Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation

Identifieur interne : 001089 ( Istex/Corpus ); précédent : 001088; suivant : 001090

Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation

Auteurs : Jeffrey T. Andre ; D. Alfred Owens

Source :

RBID : ISTEX:EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F

Abstract

Leibowitz and his colleagues found that accommodation rests at an intermediate distance that shows wide interindividual variation. They proposed that this intermediate dark focus is useful for correcting anomalous refractive errors, but this proposal was later questioned when different measurement techniques yielded discrepant dark focus values. The present study measured dark focus under two levels of visual attentiveness: (a) when performing an open-loop, active viewing task (aDF); and (b) when looking passively into darkness (pDF). These dark focus measures were then compared with an optimal accommodation distance that was derived from accommodative response functions in bright and dim luminance. The aDF measures were found to be more myopic (nearer) than the pDF measures and highly correlated with the optical accommodation distance. No significant relationship was found between pDF and optical accommodation distance. These findings confirm that measures of dark focus are affected by nonoptical aspects of the measurement technique; they also suggest that techniques that demand visual attention (aDF) yield dark focus values that are more useful for optimizing accommodation and potentially reducing fatigue in difficult situations.

Url:
DOI: 10.1518/001872099779577309

Links to Exploration step

ISTEX:EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation</title>
<author wicri:is="90%">
<name sortKey="Andre, Jeffrey T" sort="Andre, Jeffrey T" uniqKey="Andre J" first="Jeffrey T." last="Andre">Jeffrey T. Andre</name>
<affiliation>
<mods:affiliation>Franklin & Marshall College, Lancaster, Pennsylvania</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Owens, D Alfred" sort="Owens, D Alfred" uniqKey="Owens D" first="D. Alfred" last="Owens">D. Alfred Owens</name>
<affiliation>
<mods:affiliation>Franklin & Marshall College, Lancaster, Pennsylvania</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1518/001872099779577309</idno>
<idno type="url">https://api.istex.fr/document/EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001089</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001089</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation</title>
<author wicri:is="90%">
<name sortKey="Andre, Jeffrey T" sort="Andre, Jeffrey T" uniqKey="Andre J" first="Jeffrey T." last="Andre">Jeffrey T. Andre</name>
<affiliation>
<mods:affiliation>Franklin & Marshall College, Lancaster, Pennsylvania</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Owens, D Alfred" sort="Owens, D Alfred" uniqKey="Owens D" first="D. Alfred" last="Owens">D. Alfred Owens</name>
<affiliation>
<mods:affiliation>Franklin & Marshall College, Lancaster, Pennsylvania</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Human Factors: The Journal of Human Factors and Ergonomics Society</title>
<idno type="ISSN">0018-7208</idno>
<idno type="eISSN">1547-8181</idno>
<imprint>
<publisher>SAGE Publications</publisher>
<pubPlace>Sage CA: Los Angeles, CA</pubPlace>
<date type="published" when="1999-03">1999-03</date>
<biblScope unit="volume">41</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="139">139</biblScope>
<biblScope unit="page" to="145">145</biblScope>
</imprint>
<idno type="ISSN">0018-7208</idno>
</series>
<idno type="istex">EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F</idno>
<idno type="DOI">10.1518/001872099779577309</idno>
<idno type="ArticleID">10.1518_001872099779577309</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0018-7208</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Leibowitz and his colleagues found that accommodation rests at an intermediate distance that shows wide interindividual variation. They proposed that this intermediate dark focus is useful for correcting anomalous refractive errors, but this proposal was later questioned when different measurement techniques yielded discrepant dark focus values. The present study measured dark focus under two levels of visual attentiveness: (a) when performing an open-loop, active viewing task (aDF); and (b) when looking passively into darkness (pDF). These dark focus measures were then compared with an optimal accommodation distance that was derived from accommodative response functions in bright and dim luminance. The aDF measures were found to be more myopic (nearer) than the pDF measures and highly correlated with the optical accommodation distance. No significant relationship was found between pDF and optical accommodation distance. These findings confirm that measures of dark focus are affected by nonoptical aspects of the measurement technique; they also suggest that techniques that demand visual attention (aDF) yield dark focus values that are more useful for optimizing accommodation and potentially reducing fatigue in difficult situations.</div>
</front>
</TEI>
<istex>
<corpusName>sage</corpusName>
<author>
<json:item>
<name>Jeffrey T. Andre</name>
<affiliations>
<json:string>Franklin & Marshall College, Lancaster, Pennsylvania</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. Alfred Owens</name>
<affiliations>
<json:string>Franklin & Marshall College, Lancaster, Pennsylvania</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>10.1518_001872099779577309</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Leibowitz and his colleagues found that accommodation rests at an intermediate distance that shows wide interindividual variation. They proposed that this intermediate dark focus is useful for correcting anomalous refractive errors, but this proposal was later questioned when different measurement techniques yielded discrepant dark focus values. The present study measured dark focus under two levels of visual attentiveness: (a) when performing an open-loop, active viewing task (aDF); and (b) when looking passively into darkness (pDF). These dark focus measures were then compared with an optimal accommodation distance that was derived from accommodative response functions in bright and dim luminance. The aDF measures were found to be more myopic (nearer) than the pDF measures and highly correlated with the optical accommodation distance. No significant relationship was found between pDF and optical accommodation distance. These findings confirm that measures of dark focus are affected by nonoptical aspects of the measurement technique; they also suggest that techniques that demand visual attention (aDF) yield dark focus values that are more useful for optimizing accommodation and potentially reducing fatigue in difficult situations.</abstract>
<qualityIndicators>
<score>5.925</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>495 x 717 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1251</abstractCharCount>
<pdfWordCount>3301</pdfWordCount>
<pdfCharCount>21606</pdfCharCount>
<pdfPageCount>7</pdfPageCount>
<abstractWordCount>177</abstractWordCount>
</qualityIndicators>
<title>Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation</title>
<refBibs>
<json:item>
<host>
<author></author>
<title>GPOWER: A priori, post-hoc, and compromise power analyses for the Macintosh</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M. A. Bullimore</name>
</json:item>
<json:item>
<name>B. Gilmartin</name>
</json:item>
</author>
<host>
<volume>64</volume>
<pages>
<last>50</last>
<first>45</first>
</pages>
<author></author>
<title>American Journal of Optometry & Physiological Optics</title>
</host>
<title>Tonic accommodation, cognitive demand, and ciliary muscle innervation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. A. Bullimore</name>
</json:item>
<json:item>
<name>B. Gilmartin</name>
</json:item>
<json:item>
<name>R. E. Hogan</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>62</last>
<first>57</first>
</pages>
<author></author>
<title>Ophthalmic and Physiological Optics</title>
</host>
<title>Objective and subjective measurement of tonic accommodation</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Statistical power analysis for the behavioral sciences</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Die theoriedes sehens und räumlichen vorstellens [A theory of vision and space perception from the viewpoints of physics, physiology, and psychology.]</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>S. M. Ebenholtz</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>929</last>
<first>925</first>
</pages>
<author></author>
<title>Vision Research</title>
</host>
<title>Accommodative hysteresis as a function of target-dark focus separation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Epstein</name>
</json:item>
<json:item>
<name>E. Ingelstam</name>
</json:item>
<json:item>
<name>K. Jansson</name>
</json:item>
<json:item>
<name>B. Tengroth</name>
</json:item>
</author>
<host>
<volume>59</volume>
<pages>
<last>943</last>
<first>928</first>
</pages>
<author></author>
<title>Acta Ophthalmologica</title>
</host>
<title>Low-luminance myopia as measured with a laser optometer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. L. Francis</name>
</json:item>
<json:item>
<name>B. C. Jiang</name>
</json:item>
<json:item>
<name>D. A. Owens</name>
</json:item>
<json:item>
<name>R. A. Tyrrell</name>
</json:item>
<json:item>
<name>H. W. Leibowitz</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<first>135</first>
</pages>
<author></author>
<title>Investigative Ophthalmology & Visual Science</title>
</host>
<title>“Effort to see” affects accommodation and vergence but not their interactions</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Handbook of physiological optics</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>R. T. Hennessy</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>1120</last>
<first>1114</first>
</pages>
<author></author>
<title>Journal of the Optical Society of America</title>
</host>
<title>Instrument myopia</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. T. Hennessy</name>
</json:item>
<json:item>
<name>H. Leibowitz</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>1701</last>
<first>1700</first>
</pages>
<author></author>
<title>Journal of the Optical Society of America</title>
</host>
<title>Subjective measurement of accommodation with laser light</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. T. Hennessy</name>
</json:item>
<json:item>
<name>H. Leibowitz</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>239</last>
<first>237</first>
</pages>
<author></author>
<title>Behavioral Research Methods & Instrumentation</title>
</host>
<title>Laser optometer incorporating the Badal principle</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Heron</name>
</json:item>
<json:item>
<name>A. C. Smith</name>
</json:item>
<json:item>
<name>B. Winn</name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>90</last>
<first>79</first>
</pages>
<author></author>
<title>Ophthalmic and Physiological Optics</title>
</host>
<title>The influence of method on the stability of dark focus position of accommodation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. A. Johnson</name>
</json:item>
</author>
<host>
<volume>66</volume>
<pages>
<last>142</last>
<first>138</first>
</pages>
<author></author>
<title>Journal of the Optical Society of America</title>
</host>
<title>Effects of luminance and stimulus distance on accommodation and visual resolution</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. W. Leibowitz</name>
</json:item>
<json:item>
<name>D. A. Owens</name>
</json:item>
</author>
<host>
<volume>189</volume>
<pages>
<last>648</last>
<first>646</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Anomalous myopias and the intermediate dark focus of accommodation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. W. Leibowitz</name>
</json:item>
<json:item>
<name>D. A. Owens</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>1128</last>
<first>1121</first>
</pages>
<author></author>
<title>Journal of the Optical Society of America</title>
</host>
<title>Night myopia and the intermediate dark-focus of accommodation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. W. Leibowitz</name>
</json:item>
<json:item>
<name>D. A. Owens</name>
</json:item>
</author>
<host>
<volume>46</volume>
<pages>
<last>147</last>
<first>133</first>
</pages>
<author></author>
<title>Documenta Ophthalmologica</title>
</host>
<title>New evidence for the intermediate position of relaxed accommodation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. V. Malmstrom</name>
</json:item>
<json:item>
<name>R. J. Randle</name>
</json:item>
<json:item>
<name>J. S. Bendix</name>
</json:item>
<json:item>
<name>R. J. Weber</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>448</last>
<first>440</first>
</pages>
<author></author>
<title>Perception & Psychophysics</title>
</host>
<title>The visual accommodation response during concurrent mental activity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. H. Mershon</name>
</json:item>
<json:item>
<name>T. L. Amerson</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>221</last>
<first>217</first>
</pages>
<author></author>
<title>Investigative Ophthalmology & Visual Science</title>
</host>
<title>Stability of measures of the dark focus of accommodation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. J. Miller</name>
</json:item>
<json:item>
<name>R. G Pigion</name>
</json:item>
<json:item>
<name>M. F. Wesner</name>
</json:item>
<json:item>
<name>J. G. Patterson</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>540</last>
<first>532</first>
</pages>
<author></author>
<title>Perception & Psychophysics</title>
</host>
<title>Accommodation fatigue and dark focus: The effects of accommodation-free visual work as assessed by two psychophysical methods</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. W. Morgan</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>353</last>
<first>347</first>
</pages>
<author></author>
<title>American Journal of Optometry</title>
</host>
<title>The resting state of accommodation</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Optics: An introduction for ophthalmologists</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>O. Östberg</name>
</json:item>
<json:item>
<name> </name>
</json:item>
<json:item>
<name> </name>
</json:item>
</author>
<host>
<pages>
<last>52</last>
<first>41</first>
</pages>
<author></author>
<title>Ergonomic aspects of visual display terminals</title>
</host>
<title>Accommodation and visual fatigue in display work</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. M. Otero</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>948</last>
<first>942</first>
</pages>
<author></author>
<title>Journal of the Optical Society of America</title>
</host>
<title>Influence of the state of accommodation on the visual performance of the human eye</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Owens</name>
</json:item>
</author>
<host>
<volume>72</volume>
<pages>
<last>387</last>
<first>378</first>
</pages>
<author></author>
<title>American Scientist</title>
</host>
<title>The resting state of the eyes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Owens</name>
</json:item>
<json:item>
<name>H. W. Leibowitz</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>717</last>
<first>709</first>
</pages>
<author></author>
<title>American Journal of Optometry & Physiological Optics</title>
</host>
<title>Night myopia: Cause and a possible basis for amelioration</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Owens</name>
</json:item>
<json:item>
<name>K. Wolf-Kelly</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>749</last>
<first>743</first>
</pages>
<author></author>
<title>Investigative Ophthalmology & Visual Science</title>
</host>
<title>Near work, visual fatigue, and variations of oculomotor tonus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. B. Post</name>
</json:item>
<json:item>
<name>C. A. Johnson</name>
</json:item>
<json:item>
<name>A. D. Owens</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>537</last>
<first>533</first>
</pages>
<author></author>
<title>American Journal of Optometry and Physiological Optics</title>
</host>
<title>Does performance of tasks affect the resting focus of accommodation?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. B. Post</name>
</json:item>
<json:item>
<name>C. A. Johnson</name>
</json:item>
<json:item>
<name>T. K. Tsuetaki</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>332</last>
<first>327</first>
</pages>
<author></author>
<title>Ophthalmic and Physiological Optics</title>
</host>
<title>Comparison of laser and infrared techniques for measurement of the resting state of accommodation: Mean differences and long-term variability</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. B. Post</name>
</json:item>
<json:item>
<name>R. L. Owens</name>
</json:item>
<json:item>
<name>D. A. Owens</name>
</json:item>
</author>
<host>
<volume>69</volume>
<pages>
<last>92</last>
<first>89</first>
</pages>
<author></author>
<title>Journal of the Optical Society of America</title>
</host>
<title>Correction of empty-field myopia on the basis of the dark focus of accommodation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. S. Reed</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>134</last>
<first>98</first>
</pages>
<author></author>
<title>Journal of Motor Behavior</title>
</host>
<title>An outline of a theory of action systems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Rosenfield</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>436</last>
<first>431</first>
</pages>
<author></author>
<title>Ophthalmic and Physiological Optics</title>
</host>
<title>Comparison of accommodative adaptation using laser and infrared optometers</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Rosenfield</name>
</json:item>
<json:item>
<name>K. J. Ciuffreda</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>147</last>
<first>142</first>
</pages>
<author></author>
<title>Investigative Ophthalmology & Visual Science</title>
</host>
<title>Effect of surround propinquity on the open-loop accommodative response</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Rosenfield</name>
</json:item>
<json:item>
<name>K. J. Ciuffreda</name>
</json:item>
<json:item>
<name>G. K. Hung</name>
</json:item>
<json:item>
<name>B. Gilmartin</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>284</last>
<first>266</first>
</pages>
<author></author>
<title>Ophthalmic and Physiological Optics</title>
</host>
<title>Tonic accommodation: A review. I. Basic aspects</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Schober</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>290</last>
<first>282</first>
</pages>
<author></author>
<title>Optik</title>
</host>
<title>über die akkommodationsruhelage [On the resting point of accommodation]</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. A. Tyrrell</name>
</json:item>
<json:item>
<name>J. F. Thayer</name>
</json:item>
<json:item>
<name>B. H. Friedman</name>
</json:item>
<json:item>
<name>H. W. Leibowitz</name>
</json:item>
<json:item>
<name>E. L. Francis</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>67</last>
<first>46</first>
</pages>
<issue>1</issue>
<author></author>
<title>Integrative Physiological and Behavioral Science</title>
</host>
<title>A behavioral link between the oculomotor and cardiovascular systems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Wald</name>
</json:item>
<json:item>
<name>D. R. Griffin</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>336</last>
<first>321</first>
</pages>
<author></author>
<title>Journal of the Optical Society of America</title>
</host>
<title>The change in refractive power of the human eye in dim and bright light</title>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>41</volume>
<publisherId>
<json:string>HFS</json:string>
</publisherId>
<pages>
<last>145</last>
<first>139</first>
</pages>
<issn>
<json:string>0018-7208</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1547-8181</json:string>
</eissn>
<title>Human Factors: The Journal of Human Factors and Ergonomics Society</title>
</host>
<categories>
<wos>
<json:string>social science</json:string>
<json:string>psychology, applied</json:string>
<json:string>ergonomics</json:string>
<json:string>science</json:string>
<json:string>psychology</json:string>
<json:string>engineering, industrial</json:string>
<json:string>behavioral sciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>psychology & cognitive sciences</json:string>
<json:string>human factors</json:string>
</scienceMetrix>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1518/001872099779577309</json:string>
</doi>
<id>EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F</id>
<score>0.027190935</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>SAGE Publications</publisher>
<pubPlace>Sage CA: Los Angeles, CA</pubPlace>
<availability>
<p>SAGE</p>
</availability>
<date>1999</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation</title>
<author xml:id="author-1">
<persName>
<forename type="first">Jeffrey T.</forename>
<surname>Andre</surname>
</persName>
<affiliation>Franklin & Marshall College, Lancaster, Pennsylvania</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">D. Alfred</forename>
<surname>Owens</surname>
</persName>
<affiliation>Franklin & Marshall College, Lancaster, Pennsylvania</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Human Factors: The Journal of Human Factors and Ergonomics Society</title>
<idno type="pISSN">0018-7208</idno>
<idno type="eISSN">1547-8181</idno>
<imprint>
<publisher>SAGE Publications</publisher>
<pubPlace>Sage CA: Los Angeles, CA</pubPlace>
<date type="published" when="1999-03"></date>
<biblScope unit="volume">41</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="139">139</biblScope>
<biblScope unit="page" to="145">145</biblScope>
</imprint>
</monogr>
<idno type="istex">EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F</idno>
<idno type="DOI">10.1518/001872099779577309</idno>
<idno type="ArticleID">10.1518_001872099779577309</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Leibowitz and his colleagues found that accommodation rests at an intermediate distance that shows wide interindividual variation. They proposed that this intermediate dark focus is useful for correcting anomalous refractive errors, but this proposal was later questioned when different measurement techniques yielded discrepant dark focus values. The present study measured dark focus under two levels of visual attentiveness: (a) when performing an open-loop, active viewing task (aDF); and (b) when looking passively into darkness (pDF). These dark focus measures were then compared with an optimal accommodation distance that was derived from accommodative response functions in bright and dim luminance. The aDF measures were found to be more myopic (nearer) than the pDF measures and highly correlated with the optical accommodation distance. No significant relationship was found between pDF and optical accommodation distance. These findings confirm that measures of dark focus are affected by nonoptical aspects of the measurement technique; they also suggest that techniques that demand visual attention (aDF) yield dark focus values that are more useful for optimizing accommodation and potentially reducing fatigue in difficult situations.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1999-03">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus sage not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" dtd-version="2.3" xml:lang="EN">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">sphfs</journal-id>
<journal-id journal-id-type="publisher-id">HFS</journal-id>
<journal-title>Human Factors: The Journal of Human Factors and Ergonomics Society</journal-title>
<issn pub-type="ppub">0018-7208</issn>
<publisher>
<publisher-name>SAGE Publications</publisher-name>
<publisher-loc>Sage CA: Los Angeles, CA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1518/001872099779577309</article-id>
<article-id pub-id-type="publisher-id">10.1518_001872099779577309</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Andre</surname>
<given-names>Jeffrey T.</given-names>
</name>
<aff>Franklin & Marshall College, Lancaster, Pennsylvania</aff>
</contrib>
</contrib-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Owens</surname>
<given-names>D. Alfred</given-names>
</name>
<aff>Franklin & Marshall College, Lancaster, Pennsylvania</aff>
</contrib>
</contrib-group>
<pub-date pub-type="ppub">
<month>03</month>
<year>1999</year>
</pub-date>
<volume>41</volume>
<issue>1</issue>
<fpage>139</fpage>
<lpage>145</lpage>
<abstract>
<p>Leibowitz and his colleagues found that accommodation rests at an intermediate distance that shows wide interindividual variation. They proposed that this intermediate
<italic>dark focus</italic>
is useful for correcting anomalous refractive errors, but this proposal was later questioned when different measurement techniques yielded discrepant dark focus values. The present study measured dark focus under two levels of visual attentiveness: (a) when performing an open-loop, active viewing task (aDF); and (b) when looking passively into darkness (pDF). These dark focus measures were then compared with an optimal accommodation distance that was derived from accommodative response functions in bright and dim luminance. The aDF measures were found to be more myopic (nearer) than the pDF measures and highly correlated with the optical accommodation distance. No significant relationship was found between pDF and optical accommodation distance. These findings confirm that measures of dark focus are affected by nonoptical aspects of the measurement technique; they also suggest that techniques that demand visual attention (aDF) yield dark focus values that are more useful for optimizing accommodation and potentially reducing fatigue in difficult situations.</p>
</abstract>
<custom-meta-wrap>
<custom-meta xlink:type="simple">
<meta-name>sagemeta-type</meta-name>
<meta-value>Journal Article</meta-value>
</custom-meta>
<custom-meta xlink:type="simple">
<meta-name>search-text</meta-name>
<meta-value> Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation Jeffrey T. Andre and D. Alfred Owens, Franklin & Marshall College, Lancaster, Pennsylvania Leibowitz and his colleagues found that accommodation rests at an intermediate distance that shows wide interindividual variation. They proposed that this inter- mediate dark focus is useful for correcting anomalous refractive errors, but this proposal was later questioned when different measurement techniques yielded discrepant dark focus values. The present study measured dark focus under two levels of visual attentiveness: (a) when performing an open-loop, active viewing task (aDF); and (b) when looking passively into darkness (pDF). These dark focus measures were then compared with an optimal accommodation distance that was derived from accommodative response functions in bright and dim luminance. The aDF measures were found to be more myopic (nearer) than the pDF measures and highly correlated with the optical accommodation distance. No significant relationship was found between pDF and optical accommodation distance. These findings confirm that measures of dark focus are affected by nonoptical aspects of the measurement technique; they also suggest that tech- niques that demand visual attention (aDF) yield dark focus values that are more useful for optimizing accommodation and potentially reducing fatigue in diffi- cult situations. INTRODUCTION Historically, visual accommodation has been described as resting at the far point of the eye's focusing range (Helmholtz, 1909). However, scattered empirical evidence from as early as the mid-19th century suggested an intermediate resting position (Weber, as cited in Cornelius, 1861; Morgan, 1957; Otero, 1951; Schober, 1954; Wald & Griffin, 1947). Using the newly developed laser optometer (Hennessy & Leibowitz, 1970, 1972), Leibowitz and his col- leagues found new evidence for the intermedi- ate resting-state theory and discovered wide individual differences in resting-state measures (Leibowitz & Owens, 1975b, 1978). Because the resting focus was first measured in dark- ness, it was operationally defined as the dark focus (Leibowitz & Owens, 1975a). Tests of 220 college-aged individuals yielded an aver- age dark focus of 1.52 diopters (D; 66 cm), with individual values ranging from 0 to 4 D (Leibowitz & Owens, 1978). Similar findings were subsequently obtained by other laborato- ries using a laser optometer (Epstein, Ingelstam, Jansson, & Tengroth, 1981; Heron, Smith, & Winn, 1981; Mershon & Amerson, 1980). A literature review of the resting state of accom- modation and the related concept of tonic accommodation has recently been published by Rosenfield, Ciuffreda, Hung, and Gilmartin (1993). Since the mid-1970s, researchers have investigated the usefulness of the dark focus for predicting and optimizing performance under difficult visual conditions. In a study in- vestigating "anomalous myopias" (which have no anatomical basis and are situation specific), Leibowitz and Owens (1975a) found strong positive correlations between individual dark Address correspondence to D. Alfred Owens, Department of Psychology, Franklin & Marshall College, Lancaster, PA, 17604-3003; f_owens@acad.fandm.edu. HUMAN FACTORS, Vol. 41, No. 1, March 1999, pp. 139-145. Copyright © 1999, Human Factors and Ergonomics Society. All rights reserved. 140 March 1999 - Human Factors focus values and participants' manifestations of night myopia, empty field myopia, and instrument myopia (r = .84, .81, and .68, respectively). Hennessy (1975) also reported a strong correlation between instrument myopia and the resting state of accommodation; indi- viduals with closer dark focus values had higher instrument myopia (r = .78). These results suggested that dark-focus-based refrac- tive corrections could be used to optimize visual performance at night and in high-altitude flight (see, e.g., Owens & Leibowitz, 1976; Post, Owens, Owens, & Leibowitz, 1979). Another potential application of dark focus involves difficulties with near visual tasks. Ostberg (1980) reported that after a 2-h work shift, air traffic controllers exhibited a signifi- cant inward ("myopic") shift of their dark focus and an increased bias of accommodative responses toward their post-task dark focus value. He proposed that this bias was a symp- tom of visual fatigue and that comparison of the pre- and post- measurements of dark focus was one way to quantify such fatigue. Eben- holtz (1992) and Owens and Wolf-Kelly (1987) also found an inward shift of the dark focus and the far point following near work. This shift of the dark focus resulted in "tran- sient myopia," which is often clinically attrib- uted to accommodative "spasm" or "hysteresis." Moreover, Owens and Wolf-Kelly reported that the magnitude of adaptation was related to the observer's initial dark focus posture, and found that individuals with far dark focus values exhibited greater adaptation and greater symptoms of visual fatigue following a near task. These findings are consistent with several studies showing that accommodation is most accurate (Johnson, 1976) and oculo- motor adaptation is minimal (Ebenholtz, 1992; Miller, Pigion, Wesner, & Patterson, 1983) for visual tasks located at the optical distance of the dark focus. The practical utility of the dark focus came under serious doubt, however, when different measurement techniques - particularly those using objective, infrared optometers - yielded discrepant dark focus values. Although some studies found good correlations between dark focus values measured with laser optometers and those measured with infrared optometers (Bullimore, Gilmartin, & Hogan, 1986), oth- ers did not (Post, Johnson, & Owens, 1985; Post, Johnson, & Tsuetaki, 1984). In general, infrared optometers yield less myopic dark focus values than values obtained with a laser optometer. For example, Rosenfield (1989) reported that laser optometer dark focus val- ues averaged = 2 D, but dark focus values of the same individuals when measured with an infrared optometer had a mean of 1.28 D. One possible interpretation of this discrep- ancy is that measures from infrared optome- ters are more valid because they are not contaminated by subjective factors (such as perception of nearness; Rosenfield & Ciuffreda, 1991) that may be idiosyncratic to the laser optometer. Another possibility is that the dark focus values vary as a consequence of differing levels of visual attention or "effort to see" (Francis, Jiang, Owens, Tyrrell, & Leibowitz, 1989). The laser optometer task requires active attention because observers must watch for intermittent test patterns, which appear at unpredictable intervals; when the stimulus appears, the observers must report apparent motion within the pattern, which is often a somewhat difficult task. On the other hand, infrared optometers typically measure dark focus when observers are looking passively into darkness. Some researchers have associat- ed this task distinction with the effects of cog- nitive or mental load on measurements of the dark focus (Bullimore & Gilmartin, 1987; Malmstrom, Randle, Bendix, & Weber, 1980). However, active watching or looking does not necessarily involve mental activity or a cogni- tive demand, but, rather, can be considered a basic part of normal visual attention. The purpose of the present study is not to address this cognitive issue but to examine whether dark focus measures, obtained either with or without active (attentive) viewing, are differentially correlated with accommodative performance when one is viewing a simple visual display. The distinction between an individual's level of visual attention - and the dark focus measurement associated with it - raises two questions: (a) are there multiple dark focus postures based on visual attentiveness, and (b) if so, which posture predicts performance better ACTIVE AND PASSIVE DARK FOCUS 141 under difficult conditions? The present study addressed these questions by measuring active dark focus (aDF) and passive dark focus (pDF) and by comparing those measures with optimal accommodation distance when read- ing in bright and in dim light. Dark focus val- ues were recorded with an infrared optometer passively in total darkness (pDF) and while individuals actively performed a laser optome- ter task (aDF). Optimal accommodation dis- tance was defined as the stimulus distance at which accommodation was most accurate in weak and in strong stimulus conditions. Ac- commodative response functions were ob- tained while observers fixated on newsprint under bright and dim conditions. After linear regression equations were fitted to each accommodative response function, a "pivot point" (where the two regression functions crossed) was calculated. This pivot point, first demonstrated by Johnson (1976), was defined as the optimal accommodation distance, regardless of stimulus quality. The primary objective was to determine whether the opti- mal accommodation distance for each partici- pant could be predicted better by either the aDF or the pDF METHOD Participants There were 7 women and 3 men who were emmetropic or had contact-lens corrected vision participating in the experiment (mean age = 20.4 years; average acuity = 20/19 or 0.95 minimum angle of resolution). Of the participants, 5 wore contact lenses; none reported any visual pathologies. Apparatus Accommodation was measured using a Canon Rl infrared autorefractor. A laser optometer mounted atop the Canon Rl was positioned so that participants could perform the laser task (the active viewing condition) while their accommodation was assessed with the Canon Rl. The laser optometer task re- quired directional judgments of the motion of laser speckle patterns presented intermittently at eye level. Pattern presentation distances were determined using a bracketing technique with starting distances of approximately -1 and 10 D. A complete discussion of the laser optometer apparatus and task can be found in Hennessy & Leibowitz (1970, 1972) and Owens (1984). Accommodative response functions (ARFs) were measured from the left eye with the Canon Rl while the right eye viewed newsprint stimuli presented at optical distances of 0, 0.5, 1, 2, 3, 4, and 5 D under luminances of 43 and 0.06 cd/m2; letter height was held constant at 8.4 arc-minutes by means of a Badal optical system (Ogle, 1971). Procedure/Design Following a 5-min dark adaptation period, initial dark focus measurements were made. Active and passive dark focus were measured with the autorefractor before and after the intervening accommodative response task (newsprint viewing) during a single experi- mental session that lasted for approximately 30 min. During the laser optometer task, observers were instructed to specify whether the laser speckles were moving up, down, or in random directions ("boiling") for each pat- tern presentation. The optical distance of the boiling response was recorded as the position of the dark focus on that trial. The order of aDF and pDF measurements and the order of luminance conditions for the accommodative response task were counterbal- anced across participants. For each participant, stimulus distances for the accommodative response task were also counterbalanced such that the three nearest (3, 4, and 5 D) and three farthest (0, 0.5, and 1 D) distances alter- nated randomly, and the middle distance (2 D) was randomly placed within the order. For example, one possible order for stimulus distances was 0.5, 4, 1,2, 5, 0, and 3 D. Five measurements were taken at each distance and averaged. All participants signed an in- formed consent before the beginning of the experiment, and all were fully debriefed fol- lowing the last set of measurements. RESULTS Pre- and post-dark-focus measurements were recorded to examine whether the inter- vening accommodative response task caused 142 March 1999 - Human Factors any change in the dark focus. There were no significant differences between pre- and post- measurements for aDF (t = 0.02, two-tailed, p = .99), or pDF (t = 1.53, two-tailed, p = .15). Hence, pre- and post-dark-focus values for each participant were combined (aver- aged) before further analysis. Active dark focus measures were found to be significantly higher ("nearer") than pDF measures (1.86 vs. 0.74 D, respectively; t = 2.41, two-tailed, p = .015, |3 = .34). Note that the power of the statistic is equal to 1-|3 (see Cohen, 1988). Power ratings were obtained using the GPOWER computer program (Buchner, Faul, &Erdfelder, 1996). The group mean ARFs for newsprint at both luminances are presented in Figure 1. Group mean values of aDF and pDF are also plotted on the x axis. Participants' high lumi- nance ARF had a significantly higher slope than their low luminance ARF (0.97 vs. 0.10, respectively; t = 10.24, two-tailed, p < .0001, |3 < .0001). As shown in Figure 1, the mean optimal accommodation distance - defined as the intersection of the two ARF functions at which accommodative accuracy was equiva- lent under both luminance conditions - is closer to the mean aDF than the mean pDF Correlation analysis was used to examine the accommodative performance of individual participants. Optimal accommodation dis- tances were calculated for each participant by fitting linear regression functions to his or her ARFs for both luminances. The two regression equations were set equal to each other and were solved for x (the position on the abscissa where functions intersected). Pearson's corre- lations were used to compare these optimal accommodation distances for individual observers with measurements of dark focus. The correlation coefficients are shown in Table 1. As illustrated in Figure 2, a signifi- cant positive correlation was found between aDF and optimal accommodation distance. There was no significant correlation between pDF and optimal accommodation distance. DISCUSSION The present experiment sought to determine whether differences of the dark focus obtained by different measurement techniques affect the 5.5 " 5.0 " 4.5 " Bright (43 cd/m2) y = 0.209 + 0.972x /( Q 4.0 " ..'/ 3.5 " \s'/ sspon 3.0 " y'/C Dim (0.061 cd/m2) y = 1.523+0.103x 2.5 " Jy imodath 2.0 " 1.5 " 1 j -i l r=3? \ f-jJ L=–j 1 E c 1.0 " /& < 0.5 " c >/-a 0.0 " pDF 1 aDF ,1 0 0.5 1.0 2.0 3.0 4.0 Stimulus Distance (D) 5.0 Figure 1. Mean accommodative response as a function of stimulus distance for a newsprint target under bright and dim luminance conditions. Error bars represent ±1 standard error of the mean (SEM). Mean active and passive dark focus values are plotted on the x axis. ACTIVE AND PASSIVE DARK FOCUS 143 d o o < 4 3 2 s * 1 eg O a O -1 r =.81 p = .004 . ....... i i -1 0 1 2 4 " r =.19 . p = .602 3 " 2" i o- 1 - i i i Active Dark Focus (D) -10 12 3 4 Passive Dark Focus (D) Figure 2. Scatter diagrams comparing active dark focus (left) and passive dark focus (right) of individual observers with their optimal accommodation distance. Negative numbers indicate hyperopic measurements. utility of the dark focus in predicting visual per- formance. Like previous studies (e.g., Post, Johnson, & Owens, 1985; Post, Johnson, & Tsuetaki, 1984; Rosenfield, 1989), the present findings confirmed that aDF was significantly more myopic than pDF. Given that aDF and pDF were measured using the same instrument, we concluded that the difference between the two dark focus values was caused by task dif- ferences associated with the laser optometer. It seems plausible that the key difference was the observers' state of visual attentiveness or "effort to see" (Francis et al., 1989). After confirming that a difference exists between active and passive measures of dark focus, we proceeded to determine which dark focus measure, if either, is related to optimal accommodative performance. Correlational analyses showed that aDF was closely related to the optimal accommodation distance, defined as the distance at which accommoda- tion was accurate in dim as well as in bright conditions. No such relationship was found with passive dark focus measures. Given that the aDF is correlated with the pivot point of active accommodative functions, the aDF can be characterized theoretically as a "primary point of action" for motor control of accommo- dation (e.g., Ebenholtz, 1992; Reed, 1982). Therefore, active dark focus may be more use- ful in predicting and optimizing active accom- modative performance under other difficult task conditions, such as the correction of anoma- lous refractive errors (e.g., night myopia; Owens & Leibowitz, 1976). Passive dark focus mea- sures were not correlated with the pivot point of the accommodative response functions and, hence, would not serve as useful predictors of accommodative performance in challenging viewing conditions. TABLE 1: Correlation Coefficients for aDF, pDF, and Optical Accommodation Distance Variables r r2 .084 .656 .036 aDF/pDF .29 aDF/optical accommodation distance .81 pDF/optical accommodation distance .19 .407 .004 .602 144 March 1999 - Human Factors Further research is needed to clarify the basis for differences between aDF and pDF and to explore the practical consequences for task performance. For example, it would be interest- ing to determine the extent to which variables like acuity, contrast sensitivity, and visual search are affected by locating the task at the aDF distance. Johnson (1976) found that grat- ing acuity viewed through a Maxwellian optical system was best at this point. Extending this research to a wider variety of operational tasks would seem worthwhile. Research on the distinction between aDF and pDF is also needed to clarify fundamental processes of accommodative behavior. The difference between the two could be related to the perception of nearness (Rosenfield & Ciuffreda, 1991). Another explanation (which we favor) is that any task requiring visual attention must involve some cognitive or auto- nomic nervous system activity (see, e.g., Tyrrell, Thayer, Friedman, Leibowitz, & Francis, 1995) that could be related to the disparity of dark focus measures. Given that aDF and pDF were measured with the same instrument, the present results also suggest that the dark focus difference is not an instrumental artifact; rather, it is related to the visual activity of the observer. Whatever the mechanism of this dif- ference, active dark-focus-based correction may be more useful because of its relationship to the optimal accommodation distance. ACKNOWLEDGMENTS This research was completed while Jeffrey T. Andre was a National Institute of Health (NIH) postdoctoral research fellow and visit- ing assistant professor at Franklin & Marshall College, Lancaster, Pennsylvania. This research was supported by NIH grant EY06673-02 and by research grants from Franklin & Marshall College. Portions of this research were pre- sented at the 1997 meeting of the Association for Research in Vision and Ophthalmology, Fort Lauderdale, Florida, and the 1998 meet- ing of the Optical Society of America, Santa Fe, New Mexico. REFERENCES Buchner, A., Faul, F., & Erdfelder, E. (1996). GPOWER: A priori, post-hoc, and compromise power analyses for the Macintosh (Version 2.1.1) [computer software]. Trier, Germany: University of Trier. Bullimore, M. A., & Gilmartin, B. (1987). Tonic accommodation, cognitive demand, and ciliary muscle innervation. American Journal of Optometry & Physiological Optics, 64, 45-50. Bullimore, M. A., Gilmartin, B., & Hogan, R. E. (1986). Objective and subjective measurement of tonic accommodation. Ophthalmic and Physiological Optics, 6, 57-62. Cohen, J. (1988). Statistical power analysis for the behavioral sci- ences (2nd ed.). Mahwah, NJ: Erlbaum. Cornelius, C S. (1861). Die theoriedes sehens und rdumlichen vorstellens [A theory of vision and space perception from the viewpoints of physics, physiology, and psychology] Halle, Germany: H. W. Schmidt. Ebenholtz, S. M. (1992). Accommodative hysteresis as a function of target-dark focus separation. Vision Research, 32, 925-929. Epstein, D., Ingelstam, E., Jansson, K., & Tengroth, B. (1981). Low-luminance myopia as measured with a laser optometer. Acta Ophthalmologica, 59, 928-943. Francis, E. L., Jiang, B. C, Owens, D. A., Tyrrell, R. A., & Leibowitz, H. W. (1989). "Effort to see" affects accommoda- tion and vergence but not their interactions. Investigative Ophthalmology & Visual Science, 30, 135. Helmholtz, H. (1962). Handbook of physiological optics (3rd ed., Vol. 1; J. P. C Southall, Trans.). New York: Dover. (Original work published 1909) Hennessy R. T (1975). Instrument myopia. Journal of the Optical Society of America, 65, 1114-1120. Hennessy, R. T, & Leibowitz, H. (1970). Subjective measurement of accommodation with laser light. Journal of the Optical Society of America, 60, 1700-1701. Hennessy, R. T, & Leibowitz, H. (1972). Laser optometer incor- porating the Badal principle. Behavioral Research Methods & Instrumentation, 4, 237-239. Heron, G., Smith, A. C, & Winn, B. (1981). The influence of method on the stability of dark focus position of accommoda- tion. Ophthalmic and Physiological Optics, 1, 79-90. Johnson, C A. (1976). Effects of luminance and stimulus distance on accommodation and visual resolution. Journal of the Optical Society of America, 66, 138-142. Leibowitz, H. W., & Owens, D. A. (1975a). Anomalous myopias and the intermediate dark focus of accommodation. Science, 189, 646-648. Leibowitz, H. W., & Owens, D. A. (1975b). Night myopia and the intermediate dark-focus of accommodation. Journal of the Optical Society of America, 65, 1121-1128. Leibowitz, H. W., & Owens, D. A. (1978). New evidence for the intermediate position of relaxed accommodation. Documenta Ophthalmologica, 46, 133-147. Malmstrom, F. V., Randle, R. J., Bendix, J. S., & Weber, R. J. (1980). The visual accommodation response during concurrent mental activity. Perception & Psychophysics, 28, 440148. Mershon, D. H., & Amerson, T L. (1980). Stability of measures of the dark focus of accommodation. Investigative Ophthalmology & Visual Science, 19, 217-221. Miller, R. J., Pigion, R. G, Wesner, M. F, & Patterson, J. G. (1983). Accommodation fatigue and dark focus: The effects of accommodation-free visual work as assessed by two psy- chophysical methods. Perception & Psychophysics, 34, 532-540. Morgan, M. W. (1957). The resting state of accommodation. American Journal of Optometry, 34, 347-353. Ogle, K. N. (1971). Optics: An introduction for ophthalmologists (2nd ed.). Springfield, IL: Charles C Thomas. Ostberg, O. (1980). Accommodation and visual fatigue in display work. In E. Grandjean & E. Vigliani (Eds.), Ergonomic aspects of visual display terminals (pp. 41-52). London: Taylor & Francis. Otero, J. M. (1951). Influence of the state of accommodation on the visual performance of the human eye. Journal of the Optical Society of America, 41, 942-948. ACTIVE AND PASSIVE DARK FOCUS 145 Owens, D. A. (1984). The resting state of the eyes. American Scientist, 72, 378-387. Owens, D. A., & Leibowitz, H. W. (1976). Night myopia: Cause and a possible basis for amelioration. American Journal of Optometry & Physiological Optics, 53, 709-717. Owens, D. A., & Wolf-Kelly K. (1987). Near work, visual fatigue, and variations of oculomotor tonus. Investigative Oph- thalmology & Visual Science, 28, 743-749. Post, R. B., Johnson, C. A., & Owens, A. D. (1985). Does perfor- mance of tasks affect the resting focus of accommodation? American Journal of Optometry and Physiological Optics, 62, 533-537. Post, R. B., Johnson, C. A., & Tsuetaki, T. K. (1984). Com- parison of laser and infrared techniques for measurement of the resting state of accommodation: Mean differences and long-term variability. Ophthalmic and Physiological Optics, 4, 327-332. Post, R. B., Owens, R. L., Owens, D. A., & Leibowitz, H. W. (1979). Correction of empty-field myopia on the basis of the dark focus of accommodation. Journal of the Optical Society of America, 69, 89-92. Reed, E. S. (1982). An outline of a theory of action systems. Journal of Motor Behavior, 14, 98-134. Rosenfield, M. (1989). Comparison of accommodative adaptation using laser and infrared optometers. Ophthalmic and Physiological Optics, 9, 431-436. Rosenfield, M., & Ciuffreda, K. J. (1991). Effect of surround propinquity on the open-loop accommodative response. Investigative Ophthalmology & Visual Science, 32, 142-147. Rosenfield, M., Ciuffreda, K. J., Hung, G. K., & Gilmartin, B. (1993). Tonic accommodation: A review. I. Basic aspects. Ophthalmic and Physiological Optics, 13, 266-284. Schober, H. (1954). Uber die akkommodationsruhelage [On the resting point of accommodation]. Optik, 6, 282-290. Tyrrell, R. A., Thayer, J. E, Friedman, B. H., Leibowitz, H. W., & Francis, E. L. (1995). A behavioral link between the oculomo- tor and cardiovascular systems. Integrative Physiological and Behavioral Science, 50(1), 46-67. Wald, G., & Griffin, D. R. (1947). The change in refractive power of the human eye in dim and bright light. Journal of the Optical Society of America, 37, 321-336. Jeffrey T. Andre is an assistant professor of psychol- ogy at Texas Tech University, Lubbock, Texas. He received his Ph.D. in experimental psychology in 1995 from Pennsylvania State University. D. Alfred Owens is professor of psychology and the Chair of the Program for the Scientific & Philosophical Studies of Mind at Franklin & Marshall College. He received his Ph.D. in experi- mental psychology in 1976 from Pennsylvania State University. Date received: February 18, 1998 Date accepted: July 31, 1998 </meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<back>
<ref-list>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Buchner, A.</surname>
</name>
,
<name name-style="western">
<surname>Faul, F.</surname>
</name>
, &
<name name-style="western">
<surname>Erdfelder, E.</surname>
</name>
(
<year>1996</year>
).
<source>GPOWER: A priori, post-hoc, and compromise power analyses for the Macintosh</source>
(Version 2.1.1) [computer software].
<publisher-loc>Trier, Germany</publisher-loc>
:
<publisher-name>University of Trier</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bullimore, M. A.</surname>
</name>
, &
<name name-style="western">
<surname>Gilmartin, B.</surname>
</name>
(
<year>1987</year>
).
<article-title>Tonic accommodation, cognitive demand, and ciliary muscle innervation</article-title>
.
<source>American Journal of Optometry & Physiological Optics</source>
,
<volume>64</volume>
,
<fpage>45</fpage>
<lpage>50</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bullimore, M. A.</surname>
</name>
,
<name name-style="western">
<surname>Gilmartin, B.</surname>
</name>
, &
<name name-style="western">
<surname>Hogan, R. E.</surname>
</name>
(
<year>1986</year>
).
<article-title>Objective and subjective measurement of tonic accommodation</article-title>
.
<source>Ophthalmic and Physiological Optics</source>
,
<volume>6</volume>
,
<fpage>57</fpage>
<lpage>62</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Cohen, J.</surname>
</name>
(
<year>1988</year>
).
<source>Statistical power analysis for the behavioral sciences</source>
(
<edition>2nd ed.</edition>
).
<publisher-loc>Mahwah, NJ</publisher-loc>
:
<publisher-name>Erlbaum</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Cornelius, C. S.</surname>
</name>
(
<year>1861</year>
).
<source>Die theoriedes sehens und räumlichen vorstellens [A theory of vision and space perception from the viewpoints of physics, physiology, and psychology.]</source>
<publisher-loc>Halle, Germany</publisher-loc>
:
<publisher-name>H. W. Schmidt</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ebenholtz, S. M.</surname>
</name>
(
<year>1992</year>
).
<article-title>Accommodative hysteresis as a function of target-dark focus separation</article-title>
.
<source>Vision Research</source>
,
<volume>32</volume>
,
<fpage>925</fpage>
<lpage>929</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Epstein, D.</surname>
</name>
,
<name name-style="western">
<surname>Ingelstam, E.</surname>
</name>
,
<name name-style="western">
<surname>Jansson, K.</surname>
</name>
, &
<name name-style="western">
<surname>Tengroth, B.</surname>
</name>
(
<year>1981</year>
).
<article-title>Low-luminance myopia as measured with a laser optometer</article-title>
.
<source>Acta Ophthalmologica</source>
,
<volume>59</volume>
,
<fpage>928</fpage>
<lpage>943</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Francis, E. L.</surname>
</name>
,
<name name-style="western">
<surname>Jiang, B. C.</surname>
</name>
,
<name name-style="western">
<surname>Owens, D. A.</surname>
</name>
,
<name name-style="western">
<surname>Tyrrell, R. A.</surname>
</name>
, &
<name name-style="western">
<surname>Leibowitz, H. W.</surname>
</name>
(
<year>1989</year>
).
<article-title>“Effort to see” affects accommodation and vergence but not their interactions</article-title>
.
<source>Investigative Ophthalmology & Visual Science</source>
,
<volume>30</volume>
,
<fpage>135</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Helmholtz, H.</surname>
</name>
(
<year>1962</year>
).
<source>Handbook of physiological optics</source>
(3rd ed., Vol. 1; J. P. C. Southall, Trans.).
<publisher-loc>New York</publisher-loc>
:
<publisher-name>Dover</publisher-name>
. (Original work published 1909)</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Hennessy, R. T.</surname>
</name>
(
<year>1975</year>
).
<article-title>Instrument myopia</article-title>
.
<source>Journal of the Optical Society of America</source>
,
<volume>65</volume>
,
<fpage>1114</fpage>
<lpage>1120</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Hennessy, R. T.</surname>
</name>
, &
<name name-style="western">
<surname>Leibowitz, H.</surname>
</name>
(
<year>1970</year>
).
<article-title>Subjective measurement of accommodation with laser light</article-title>
.
<source>Journal of the Optical Society of America</source>
,
<volume>60</volume>
,
<fpage>1700</fpage>
<lpage>1701</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Hennessy, R. T.</surname>
</name>
, &
<name name-style="western">
<surname>Leibowitz, H.</surname>
</name>
(
<year>1972</year>
).
<article-title>Laser optometer incorporating the Badal principle</article-title>
.
<source>Behavioral Research Methods & Instrumentation</source>
,
<volume>4</volume>
,
<fpage>237</fpage>
<lpage>239</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Heron, G.</surname>
</name>
,
<name name-style="western">
<surname>Smith, A. C.</surname>
</name>
, &
<name name-style="western">
<surname>Winn, B.</surname>
</name>
(
<year>1981</year>
).
<article-title>The influence of method on the stability of dark focus position of accommodation</article-title>
.
<source>Ophthalmic and Physiological Optics</source>
,
<volume>1</volume>
,
<fpage>79</fpage>
<lpage>90</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Johnson, C. A.</surname>
</name>
(
<year>1976</year>
).
<article-title>Effects of luminance and stimulus distance on accommodation and visual resolution</article-title>
.
<source>Journal of the Optical Society of America</source>
,
<volume>66</volume>
,
<fpage>138</fpage>
<lpage>142</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Leibowitz, H. W.</surname>
</name>
, &
<name name-style="western">
<surname>Owens, D. A.</surname>
</name>
(
<year>1975a</year>
).
<article-title>Anomalous myopias and the intermediate dark focus of accommodation</article-title>
.
<source>Science</source>
,
<volume>189</volume>
,
<fpage>646</fpage>
<lpage>648</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Leibowitz, H. W.</surname>
</name>
, &
<name name-style="western">
<surname>Owens, D. A.</surname>
</name>
(
<year>1975b</year>
).
<article-title>Night myopia and the intermediate dark-focus of accommodation</article-title>
.
<source>Journal of the Optical Society of America</source>
,
<volume>65</volume>
,
<fpage>1121</fpage>
<lpage>1128</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Leibowitz, H. W.</surname>
</name>
, &
<name name-style="western">
<surname>Owens, D. A.</surname>
</name>
(
<year>1978</year>
).
<article-title>New evidence for the intermediate position of relaxed accommodation</article-title>
.
<source>Documenta Ophthalmologica</source>
,
<volume>46</volume>
,
<fpage>133</fpage>
<lpage>147</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Malmstrom, F. V.</surname>
</name>
,
<name name-style="western">
<surname>Randle, R. J.</surname>
</name>
,
<name name-style="western">
<surname>Bendix, J. S.</surname>
</name>
, &
<name name-style="western">
<surname>Weber, R. J.</surname>
</name>
(
<year>1980</year>
).
<article-title>The visual accommodation response during concurrent mental activity</article-title>
.
<source>Perception & Psychophysics</source>
,
<volume>28</volume>
,
<fpage>440</fpage>
<lpage>448</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Mershon, D. H.</surname>
</name>
, &
<name name-style="western">
<surname>Amerson, T. L.</surname>
</name>
(
<year>1980</year>
).
<article-title>Stability of measures of the dark focus of accommodation</article-title>
.
<source>Investigative Ophthalmology & Visual Science</source>
,
<volume>19</volume>
,
<fpage>217</fpage>
<lpage>221</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Miller, R. J.</surname>
</name>
,
<name name-style="western">
<surname>Pigion, R. G</surname>
</name>
,
<name name-style="western">
<surname>Wesner, M. F.</surname>
</name>
, &
<name name-style="western">
<surname>Patterson, J. G.</surname>
</name>
(
<year>1983</year>
).
<article-title>Accommodation fatigue and dark focus: The effects of accommodation-free visual work as assessed by two psychophysical methods</article-title>
.
<source>Perception & Psychophysics</source>
,
<volume>34</volume>
,
<fpage>532</fpage>
<lpage>540</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Morgan, M. W.</surname>
</name>
(
<year>1957</year>
).
<article-title>The resting state of accommodation</article-title>
.
<source>American Journal of Optometry</source>
,
<volume>34</volume>
,
<fpage>347</fpage>
<lpage>353</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Ogle, K. N.</surname>
</name>
(
<year>1971</year>
).
<source>Optics: An introduction for ophthalmologists</source>
(2nd ed.).
<publisher-loc>Springfield, IL</publisher-loc>
:
<publisher-name>Charles C Thomas</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Östberg, O.</surname>
</name>
(
<year>1980</year>
).
<article-title>Accommodation and visual fatigue in display work</article-title>
. In
<name name-style="western">
<surname>E. Grandjean</surname>
</name>
&
<name name-style="western">
<surname>E. Vigliani</surname>
</name>
(Eds.),
<source>Ergonomic aspects of visual display terminals</source>
(pp.
<fpage>41</fpage>
<lpage>52</lpage>
).
<publisher-loc>London</publisher-loc>
:
<publisher-name>Taylor & Francis</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Otero, J. M.</surname>
</name>
(
<year>1951</year>
).
<article-title>Influence of the state of accommodation on the visual performance of the human eye</article-title>
.
<source>Journal of the Optical Society of America</source>
,
<volume>41</volume>
,
<fpage>942</fpage>
<lpage>948</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Owens, D. A.</surname>
</name>
(
<year>1984</year>
).
<article-title>The resting state of the eyes</article-title>
.
<source>American Scientist</source>
,
<volume>72</volume>
,
<fpage>378</fpage>
<lpage>387</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Owens, D. A.</surname>
</name>
, &
<name name-style="western">
<surname>Leibowitz, H. W.</surname>
</name>
(
<year>1976</year>
).
<article-title>Night myopia: Cause and a possible basis for amelioration</article-title>
.
<source>American Journal of Optometry & Physiological Optics</source>
,
<volume>53</volume>
,
<fpage>709</fpage>
<lpage>717</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Owens, D. A.</surname>
</name>
, &
<name name-style="western">
<surname>Wolf-Kelly, K.</surname>
</name>
(
<year>1987</year>
).
<article-title>Near work, visual fatigue, and variations of oculomotor tonus</article-title>
.
<source>Investigative Ophthalmology & Visual Science</source>
,
<volume>28</volume>
,
<fpage>743</fpage>
<lpage>749</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Post, R. B.</surname>
</name>
,
<name name-style="western">
<surname>Johnson, C. A.</surname>
</name>
, &
<name name-style="western">
<surname>Owens, A. D.</surname>
</name>
(
<year>1985</year>
).
<article-title>Does performance of tasks affect the resting focus of accommodation?</article-title>
<source>American Journal of Optometry and Physiological Optics</source>
,
<volume>62</volume>
,
<fpage>533</fpage>
<lpage>537</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Post, R. B.</surname>
</name>
,
<name name-style="western">
<surname>Johnson, C. A.</surname>
</name>
, &
<name name-style="western">
<surname>Tsuetaki, T. K.</surname>
</name>
(
<year>1984</year>
).
<article-title>Comparison of laser and infrared techniques for measurement of the resting state of accommodation: Mean differences and long-term variability</article-title>
.
<source>Ophthalmic and Physiological Optics</source>
,
<volume>4</volume>
,
<fpage>327</fpage>
<lpage>332</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Post, R. B.</surname>
</name>
,
<name name-style="western">
<surname>Owens, R. L.</surname>
</name>
,
<name name-style="western">
<surname>Owens, D. A.</surname>
</name>
, & Leibowitz, H. W. (
<year>1979</year>
).
<article-title>Correction of empty-field myopia on the basis of the dark focus of accommodation</article-title>
.
<source>Journal of the Optical Society of America</source>
,
<volume>69</volume>
,
<fpage>89</fpage>
<lpage>92</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Reed, E. S.</surname>
</name>
(
<year>1982</year>
).
<article-title>An outline of a theory of action systems</article-title>
.
<source>Journal of Motor Behavior</source>
,
<volume>14</volume>
,
<fpage>98</fpage>
<lpage>134</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rosenfield, M.</surname>
</name>
(
<year>1989</year>
).
<article-title>Comparison of accommodative adaptation using laser and infrared optometers</article-title>
.
<source>Ophthalmic and Physiological Optics</source>
,
<volume>9</volume>
,
<fpage>431</fpage>
<lpage>436</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rosenfield, M.</surname>
</name>
, &
<name name-style="western">
<surname>Ciuffreda, K. J.</surname>
</name>
(
<year>1991</year>
).
<article-title>Effect of surround propinquity on the open-loop accommodative response</article-title>
.
<source>Investigative Ophthalmology & Visual Science</source>
,
<volume>32</volume>
,
<fpage>142</fpage>
<lpage>147</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rosenfield, M.</surname>
</name>
,
<name name-style="western">
<surname>Ciuffreda, K. J.</surname>
</name>
,
<name name-style="western">
<surname>Hung, G. K.</surname>
</name>
, &
<name name-style="western">
<surname>Gilmartin, B.</surname>
</name>
(
<year>1993</year>
).
<article-title>Tonic accommodation: A review. I. Basic aspects</article-title>
.
<source>Ophthalmic and Physiological Optics</source>
,
<volume>13</volume>
,
<fpage>266</fpage>
<lpage>284</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Schober, H.</surname>
</name>
(
<year>1954</year>
).
<article-title>über die akkommodationsruhelage [On the resting point of accommodation]</article-title>
.
<source>Optik</source>
,
<volume>6</volume>
,
<fpage>282</fpage>
<lpage>290</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Tyrrell, R. A.</surname>
</name>
,
<name name-style="western">
<surname>Thayer, J. F.</surname>
</name>
,
<name name-style="western">
<surname>Friedman, B. H.</surname>
</name>
,
<name name-style="western">
<surname>Leibowitz, H. W.</surname>
</name>
, &
<name name-style="western">
<surname>Francis, E. L.</surname>
</name>
(
<year>1995</year>
).
<article-title>A behavioral link between the oculomotor and cardiovascular systems</article-title>
.
<source>Integrative Physiological and Behavioral Science</source>
,
<volume>30</volume>
(
<issue>1</issue>
),
<fpage>46</fpage>
<lpage>67</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wald, G.</surname>
</name>
, &
<name name-style="western">
<surname>Griffin, D. R.</surname>
</name>
(
<year>1947</year>
).
<article-title>The change in refractive power of the human eye in dim and bright light</article-title>
.
<source>Journal of the Optical Society of America</source>
,
<volume>37</volume>
,
<fpage>321</fpage>
<lpage>336</lpage>
.</citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeffrey T.</namePart>
<namePart type="family">Andre</namePart>
<affiliation>Franklin & Marshall College, Lancaster, Pennsylvania</affiliation>
</name>
<name type="personal">
<namePart type="given">D. Alfred</namePart>
<namePart type="family">Owens</namePart>
<affiliation>Franklin & Marshall College, Lancaster, Pennsylvania</affiliation>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<originInfo>
<publisher>SAGE Publications</publisher>
<place>
<placeTerm type="text">Sage CA: Los Angeles, CA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1999-03</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Leibowitz and his colleagues found that accommodation rests at an intermediate distance that shows wide interindividual variation. They proposed that this intermediate dark focus is useful for correcting anomalous refractive errors, but this proposal was later questioned when different measurement techniques yielded discrepant dark focus values. The present study measured dark focus under two levels of visual attentiveness: (a) when performing an open-loop, active viewing task (aDF); and (b) when looking passively into darkness (pDF). These dark focus measures were then compared with an optimal accommodation distance that was derived from accommodative response functions in bright and dim luminance. The aDF measures were found to be more myopic (nearer) than the pDF measures and highly correlated with the optical accommodation distance. No significant relationship was found between pDF and optical accommodation distance. These findings confirm that measures of dark focus are affected by nonoptical aspects of the measurement technique; they also suggest that techniques that demand visual attention (aDF) yield dark focus values that are more useful for optimizing accommodation and potentially reducing fatigue in difficult situations.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Human Factors: The Journal of Human Factors and Ergonomics Society</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0018-7208</identifier>
<identifier type="eISSN">1547-8181</identifier>
<identifier type="PublisherID">HFS</identifier>
<identifier type="PublisherID-hwp">sphfs</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>139</start>
<end>145</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F</identifier>
<identifier type="DOI">10.1518/001872099779577309</identifier>
<identifier type="ArticleID">10.1518_001872099779577309</identifier>
<recordInfo>
<recordContentSource>SAGE</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001089 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001089 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:EC35EEDFF9E5FBAC57E2713D42C807F8EE18CD8F
   |texte=   Predicting Optimal Accommodative Performance from Measures of the Dark Focus of Accommodation
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024