Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Approximation theory methods for solving elliptic eigenvalue problems

Identifieur interne : 001342 ( Istex/Corpus ); précédent : 001341; suivant : 001343

Approximation theory methods for solving elliptic eigenvalue problems

Auteurs : G. Still

Source :

RBID : ISTEX:4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D

English descriptors

Abstract

Eigenvalue problems with elliptic operators L on a domain G ⊂ R2 are considered. By applying results from complex approximation theory we obtain results on the approximation properties of special classes of solutions of Lu = 0 on G . These solutions are used as trial functions in a method for solving the eigenvalue problem which is based on a‐posteriori error bounds. Singular trial functions are applied to smooth the problem at corner points of G . In special situations, this method can produce approximations of eigenvalues and eigenfunctions with extremely high accuracy by only using a low number of trial functions. Some illustrative numerical examples for the eigenvalue problem with the Laplacian are presented. We discuss two problems from plasma physics (‘relaxed plasma’, ‘MHD‐equation’).

Url:
DOI: 10.1002/zamm.200310081

Links to Exploration step

ISTEX:4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Approximation theory methods for solving elliptic eigenvalue problems</title>
<author>
<name sortKey="Still, G" sort="Still, G" uniqKey="Still G" first="G." last="Still">G. Still</name>
<affiliation>
<mods:affiliation>University of Twente, Faculty of Mathematical Science, P.O. Box 217, 7500 AE Enschede, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: g.j.still@math.utwente.nl</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1002/zamm.200310081</idno>
<idno type="url">https://api.istex.fr/document/4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001342</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001342</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Approximation theory methods for solving elliptic eigenvalue problems</title>
<author>
<name sortKey="Still, G" sort="Still, G" uniqKey="Still G" first="G." last="Still">G. Still</name>
<affiliation>
<mods:affiliation>University of Twente, Faculty of Mathematical Science, P.O. Box 217, 7500 AE Enschede, The Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: g.j.still@math.utwente.nl</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik</title>
<title level="j" type="sub">Applied Mathematics and Mechanics</title>
<title level="j" type="abbrev">Z. angew. Math. Mech.</title>
<idno type="ISSN">0044-2267</idno>
<idno type="eISSN">1521-4001</idno>
<imprint>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<date type="published" when="2003-07-07">2003-07-07</date>
<biblScope unit="volume">83</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="468">468</biblScope>
<biblScope unit="page" to="478">478</biblScope>
</imprint>
<idno type="ISSN">0044-2267</idno>
</series>
<idno type="istex">4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D</idno>
<idno type="DOI">10.1002/zamm.200310081</idno>
<idno type="ArticleID">ZAMM200310081</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0044-2267</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>a‐posteriori error bounds</term>
<term>complex approximation</term>
<term>defect‐minimization method</term>
<term>degree of approximation</term>
<term>elliptic eigenvalue problems</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Eigenvalue problems with elliptic operators L on a domain G ⊂ R2 are considered. By applying results from complex approximation theory we obtain results on the approximation properties of special classes of solutions of Lu = 0 on G . These solutions are used as trial functions in a method for solving the eigenvalue problem which is based on a‐posteriori error bounds. Singular trial functions are applied to smooth the problem at corner points of G . In special situations, this method can produce approximations of eigenvalues and eigenfunctions with extremely high accuracy by only using a low number of trial functions. Some illustrative numerical examples for the eigenvalue problem with the Laplacian are presented. We discuss two problems from plasma physics (‘relaxed plasma’, ‘MHD‐equation’).</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>G. Still</name>
<affiliations>
<json:string>University of Twente, Faculty of Mathematical Science, P.O. Box 217, 7500 AE Enschede, The Netherlands</json:string>
<json:string>E-mail: g.j.still@math.utwente.nl</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>elliptic eigenvalue problems</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>complex approximation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>degree of approximation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>a‐posteriori error bounds</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>defect‐minimization method</value>
</json:item>
</subject>
<articleId>
<json:string>ZAMM200310081</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Eigenvalue problems with elliptic operators L on a domain G ⊂ R2 are considered. By applying results from complex approximation theory we obtain results on the approximation properties of special classes of solutions of Lu = 0 on G . These solutions are used as trial functions in a method for solving the eigenvalue problem which is based on a‐posteriori error bounds. Singular trial functions are applied to smooth the problem at corner points of G . In special situations, this method can produce approximations of eigenvalues and eigenfunctions with extremely high accuracy by only using a low number of trial functions. Some illustrative numerical examples for the eigenvalue problem with the Laplacian are presented. We discuss two problems from plasma physics (‘relaxed plasma’, ‘MHD‐equation’).</abstract>
<qualityIndicators>
<score>6.5</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 841 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>802</abstractCharCount>
<pdfWordCount>7197</pdfWordCount>
<pdfCharCount>29806</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>125</abstractWordCount>
</qualityIndicators>
<title>Approximation theory methods for solving elliptic eigenvalue problems</title>
<refBibs>
<json:item>
<host>
<author></author>
<title>M. Abramowitz and I.A. Stegun, Pocketbook of Mathematical Functions (Verlag Harri Deutsch, Thun, 1984).</title>
</host>
</json:item>
<json:item>
<host>
<volume>67</volume>
<pages>
<last>60</last>
<first>1</first>
</pages>
<author></author>
<title>Z. Angew. Math. Mech.</title>
</host>
</json:item>
<json:item>
<host>
<volume>67</volume>
<pages>
<first>7</first>
</pages>
<author></author>
<title>Nucl. Fusion</title>
</host>
</json:item>
<json:item>
<host>
<volume>67</volume>
<pages>
<last>680</last>
<first>654</first>
</pages>
<author></author>
<title>SIAM J. Numer. Anal.</title>
</host>
</json:item>
<json:item>
<host>
<volume>67</volume>
<pages>
<last>383</last>
<first>7</first>
</pages>
<author></author>
<title>Z. Angew. Math. Mech.</title>
</host>
</json:item>
<json:item>
<host>
<volume>67</volume>
<pages>
<last>102</last>
<first>89</first>
</pages>
<author></author>
<title>SIAM J. Numer. Anal.</title>
</host>
</json:item>
<json:item>
<host>
<volume>67</volume>
<pages>
<last>203</last>
<first>169</first>
</pages>
<author></author>
<title>Z. Angew. Math. Phys.</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, 1985).</title>
</host>
</json:item>
<json:item>
<host>
<volume>67</volume>
<pages>
<last>597</last>
<first>12</first>
</pages>
<author></author>
<title>Z. Angew. Math. Mech.</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>J.R Kuttler and V.G. Sigillito, Estimating Eigenvalues with A‐Posteriori/Apriori Inequalities (Pitman, Boston, 1985).</title>
</host>
</json:item>
<json:item>
<host>
<volume>67</volume>
<pages>
<last>760</last>
<first>727</first>
</pages>
<author></author>
<title>J. Math. Mech.</title>
</host>
</json:item>
<json:item>
<host>
<volume>67</volume>
<pages>
<last>122</last>
<first>31</first>
</pages>
<author></author>
<title>Usp. Mat. Nauk</title>
</host>
</json:item>
<json:item>
<host>
<volume>67</volume>
<pages>
<last>223</last>
<first>201</first>
</pages>
<author></author>
<title>Numer. Math.</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>G. Still, Defektminimierungsmethoden zur Lösung elliptischer Rand‐ und Eigenwertaufgaben, Habilitation, University of Trier (1989).</title>
</host>
</json:item>
<json:item>
<host>
<volume>67</volume>
<pages>
<last>290</last>
<first>7</first>
</pages>
<author></author>
<title>Z. Angew. Math. Mech.</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>I.N. Vekua, New Methods for Solving Elliptic Equations (North Holland, Amsterdam, 1967).</title>
</host>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>83</volume>
<publisherId>
<json:string>ZAMM</json:string>
</publisherId>
<pages>
<total>11</total>
<last>478</last>
<first>468</first>
</pages>
<issn>
<json:string>0044-2267</json:string>
</issn>
<issue>7</issue>
<subject>
<json:item>
<value>Original Paper</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1521-4001</json:string>
</eissn>
<title>ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik</title>
<doi>
<json:string>10.1002/(ISSN)1521-4001</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>mechanics</json:string>
<json:string>mathematics, applied</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>mathematics & statistics</json:string>
<json:string>applied mathematics</json:string>
</scienceMetrix>
</categories>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1002/zamm.200310081</json:string>
</doi>
<id>4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D</id>
<score>0.027916323</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Approximation theory methods for solving elliptic eigenvalue problems</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<availability>
<p>Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</p>
</availability>
<date>2003</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Approximation theory methods for solving elliptic eigenvalue problems</title>
<author xml:id="author-1">
<persName>
<forename type="first">G.</forename>
<surname>Still</surname>
</persName>
<email>g.j.still@math.utwente.nl</email>
<affiliation>University of Twente, Faculty of Mathematical Science, P.O. Box 217, 7500 AE Enschede, The Netherlands</affiliation>
</author>
</analytic>
<monogr>
<title level="j">ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik</title>
<title level="j" type="sub">Applied Mathematics and Mechanics</title>
<title level="j" type="abbrev">Z. angew. Math. Mech.</title>
<idno type="pISSN">0044-2267</idno>
<idno type="eISSN">1521-4001</idno>
<idno type="DOI">10.1002/(ISSN)1521-4001</idno>
<imprint>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Berlin</pubPlace>
<date type="published" when="2003-07-07"></date>
<biblScope unit="volume">83</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="468">468</biblScope>
<biblScope unit="page" to="478">478</biblScope>
</imprint>
</monogr>
<idno type="istex">4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D</idno>
<idno type="DOI">10.1002/zamm.200310081</idno>
<idno type="ArticleID">ZAMM200310081</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2003</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Eigenvalue problems with elliptic operators L on a domain G ⊂ R2 are considered. By applying results from complex approximation theory we obtain results on the approximation properties of special classes of solutions of Lu = 0 on G . These solutions are used as trial functions in a method for solving the eigenvalue problem which is based on a‐posteriori error bounds. Singular trial functions are applied to smooth the problem at corner points of G . In special situations, this method can produce approximations of eigenvalues and eigenfunctions with extremely high accuracy by only using a low number of trial functions. Some illustrative numerical examples for the eigenvalue problem with the Laplacian are presented. We discuss two problems from plasma physics (‘relaxed plasma’, ‘MHD‐equation’).</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>elliptic eigenvalue problems</term>
</item>
<item>
<term>complex approximation</term>
</item>
<item>
<term>degree of approximation</term>
</item>
<item>
<term>a‐posteriori error bounds</term>
</item>
<item>
<term>defect‐minimization method</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Original Paper</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001-01-11">Received</change>
<change when="2002-09-30">Registration</change>
<change when="2003-07-07">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>WILEY‐VCH Verlag</publisherName>
<publisherLoc>Berlin</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1521-4001</doi>
<issn type="print">0044-2267</issn>
<issn type="electronic">1521-4001</issn>
<idGroup>
<id type="product" value="ZAMM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="ZAMM ZEITSCHRIFT FUER ANGEWANDTE MATHEMATIK UND MECHANIK">ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik</title>
<title type="tocForm">ZAMM ‐ Zeitschrift für Angewandte Mathematik und Mechanik / Journal of Applied Mathematics and Mechanics</title>
<title type="subtitle">Applied Mathematics and Mechanics</title>
<title type="short">Z. angew. Math. Mech.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="70">
<doi origin="wiley" registered="yes">10.1002/zamm.v83:7</doi>
<numberingGroup>
<numbering type="journalVolume" number="83">83</numbering>
<numbering type="journalIssue">7</numbering>
</numberingGroup>
<coverDate startDate="2003-07-07">July 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="2" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/zamm.200310081</doi>
<idGroup>
<id type="unit" value="ZAMM200310081"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="11"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Paper</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2001-01-11"></event>
<event type="manuscriptRevised" date="2002-08-15"></event>
<event type="manuscriptAccepted" date="2002-09-30"></event>
<event type="firstOnline" date="2003-06-18"></event>
<event type="publishedOnlineFinalForm" date="2003-06-18"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-02"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-11"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">468</numbering>
<numbering type="pageLast">478</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:ZAMM.ZAMM468.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="2"></count>
<count type="tableTotal" number="5"></count>
<count type="referenceTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Approximation theory methods for solving elliptic eigenvalue problems</title>
<title type="short" xml:lang="en">Approximation for elliptic eigenvalue problems</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#a1">
<personName>
<givenNames>G.</givenNames>
<familyName>Still</familyName>
</personName>
<contactDetails>
<email>g.j.still@math.utwente.nl</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="NL" type="organization">
<unparsedAffiliation>University of Twente, Faculty of Mathematical Science, P.O. Box 217, 7500 AE Enschede, The Netherlands</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">elliptic eigenvalue problems</keyword>
<keyword xml:id="kwd2">complex approximation</keyword>
<keyword xml:id="kwd3">degree of approximation</keyword>
<keyword xml:id="kwd4">a‐posteriori error bounds</keyword>
<keyword xml:id="kwd5">defect‐minimization method</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Eigenvalue problems with elliptic operators
<i>L</i>
on a domain
<i>G</i>
<i>R</i>
<sup>2</sup>
are considered. By applying results from complex approximation theory we obtain results on the approximation properties of special classes of solutions of
<i>Lu</i>
= 0 on
<i>G</i>
. These solutions are used as trial functions in a method for solving the eigenvalue problem which is based on a‐posteriori error bounds. Singular trial functions are applied to smooth the problem at corner points of
<i>G</i>
. In special situations, this method can produce approximations of eigenvalues and eigenfunctions with extremely high accuracy by only using a low number of trial functions. Some illustrative numerical examples for the eigenvalue problem with the Laplacian are presented. We discuss two problems from plasma physics (‘relaxed plasma’, ‘MHD‐equation’).</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Approximation theory methods for solving elliptic eigenvalue problems</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Approximation for elliptic eigenvalue problems</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Approximation theory methods for solving elliptic eigenvalue problems</title>
</titleInfo>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Still</namePart>
<affiliation>University of Twente, Faculty of Mathematical Science, P.O. Box 217, 7500 AE Enschede, The Netherlands</affiliation>
<affiliation>E-mail: g.j.still@math.utwente.nl</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>WILEY‐VCH Verlag</publisher>
<place>
<placeTerm type="text">Berlin</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2003-07-07</dateIssued>
<dateCaptured encoding="w3cdtf">2001-01-11</dateCaptured>
<dateValid encoding="w3cdtf">2002-09-30</dateValid>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">2</extent>
<extent unit="tables">5</extent>
<extent unit="references">16</extent>
</physicalDescription>
<abstract lang="en">Eigenvalue problems with elliptic operators L on a domain G ⊂ R2 are considered. By applying results from complex approximation theory we obtain results on the approximation properties of special classes of solutions of Lu = 0 on G . These solutions are used as trial functions in a method for solving the eigenvalue problem which is based on a‐posteriori error bounds. Singular trial functions are applied to smooth the problem at corner points of G . In special situations, this method can produce approximations of eigenvalues and eigenfunctions with extremely high accuracy by only using a low number of trial functions. Some illustrative numerical examples for the eigenvalue problem with the Laplacian are presented. We discuss two problems from plasma physics (‘relaxed plasma’, ‘MHD‐equation’).</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>elliptic eigenvalue problems</topic>
<topic>complex approximation</topic>
<topic>degree of approximation</topic>
<topic>a‐posteriori error bounds</topic>
<topic>defect‐minimization method</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik</title>
<subTitle>Applied Mathematics and Mechanics</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Z. angew. Math. Mech.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Original Paper</topic>
</subject>
<identifier type="ISSN">0044-2267</identifier>
<identifier type="eISSN">1521-4001</identifier>
<identifier type="DOI">10.1002/(ISSN)1521-4001</identifier>
<identifier type="PublisherID">ZAMM</identifier>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>83</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>468</start>
<end>478</end>
<total>11</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D</identifier>
<identifier type="DOI">10.1002/zamm.200310081</identifier>
<identifier type="ArticleID">ZAMM200310081</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>WILEY‐VCH Verlag</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001342 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001342 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4EED5B54B8C087DCD6BCBA275CB1EBEFBBB6693D
   |texte=   Approximation theory methods for solving elliptic eigenvalue problems
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024