Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks

Identifieur interne : 001187 ( Istex/Corpus ); précédent : 001186; suivant : 001188

On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks

Auteurs : M. Gryschka ; C. Drüe ; D. Etling ; S. Raasch

Source :

RBID : ISTEX:A44F4160D8EA0C68BDED4181F95D025C5F152660

Abstract

In this study we use large‐eddy simulations (LES) to model roll convection within the convective atmospheric boundary‐layer (CBL) during strong cold‐air outbreaks (CAO). Previous LES were mostly unsuccessful in reproducing clear signals of roll convection, especially in case of strong surface heating and weak vertical wind shear in the CBL. In nature however, this phenomenon is very robust and roll convection can be observed as cloud streets in satellite pictures of almost any CAO. Previous LES studies assumed homogeneous sea‐ice, unlike the current study, where under strong surface heating clear signals of rolls appear only when introducing sea‐ice inhomogeneities in the marginal ice zone. For weaker surface heating, rolls also appear without sea‐ice inhomogeneities. The results of this study suggest that in case of strong surface heating and weak vertical wind shear surface inhomogeneities increase the chance of roll formation.

Url:
DOI: 10.1029/2008GL035845

Links to Exploration step

ISTEX:A44F4160D8EA0C68BDED4181F95D025C5F152660

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks</title>
<author>
<name sortKey="Gryschka, M" sort="Gryschka, M" uniqKey="Gryschka M" first="M." last="Gryschka">M. Gryschka</name>
<affiliation>
<mods:affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: gryschka@muk.uni-hannover.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drue, C" sort="Drue, C" uniqKey="Drue C" first="C." last="Drüe">C. Drüe</name>
<affiliation>
<mods:affiliation>Environmental Meteorology, University Trier, Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Etling, D" sort="Etling, D" uniqKey="Etling D" first="D." last="Etling">D. Etling</name>
<affiliation>
<mods:affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Raasch, S" sort="Raasch, S" uniqKey="Raasch S" first="S." last="Raasch">S. Raasch</name>
<affiliation>
<mods:affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A44F4160D8EA0C68BDED4181F95D025C5F152660</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1029/2008GL035845</idno>
<idno type="url">https://api.istex.fr/document/A44F4160D8EA0C68BDED4181F95D025C5F152660/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001187</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001187</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks</title>
<author>
<name sortKey="Gryschka, M" sort="Gryschka, M" uniqKey="Gryschka M" first="M." last="Gryschka">M. Gryschka</name>
<affiliation>
<mods:affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: gryschka@muk.uni-hannover.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drue, C" sort="Drue, C" uniqKey="Drue C" first="C." last="Drüe">C. Drüe</name>
<affiliation>
<mods:affiliation>Environmental Meteorology, University Trier, Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Etling, D" sort="Etling, D" uniqKey="Etling D" first="D." last="Etling">D. Etling</name>
<affiliation>
<mods:affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Raasch, S" sort="Raasch, S" uniqKey="Raasch S" first="S." last="Raasch">S. Raasch</name>
<affiliation>
<mods:affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geophysical Research Letters</title>
<title level="j" type="abbrev">Geophys. Res. Lett.</title>
<idno type="ISSN">0094-8276</idno>
<idno type="eISSN">1944-8007</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2008-12">2008-12</date>
<biblScope unit="volume">35</biblScope>
<biblScope unit="issue">23</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0094-8276</idno>
</series>
<idno type="istex">A44F4160D8EA0C68BDED4181F95D025C5F152660</idno>
<idno type="DOI">10.1029/2008GL035845</idno>
<idno type="ArticleID">2008GL035845</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0094-8276</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">In this study we use large‐eddy simulations (LES) to model roll convection within the convective atmospheric boundary‐layer (CBL) during strong cold‐air outbreaks (CAO). Previous LES were mostly unsuccessful in reproducing clear signals of roll convection, especially in case of strong surface heating and weak vertical wind shear in the CBL. In nature however, this phenomenon is very robust and roll convection can be observed as cloud streets in satellite pictures of almost any CAO. Previous LES studies assumed homogeneous sea‐ice, unlike the current study, where under strong surface heating clear signals of rolls appear only when introducing sea‐ice inhomogeneities in the marginal ice zone. For weaker surface heating, rolls also appear without sea‐ice inhomogeneities. The results of this study suggest that in case of strong surface heating and weak vertical wind shear surface inhomogeneities increase the chance of roll formation.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>M. Gryschka</name>
<affiliations>
<json:string>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</json:string>
<json:string>E-mail: gryschka@muk.uni-hannover.de</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Drüe</name>
<affiliations>
<json:string>Environmental Meteorology, University Trier, Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. Etling</name>
<affiliations>
<json:string>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. Raasch</name>
<affiliations>
<json:string>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>roll convection</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cloud streets</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>large eddy simulation</value>
</json:item>
</subject>
<articleId>
<json:string>2008GL035845</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>In this study we use large‐eddy simulations (LES) to model roll convection within the convective atmospheric boundary‐layer (CBL) during strong cold‐air outbreaks (CAO). Previous LES were mostly unsuccessful in reproducing clear signals of roll convection, especially in case of strong surface heating and weak vertical wind shear in the CBL. In nature however, this phenomenon is very robust and roll convection can be observed as cloud streets in satellite pictures of almost any CAO. Previous LES studies assumed homogeneous sea‐ice, unlike the current study, where under strong surface heating clear signals of rolls appear only when introducing sea‐ice inhomogeneities in the marginal ice zone. For weaker surface heating, rolls also appear without sea‐ice inhomogeneities. The results of this study suggest that in case of strong surface heating and weak vertical wind shear surface inhomogeneities increase the chance of roll formation.</abstract>
<qualityIndicators>
<score>6.155</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>943</abstractCharCount>
<pdfWordCount>3975</pdfWordCount>
<pdfCharCount>22220</pdfCharCount>
<pdfPageCount>6</pdfPageCount>
<abstractWordCount>140</abstractWordCount>
</qualityIndicators>
<title>On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>T. Asai</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>139</last>
<first>129</first>
</pages>
<author></author>
<title>J. Meteorol. Soc. Jpn.</title>
</host>
<title>Stability of a plane parallel flow with variable vertical shear and unstable stratification</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. A. Brown</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>859</last>
<first>850</first>
</pages>
<author></author>
<title>J. Atmos. Sci.</title>
</host>
<title>On the inflection point instability of a stratified Ekman layer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Brümmer</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>2636</last>
<first>2613</first>
</pages>
<author></author>
<title>J. Atmos. Sci.</title>
</host>
<title>Roll and cell convection in wintertime arctic cold‐air outbreaks</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Brümmer</name>
</json:item>
<json:item>
<name>S. Pohlmann</name>
</json:item>
</author>
<host>
<volume>105</volume>
<pages>
<last>15,566</last>
<first>15,559</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Wintertime roll and cell convection over Greenland and Barents Sea regions: A climatology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Charnock</name>
</json:item>
</author>
<host>
<volume>81</volume>
<pages>
<last>640</last>
<first>639</first>
</pages>
<author></author>
<title>Q.J.R. Meteorol. Soc.</title>
</host>
<title>Wind stress on a water surface</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. W. Christian</name>
</json:item>
<json:item>
<name>R. M. Wakimoto</name>
</json:item>
</author>
<host>
<volume>117</volume>
<pages>
<last>1544</last>
<first>1530</first>
</pages>
<author></author>
<title>Mon. Weather Rev.</title>
</host>
<title>The relationship between radar reflectivities and clouds associated with horizontal roll convection on 8 August 1982</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. K. Cooper</name>
</json:item>
<json:item>
<name>M. R. Hjelmfelt</name>
</json:item>
<json:item>
<name>R. G. Derickson</name>
</json:item>
<json:item>
<name>D. A. R. Kristovich</name>
</json:item>
<json:item>
<name>N. F. Laird</name>
</json:item>
</author>
<host>
<volume>128</volume>
<pages>
<last>3295</last>
<first>3283</first>
</pages>
<author></author>
<title>Mon. Weather Rev.</title>
</host>
<title>Numerical simulation of transitions in boundary layer convective structures in a lake‐effect snow event</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Drüe</name>
</json:item>
<json:item>
<name>G. Heinemann</name>
</json:item>
</author>
<host>
<volume>31</volume>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>High‐resolution maps of the sea‐ice concentration from MODIS satellite data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Etling</name>
</json:item>
<json:item>
<name>R. A. Brown</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>248</last>
<first>215</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Roll vortices in the planetary boundary layer: A review</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. C. Foster</name>
</json:item>
</author>
<host>
<volume>333</volume>
<pages>
<last>123</last>
<first>97</first>
</pages>
<author></author>
<title>J. Fluid Mech.</title>
</host>
<title>Structure and energetics of optimal Ekman layer perturbations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. L. Grossman</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>357</last>
<first>323</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>An analysis of vertical velocity spectra obtained in the BOMEX fair‐weather, trade‐wind boundary layer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Gryschka</name>
</json:item>
<json:item>
<name>S. Raasch</name>
</json:item>
</author>
<host>
<volume>32</volume>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Roll convection during a cold air outbreak: A large eddy simulation with stationary model domain</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Arctic radiation and turbulence interaction study</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>P. F. Hein</name>
</json:item>
<json:item>
<name>R. A. Brown</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>199</last>
<first>177</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Observations of longitudinal roll vortices during arctic cold air outbreaks over open water</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Kawase</name>
</json:item>
<json:item>
<name>T. Sato</name>
</json:item>
<json:item>
<name>F. Kimura</name>
</json:item>
</author>
<host>
<volume>32</volume>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Numerical experiments on cloud streets in the lee of island arcs during cold‐air outbreaks</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. R. Kristovich</name>
</json:item>
<json:item>
<name>R. A. Steve</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>2090</last>
<first>2083</first>
</pages>
<author></author>
<title>J. Appl. Meteorol.</title>
</host>
<title>A satellite study of cloud‐band frequencies over the Great Lakes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. R. Kristovich</name>
</json:item>
<json:item>
<name>N. F. Laird</name>
</json:item>
<json:item>
<name>M. R. Hjelmfelt</name>
</json:item>
<json:item>
<name>R. G. Derickson</name>
</json:item>
<json:item>
<name>K. A. Cooper</name>
</json:item>
</author>
<host>
<volume>128</volume>
<pages>
<last>2909</last>
<first>2895</first>
</pages>
<author></author>
<title>Mon. Weather Rev.</title>
</host>
<title>Transitions in boundary layer meso‐γ convective structures: An observational case study</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. A. Le Mone</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>1091</last>
<first>1077</first>
</pages>
<author></author>
<title>J. Atmos. Sci.</title>
</host>
<title>The structure and dynamics of horizontal roll vortices in the planetary boundary layer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Q. Liu</name>
</json:item>
<json:item>
<name>G. W. K. Moore</name>
</json:item>
<json:item>
<name>K. Tsuboki</name>
</json:item>
<json:item>
<name>I. A. Renfrew</name>
</json:item>
</author>
<host>
<volume>31</volume>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>A high‐resolution simulation of convective roll clouds during a cold‐air outbreak</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Q. Liu</name>
</json:item>
<json:item>
<name>G. W. K. Moore</name>
</json:item>
<json:item>
<name>K. Tsuboki</name>
</json:item>
<json:item>
<name>I. A. Renfrew</name>
</json:item>
</author>
<host>
<volume>118</volume>
<pages>
<last>581</last>
<first>557</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>The effect of the sea‐ice zone on the development of boundary‐layer roll clouds during cold‐air outbreaks</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Lohou</name>
</json:item>
<json:item>
<name>A. Druilhet</name>
</json:item>
<json:item>
<name>B. Campistron</name>
</json:item>
</author>
<host>
<volume>89</volume>
<pages>
<last>444</last>
<first>407</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Spatial and temporal characteristics of horizontal rolls and cells in the atmospheric boundary layer based on radar and in situ</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Lüpkes</name>
</json:item>
<json:item>
<name>G. Birnbaum</name>
</json:item>
</author>
<host>
<volume>117</volume>
<pages>
<last>211</last>
<first>179</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Surface drag in the arctic marginal sea‐ice zone: A comparison of different parameterisation concepts</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Müller</name>
</json:item>
<json:item>
<name>B. Brümmer</name>
</json:item>
<json:item>
<name>W. Alpers</name>
</json:item>
</author>
<host>
<volume>127</volume>
<pages>
<last>380</last>
<first>363</first>
</pages>
<author></author>
<title>Mon. Weather Rev.</title>
</host>
<title>Roll convection within an arctic cold‐air outbreak: Interpretation of in situ aircraft measurements and spaceborne SAR imagery by a three‐dimensional Atmospheric Model</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Raasch</name>
</json:item>
<json:item>
<name>G. Harbusch</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>59</last>
<first>31</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>An analysis of secondary circulations and their effects caused by small‐scale surface inhomogeneities using large‐eddy simulation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Raasch</name>
</json:item>
<json:item>
<name>M. Schröter</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>372</last>
<first>363</first>
</pages>
<author></author>
<title>Meteorol. Z.</title>
</host>
<title>PALM: A large‐eddy simulation model performing on massively parallel computers</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I. A. Renfrew</name>
</json:item>
<json:item>
<name>G. W. K. Moore</name>
</json:item>
</author>
<host>
<volume>127</volume>
<pages>
<last>2394</last>
<first>2379</first>
</pages>
<author></author>
<title>Mon. Weather Rev.</title>
</host>
<title>An extreme cold‐air outbreak over the Labrador Sea: Roll vortices and air‐sea interaction</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. J. Tripoli</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>3249</last>
<first>3232</first>
</pages>
<author></author>
<title>J. Atmos. Sci.</title>
</host>
<title>Numerical study of the 10 January 1998 lake‐effect bands observed during Lake‐ICE</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. S. Young</name>
</json:item>
<json:item>
<name>D. A. R. Kristovich</name>
</json:item>
<json:item>
<name>M. R. Hjelmfelt</name>
</json:item>
<json:item>
<name>R. C. Foster</name>
</json:item>
</author>
<host>
<volume>83</volume>
<pages>
<last>1001</last>
<first>997</first>
</pages>
<author></author>
<title>Bull. Am. Meteorol. Soc.</title>
</host>
<title>Rolls, streets, waves and more:A review of quasi‐two‐dimensional structures in the atmospheric boundary layer</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>35</volume>
<publisherId>
<json:string>GRL</json:string>
</publisherId>
<pages>
<total>6</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0094-8276</json:string>
</issn>
<issue>23</issue>
<subject>
<json:item>
<value>ATMOSPHERIC COMPOSITION AND STRUCTURE</value>
</json:item>
<json:item>
<value>Air/sea constituent fluxes</value>
</json:item>
<json:item>
<value>GEODESY AND GRAVITY</value>
</json:item>
<json:item>
<value>Mass balance</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Land/atmosphere interactions</value>
</json:item>
<json:item>
<value>HYDROLOGY</value>
</json:item>
<json:item>
<value>Land/atmosphere interactions</value>
</json:item>
<json:item>
<value>ATMOSPHERIC PROCESSES</value>
</json:item>
<json:item>
<value>Boundary layer processes</value>
</json:item>
<json:item>
<value>Convective processes</value>
</json:item>
<json:item>
<value>Ocean/atmosphere interactions</value>
</json:item>
<json:item>
<value>Land/atmosphere interactions</value>
</json:item>
<json:item>
<value>NATURAL HAZARDS</value>
</json:item>
<json:item>
<value>Atmospheric</value>
</json:item>
<json:item>
<value>Atmospheric</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: PHYSICAL</value>
</json:item>
<json:item>
<value>Air/sea interactions</value>
</json:item>
<json:item>
<value>Atmospheric Science</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1944-8007</json:string>
</eissn>
<title>Geophysical Research Letters</title>
<doi>
<json:string>10.1002/(ISSN)1944-8007</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2008</publicationDate>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1029/2008GL035845</json:string>
</doi>
<id>A44F4160D8EA0C68BDED4181F95D025C5F152660</id>
<score>0.3620982</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/A44F4160D8EA0C68BDED4181F95D025C5F152660/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/A44F4160D8EA0C68BDED4181F95D025C5F152660/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A44F4160D8EA0C68BDED4181F95D025C5F152660/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 2008 by the American Geophysical Union.</p>
</availability>
<date>2008</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks</title>
<author xml:id="author-1">
<persName>
<forename type="first">M.</forename>
<surname>Gryschka</surname>
</persName>
<email>gryschka@muk.uni-hannover.de</email>
<affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">C.</forename>
<surname>Drüe</surname>
</persName>
<affiliation>Environmental Meteorology, University Trier, Trier, Germany</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">D.</forename>
<surname>Etling</surname>
</persName>
<affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">S.</forename>
<surname>Raasch</surname>
</persName>
<affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Geophysical Research Letters</title>
<title level="j" type="abbrev">Geophys. Res. Lett.</title>
<idno type="pISSN">0094-8276</idno>
<idno type="eISSN">1944-8007</idno>
<idno type="DOI">10.1002/(ISSN)1944-8007</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2008-12"></date>
<biblScope unit="volume">35</biblScope>
<biblScope unit="issue">23</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">A44F4160D8EA0C68BDED4181F95D025C5F152660</idno>
<idno type="DOI">10.1029/2008GL035845</idno>
<idno type="ArticleID">2008GL035845</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2008</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>In this study we use large‐eddy simulations (LES) to model roll convection within the convective atmospheric boundary‐layer (CBL) during strong cold‐air outbreaks (CAO). Previous LES were mostly unsuccessful in reproducing clear signals of roll convection, especially in case of strong surface heating and weak vertical wind shear in the CBL. In nature however, this phenomenon is very robust and roll convection can be observed as cloud streets in satellite pictures of almost any CAO. Previous LES studies assumed homogeneous sea‐ice, unlike the current study, where under strong surface heating clear signals of rolls appear only when introducing sea‐ice inhomogeneities in the marginal ice zone. For weaker surface heating, rolls also appear without sea‐ice inhomogeneities. The results of this study suggest that in case of strong surface heating and weak vertical wind shear surface inhomogeneities increase the chance of roll formation.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>roll convection</term>
</item>
<item>
<term>cloud streets</term>
</item>
<item>
<term>large eddy simulation</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>ATMOSPHERIC COMPOSITION AND STRUCTURE</term>
</item>
<item>
<term>Air/sea constituent fluxes</term>
</item>
<item>
<term>GEODESY AND GRAVITY</term>
</item>
<item>
<term>Mass balance</term>
</item>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Land/atmosphere interactions</term>
</item>
<item>
<term>HYDROLOGY</term>
</item>
<item>
<term>Land/atmosphere interactions</term>
</item>
<item>
<term>ATMOSPHERIC PROCESSES</term>
</item>
<item>
<term>Boundary layer processes</term>
</item>
<item>
<term>Convective processes</term>
</item>
<item>
<term>Ocean/atmosphere interactions</term>
</item>
<item>
<term>Land/atmosphere interactions</term>
</item>
<item>
<term>NATURAL HAZARDS</term>
</item>
<item>
<term>Atmospheric</term>
</item>
<item>
<term>Atmospheric</term>
</item>
<item>
<term>OCEANOGRAPHY: PHYSICAL</term>
</item>
<item>
<term>Air/sea interactions</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Atmospheric Science</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2008-08-28">Received</change>
<change when="2008-10-28">Registration</change>
<change when="2008-12">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/A44F4160D8EA0C68BDED4181F95D025C5F152660/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="grl25253">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-8007</doi>
<issn type="print">0094-8276</issn>
<issn type="electronic">1944-8007</issn>
<idGroup>
<id type="product" value="GRL"></id>
<id type="coden" value="GPRLAJ"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="GEOPHYSICAL RESEARCH LETTERS">Geophysical Research Letters</title>
<title type="short">Geophys. Res. Lett.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="230">
<doi>10.1002/grl.v35.23</doi>
<numberingGroup>
<numbering type="journalVolume" number="35">35</numbering>
<numbering type="journalIssue">23</numbering>
</numberingGroup>
<coverDate startDate="2008-12">December 2008</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="50" type="article" status="forIssue">
<doi>10.1029/2008GL035845</doi>
<idGroup>
<id type="editorialOffice" value="2008GL035845"></id>
<id type="society" value="L23804"></id>
<id type="unit" value="GRL25253"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="6"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Atmospheric Science</title>
<title type="tocHeading1">Atmospheric Science</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2008 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2008-08-28"></event>
<event type="manuscriptRevised" date="2008-10-20"></event>
<event type="manuscriptAccepted" date="2008-10-28"></event>
<event type="firstOnline" date="2008-12-03"></event>
<event type="publishedOnlineFinalForm" date="2008-12-03"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.0; WileyML 3G Packaging Tool v1.0; AGU2WileyML3G Final Clean Up v1.0" date="2012-12-15"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-26"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0312">Air/sea constituent fluxes</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1218">Mass balance</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1631">Land/atmosphere interactions</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1843">Land/atmosphere interactions</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3307">Boundary layer processes</subject>
<subject href="http://psi.agu.org/taxonomy5/3314">Convective processes</subject>
<subject href="http://psi.agu.org/taxonomy5/3339">Ocean/atmosphere interactions</subject>
<subject href="http://psi.agu.org/taxonomy5/3322">Land/atmosphere interactions</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4301">Atmospheric</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4301">Atmospheric</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4504">Air/sea interactions</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="grl25253-cit-0000" type="self">
<author>
<familyName>Gryschka</familyName>
,
<givenNames>M.</givenNames>
</author>
,
<author>
<givenNames>C.</givenNames>
<familyName>Drüe</familyName>
</author>
,
<author>
<givenNames>D.</givenNames>
<familyName>Etling</familyName>
</author>
, and
<author>
<givenNames>S.</givenNames>
<familyName>Raasch</familyName>
</author>
(
<pubYear year="2008">2008</pubYear>
),
<articleTitle>On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks</articleTitle>
,
<journalTitle>Geophys. Res. Lett.</journalTitle>
,
<vol>35</vol>
, L23804, doi:
<accessionId ref="info:doi/10.1029/2008GL035845">10.1029/2008GL035845</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:GRL.GRL25253.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="2"></count>
</countGroup>
<titleGroup>
<title type="main">On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks</title>
<title type="short">LES OF CLOUD STREETS</title>
<title type="shortAuthors">Gryschka
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="grl25253-cr-0001" affiliationRef="#grl25253-aff-0001">
<personName>
<givenNames>M.</givenNames>
<familyName>Gryschka</familyName>
</personName>
<contactDetails>
<email normalForm="gryschka@muk.uni-hannover.de">gryschka@muk.uni-hannover.de</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="grl25253-cr-0002" affiliationRef="#grl25253-aff-0002">
<personName>
<givenNames>C.</givenNames>
<familyName>Drüe</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="grl25253-cr-0003" affiliationRef="#grl25253-aff-0001">
<personName>
<givenNames>D.</givenNames>
<familyName>Etling</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="grl25253-cr-0004" affiliationRef="#grl25253-aff-0001">
<personName>
<givenNames>S.</givenNames>
<familyName>Raasch</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="DE" type="organization" xml:id="grl25253-aff-0001">
<orgDiv>Institute of Meteorology and Climatology</orgDiv>
<orgName>Leibniz University of Hannover</orgName>
<address>
<city>Hannover</city>
<country>Germany</country>
</address>
</affiliation>
<affiliation countryCode="DE" type="organization" xml:id="grl25253-aff-0002">
<orgDiv>Environmental Meteorology</orgDiv>
<orgName>University Trier</orgName>
<address>
<city>Trier</city>
<country>Germany</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="grl25253-kwd-0001">roll convection</keyword>
<keyword xml:id="grl25253-kwd-0002">cloud streets</keyword>
<keyword xml:id="grl25253-kwd-0003">large eddy simulation</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="grl25253-para-0001" label="1">In this study we use large‐eddy simulations (LES) to model roll convection within the convective atmospheric boundary‐layer (CBL) during strong cold‐air outbreaks (CAO). Previous LES were mostly unsuccessful in reproducing clear signals of roll convection, especially in case of strong surface heating and weak vertical wind shear in the CBL. In nature however, this phenomenon is very robust and roll convection can be observed as cloud streets in satellite pictures of almost any CAO. Previous LES studies assumed homogeneous sea‐ice, unlike the current study, where under strong surface heating clear signals of rolls appear only when introducing sea‐ice inhomogeneities in the marginal ice zone. For weaker surface heating, rolls also appear without sea‐ice inhomogeneities. The results of this study suggest that in case of strong surface heating and weak vertical wind shear surface inhomogeneities increase the chance of roll formation.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>LES OF CLOUD STREETS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Gryschka</namePart>
<affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</affiliation>
<affiliation>E-mail: gryschka@muk.uni-hannover.de</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Drüe</namePart>
<affiliation>Environmental Meteorology, University Trier, Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Etling</namePart>
<affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Raasch</namePart>
<affiliation>Institute of Meteorology and Climatology, Leibniz University of Hannover, Hannover, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2008-12</dateIssued>
<dateCaptured encoding="w3cdtf">2008-08-28</dateCaptured>
<dateValid encoding="w3cdtf">2008-10-28</dateValid>
<edition>Gryschka, M., C. Drüe, D. Etling, and S. Raasch (2008), On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks, Geophys. Res. Lett., 35, L23804, doi:10.1029/2008GL035845.</edition>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">2</extent>
</physicalDescription>
<abstract>In this study we use large‐eddy simulations (LES) to model roll convection within the convective atmospheric boundary‐layer (CBL) during strong cold‐air outbreaks (CAO). Previous LES were mostly unsuccessful in reproducing clear signals of roll convection, especially in case of strong surface heating and weak vertical wind shear in the CBL. In nature however, this phenomenon is very robust and roll convection can be observed as cloud streets in satellite pictures of almost any CAO. Previous LES studies assumed homogeneous sea‐ice, unlike the current study, where under strong surface heating clear signals of rolls appear only when introducing sea‐ice inhomogeneities in the marginal ice zone. For weaker surface heating, rolls also appear without sea‐ice inhomogeneities. The results of this study suggest that in case of strong surface heating and weak vertical wind shear surface inhomogeneities increase the chance of roll formation.</abstract>
<subject>
<genre>keywords</genre>
<topic>roll convection</topic>
<topic>cloud streets</topic>
<topic>large eddy simulation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Geophysical Research Letters</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Geophys. Res. Lett.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0312">Air/sea constituent fluxes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1218">Mass balance</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1631">Land/atmosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1843">Land/atmosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3307">Boundary layer processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3314">Convective processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3339">Ocean/atmosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3322">Land/atmosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4301">Atmospheric</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4301">Atmospheric</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4504">Air/sea interactions</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Atmospheric Science</topic>
</subject>
<identifier type="ISSN">0094-8276</identifier>
<identifier type="eISSN">1944-8007</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-8007</identifier>
<identifier type="CODEN">GPRLAJ</identifier>
<identifier type="PublisherID">GRL</identifier>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>23</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>6</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">A44F4160D8EA0C68BDED4181F95D025C5F152660</identifier>
<identifier type="DOI">10.1029/2008GL035845</identifier>
<identifier type="ArticleID">2008GL035845</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2008 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001187 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001187 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A44F4160D8EA0C68BDED4181F95D025C5F152660
   |texte=   On the influence of sea‐ice inhomogeneities onto roll convection in cold‐air outbreaks
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024