
<familyName>Michel</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#a3" corresponding="yes">
<personName>
<givenNames>Bernard</givenNames>
<familyName>Ludwig</familyName>
</personName>
<contactDetails>
<email normalForm="bludwig@uni-kassel.de">bludwig@uni‐kassel.de</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="DE" type="organization">
<unparsedAffiliation>Remote Sensing Department, University of Trier, Campus II, 54286 Trier, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="AT" type="organization">
<unparsedAffiliation>Unit of Soil Biology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff‐Gudent‐Weg 8, 1131 Wien, Austria</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="DE" type="organization">
<unparsedAffiliation>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">char</keyword>
<keyword xml:id="kwd2">genetic algorithm</keyword>
<keyword xml:id="kwd3">NIR spectroscopy</keyword>
<keyword xml:id="kwd4">partial least squares regression</keyword>
<keyword xml:id="kwd5">soil organic carbon</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infrared spectroscopy (NIRS) for a prediction of C and N from char and forest‐floor Oa material in soils using either a partial least squares (PLS) method or a GA‐PLS approach and (2) to discuss the mechanisms of GA feature selection for the examined constituents. Calibration and validation were carried out for measured reflectance spectra in the visible and near‐IR region (400–2500 nm) on an existing set of 432 artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals), and forest‐floor Oa material. For all constituents (total C and N, C and N from all coals and from the Oa material, C derived from mixed coal, charcoal, lignite, and anthracite), the GA‐PLS approach was superior over the full‐spectrum PLS method. The RPD values (ratio of standard deviation of the laboratory results to standard error of prediction) ranged from 2.4 to 5.1 in the validation and indicated a better category of prediction for three constituents: “approximate quantitative” instead of a “distinction between high and low” for C derived from mixed coal and “good” instead of “approximate quantitative” for C and N derived from all coals. Overall, this study indicates that the approach using GA may have a greater potential than the PLS method in NIRS.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Use of near‐infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest‐floor material in soils: usefulness of a genetic algorithm</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Use of near‐infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest‐floor material in soils: usefulness of a genetic algorithm</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Vohland</namePart>
<affiliation>Remote Sensing Department, University of Trier, Campus II, 54286 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kerstin</namePart>
<namePart type="family">Michel</namePart>
<affiliation>Unit of Soil Biology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff‐Gudent‐Weg 8, 1131 Wien, Austria</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernard</namePart>
<namePart type="family">Ludwig</namePart>
<affiliation>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</affiliation>
<affiliation>Department of Environmental Chemistry, University of Kassel, Nordbahnhofstraße 1a, 37213 Witzenhausen, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>WILEY‐VCH Verlag</publisher>
<place>
<placeTerm type="text">Weinheim</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-10</dateIssued>
<dateValid encoding="w3cdtf">2011-05-05</dateValid>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">3</extent>
<extent unit="tables">3</extent>
<extent unit="references">37</extent>
</physicalDescription>
<abstract lang="en">Several algorithms exist for the calibration procedures of near‐infrared spectra in soil‐scientific studies, but the potential of a genetic algorithm (GA) for spectral feature selection and interpretation has not yet been sufficiently explored. Objectives were (1) to test the usefulness of near‐infrared spectroscopy (NIRS) for a prediction of C and N from char and forest‐floor Oa material in soils using either a partial least squares (PLS) method or a GA‐PLS approach and (2) to discuss the mechanisms of GA feature selection for the examined constituents. Calibration and validation were carried out for measured reflectance spectra in the visible and near‐IR region (400–2500 nm) on an existing set of 432 artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals), and forest‐floor Oa material. For all constituents (total C and N, C and N from all coals and from the Oa material, C derived from mixed coal, charcoal, lignite, and anthracite), the GA‐PLS approach was superior over the full‐spectrum PLS method. The RPD values (ratio of standard deviation of the laboratory results to standard error of prediction) ranged from 2.4 to 5.1 in the validation and indicated a better category of prediction for three constituents: “approximate quantitative” instead of a “distinction between high and low” for C derived from mixed coal and “good” instead of “approximate quantitative” for C and N derived from all coals. Overall, this study indicates that the approach using GA may have a greater potential than the PLS method in NIRS.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>char</topic>
<topic>genetic algorithm</topic>
<topic>NIR spectroscopy</topic>
<topic>partial least squares regression</topic>
<topic>soil organic carbon</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Plant Nutrition and Soil Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Z. Pflanzenernähr. Bodenk.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Regular Article</topic>
</subject>
<identifier type="ISSN">1436-8730</identifier>
<identifier type="eISSN">1522-2624</identifier>
<identifier type="DOI">10.1002/(ISSN)1522-2624</identifier>
<identifier type="PublisherID">JPLN</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>174</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>695</start>
<end>701</end>
<total>7</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">A57092B3D2E142EFAF62E095A8AC0B259D7DCA44</identifier>
<identifier type="DOI">10.1002/jpln.201000226</identifier>
<identifier type="ArticleID">JPLN201000226</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>WILEY‐VCH Verlag</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001707 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001707 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A57092B3D2E142EFAF62E095A8AC0B259D7DCA44
   |texte=   Use of near‐infrared spectroscopy to distinguish carbon and nitrogen originating from char and forest‐floor material in soils: usefulness of a genetic algorithm
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024