Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The superpopulation approach for estimating the population size of 'prolonged' breeding amphibians: Examples from Europe

Identifieur interne : 000F20 ( Istex/Corpus ); précédent : 000F19; suivant : 000F21

The superpopulation approach for estimating the population size of 'prolonged' breeding amphibians: Examples from Europe

Auteurs : Jérôme Pellet ; Benedikt R. Schmidt ; Norman Wagner ; Stefan Lötters ; Thomas Schmitt

Source :

RBID : ISTEX:37657DC0C6116DB9033504D2E8F2210B908DFFC7
Url:
DOI: 10.1163/017353711X579768

Links to Exploration step

ISTEX:37657DC0C6116DB9033504D2E8F2210B908DFFC7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>The superpopulation approach for estimating the population size of 'prolonged' breeding amphibians: Examples from Europe</title>
<author>
<name sortKey="Pellet, Jerome" sort="Pellet, Jerome" uniqKey="Pellet J" first="Jérôme" last="Pellet">Jérôme Pellet</name>
</author>
<author>
<name sortKey="Schmidt, Benedikt R" sort="Schmidt, Benedikt R" uniqKey="Schmidt B" first="Benedikt R." last="Schmidt">Benedikt R. Schmidt</name>
</author>
<author>
<name sortKey="Wagner, Norman" sort="Wagner, Norman" uniqKey="Wagner N" first="Norman" last="Wagner">Norman Wagner</name>
</author>
<author>
<name sortKey="Lotters, Stefan" sort="Lotters, Stefan" uniqKey="Lotters S" first="Stefan" last="Lötters">Stefan Lötters</name>
</author>
<author>
<name sortKey="Schmitt, Thomas" sort="Schmitt, Thomas" uniqKey="Schmitt T" first="Thomas" last="Schmitt">Thomas Schmitt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:37657DC0C6116DB9033504D2E8F2210B908DFFC7</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1163/017353711X579768</idno>
<idno type="url">https://api.istex.fr/document/37657DC0C6116DB9033504D2E8F2210B908DFFC7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F20</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F20</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">The superpopulation approach for estimating the population size of 'prolonged' breeding amphibians: Examples from Europe</title>
<author>
<name sortKey="Pellet, Jerome" sort="Pellet, Jerome" uniqKey="Pellet J" first="Jérôme" last="Pellet">Jérôme Pellet</name>
</author>
<author>
<name sortKey="Schmidt, Benedikt R" sort="Schmidt, Benedikt R" uniqKey="Schmidt B" first="Benedikt R." last="Schmidt">Benedikt R. Schmidt</name>
</author>
<author>
<name sortKey="Wagner, Norman" sort="Wagner, Norman" uniqKey="Wagner N" first="Norman" last="Wagner">Norman Wagner</name>
</author>
<author>
<name sortKey="Lotters, Stefan" sort="Lotters, Stefan" uniqKey="Lotters S" first="Stefan" last="Lötters">Stefan Lötters</name>
</author>
<author>
<name sortKey="Schmitt, Thomas" sort="Schmitt, Thomas" uniqKey="Schmitt T" first="Thomas" last="Schmitt">Thomas Schmitt</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Amphibia-Reptilia</title>
<title level="j" type="sub">Publication of the Societas Europaea Herpetologica</title>
<title level="j" type="abbrev">AMRE</title>
<idno type="ISSN">0173-5373</idno>
<idno type="eISSN">1568-5381</idno>
<imprint>
<publisher>BRILL</publisher>
<pubPlace>The Netherlands</pubPlace>
<date type="published" when="2011">2011</date>
<biblScope unit="volume">32</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="323">323</biblScope>
<biblScope unit="page" to="332">332</biblScope>
</imprint>
<idno type="ISSN">0173-5373</idno>
</series>
<idno type="istex">37657DC0C6116DB9033504D2E8F2210B908DFFC7</idno>
<idno type="DOI">10.1163/017353711X579768</idno>
<idno type="href">15685381_032_03_s004_text.pdf</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0173-5373</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
</TEI>
<istex>
<corpusName>brill-journals</corpusName>
<keywords>
<teeft>
<json:string>amphibian</json:string>
<json:string>superpopulation</json:string>
<json:string>popan</json:string>
<json:string>hyla</json:string>
<json:string>arborea</json:string>
<json:string>hyla arborea</json:string>
<json:string>schwarz</json:string>
<json:string>popan model</json:string>
<json:string>detection probabilities</json:string>
<json:string>estimator</json:string>
<json:string>arnason</json:string>
<json:string>pellet</json:string>
<json:string>romain</json:string>
<json:string>camp romain</json:string>
<json:string>population size</json:string>
<json:string>superpopulation approach</json:string>
<json:string>frog</json:string>
<json:string>pent</json:string>
<json:string>high survival</json:string>
<json:string>camphausen</json:string>
<json:string>bufo</json:string>
<json:string>schmidt</json:string>
<json:string>logit</json:string>
<json:string>european tree frog</json:string>
<json:string>junker</json:string>
<json:string>viridis</json:string>
<json:string>true value</json:string>
<json:string>logit link</json:string>
<json:string>simulation study</json:string>
<json:string>nichols</json:string>
<json:string>total number</json:string>
<json:string>superpopulation model</json:string>
<json:string>survival probabilities</json:string>
<json:string>superpopulation estimates</json:string>
<json:string>population sizes</json:string>
<json:string>amphibian species</json:string>
<json:string>superpopulation size</json:string>
<json:string>program mark</json:string>
<json:string>amphibian populations</json:string>
<json:string>estimate population sizes</json:string>
<json:string>natural history</json:string>
<json:string>constant entry probabilities</json:string>
<json:string>variable entry probabilities</json:string>
<json:string>simulation</json:string>
<json:string>green toads</json:string>
<json:string>case studies</json:string>
<json:string>tree frogs</json:string>
<json:string>superpopulation estimate</json:string>
<json:string>western germany</json:string>
<json:string>cumulative number</json:string>
<json:string>green toad population</json:string>
<json:string>robust design</json:string>
<json:string>imperfect detection</json:string>
<json:string>entry probabilities</json:string>
<json:string>sexual selection</json:string>
<json:string>insect conserv</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Jérôme Pellet</name>
</json:item>
<json:item>
<name>Benedikt R. Schmidt</name>
</json:item>
<json:item>
<name>Norman Wagner</name>
</json:item>
<json:item>
<name>Stefan Lötters</name>
</json:item>
<json:item>
<name>Thomas Schmitt</name>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>POPAN</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>CAPTURE-MARK-RECAPTURE</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>BUFO (PSEUDEPIDALEA) VIRIDIS</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>HYLA ARBOREA</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>SIMULATION</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ABUNDANCE</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>JOLLY-SEBER MODEL</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<qualityIndicators>
<score>5.512</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>481.89 x 697.32 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>7</keywordCount>
<abstractCharCount>0</abstractCharCount>
<pdfWordCount>5219</pdfWordCount>
<pdfCharCount>33949</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>1</abstractWordCount>
</qualityIndicators>
<title>The superpopulation approach for estimating the population size of 'prolonged' breeding amphibians: Examples from Europe</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>A Arak</name>
</json:item>
</author>
<host>
<pages>
<last>210</last>
<first>181</first>
</pages>
<author></author>
<title>Mate Choice</title>
<publicationDate>1983</publicationDate>
</host>
<title>Male-male competition and mate choice in anuran amphibians</title>
<publicationDate>1983</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>A,N Arnason</name>
</json:item>
<json:item>
<name>C,J Schwarz</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>668</last>
<first>649</first>
</pages>
<author></author>
<title>J. Appl. Stat</title>
<publicationDate>2002</publicationDate>
</host>
<title>POPAN-6: exploring convergence and estimate properties with SIMULATE</title>
<publicationDate>2002</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>L,L Bailey</name>
</json:item>
<json:item>
<name>T,R Simons</name>
</json:item>
<json:item>
<name>K,H Pollock</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>380</last>
<first>370</first>
</pages>
<author></author>
<title>J. Herpetol</title>
<publicationDate>2004</publicationDate>
</host>
<title>Comparing population size estimators for plethodontid salamanders</title>
<publicationDate>2004</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>L,L Bailey</name>
</json:item>
<json:item>
<name>T,R Simons</name>
</json:item>
<json:item>
<name>K,H Pollock</name>
</json:item>
</author>
<host>
<volume>68</volume>
<pages>
<last>13</last>
<first>1</first>
</pages>
<author></author>
<title>J. Wildl. Manage</title>
<publicationDate>2004</publicationDate>
</host>
<title>Estimating detection probability parameters for Plethodon salamanders using the robust capture-recapture design</title>
<publicationDate>2004</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>T Broquet</name>
</json:item>
<json:item>
<name>J Jaquiéry</name>
</json:item>
<json:item>
<name>N Perrin</name>
</json:item>
</author>
<host>
<volume>63</volume>
<pages>
<last>683</last>
<first>674</first>
</pages>
<author></author>
<title>Evolution</title>
<publicationDate>2009</publicationDate>
</host>
<title>Opportunity for sexual selection and effective population size in the lekbreeding European treefrog (Hyla arborea)</title>
<publicationDate>2009</publicationDate>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>K,P Burnham</name>
</json:item>
<json:item>
<name>D,R Anderson</name>
</json:item>
</author>
<title>Model Selection and Multi-model Inference: A Practical Information- Theoretic Approach</title>
<publicationDate>2002</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D Dail</name>
</json:item>
<json:item>
<name>L Madsen</name>
</json:item>
</author>
<host>
<author></author>
<title>Biometrics</title>
<publicationDate>2011</publicationDate>
</host>
<title>Models for estimating abundance from repeated counts of an open metapopulation</title>
<publicationDate>2011</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>C,K Dodd</name>
</json:item>
<json:item>
<name> Jr</name>
</json:item>
<json:item>
<name>R,M Dorazio</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>478</last>
<first>468</first>
</pages>
<author></author>
<title>Herpetologica</title>
<publicationDate>2004</publicationDate>
</host>
<title>Using counts to simultaneously estimate abundance and detection probabilities in a salamander community</title>
<publicationDate>2004</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>M,A Donnelly</name>
</json:item>
<json:item>
<name>C Guyer</name>
</json:item>
</author>
<host>
<pages>
<last>205</last>
<first>183</first>
</pages>
<author></author>
<title>Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians</title>
<publicationDate>1994</publicationDate>
</host>
<title>Estimating population size</title>
<publicationDate>1994</publicationDate>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>W,R Heyer</name>
</json:item>
<json:item>
<name>M,A Donnelly</name>
</json:item>
<json:item>
<name>R,W Mcdiarmid</name>
</json:item>
<json:item>
<name>L Hayek</name>
</json:item>
</author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>T,W P Friedl</name>
</json:item>
<json:item>
<name>G,M Klump</name>
</json:item>
</author>
<host>
<volume>70</volume>
<pages>
<last>1154</last>
<first>1141</first>
</pages>
<author></author>
<title>Anim. Behav</title>
<publicationDate>2005</publicationDate>
</host>
<title>Sexual selection in the lek-breeding European tree frog: body size, chorus attendance , random mating and good genes</title>
<publicationDate>2005</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>C Gascon</name>
</json:item>
<json:item>
<name>J,P Collins</name>
</json:item>
<json:item>
<name>R,D Moore</name>
</json:item>
<json:item>
<name>D,R Church</name>
</json:item>
<json:item>
<name>J,E Mckay</name>
</json:item>
<json:item>
<name>Iii Mendelson</name>
</json:item>
</author>
<host>
<author></author>
<title>J.R</title>
<publicationDate>2007</publicationDate>
</host>
<title>Amphibian Conservation Action Plan. Gland and Cambridge</title>
<publicationDate>2007</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J Gerstner</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>129</last>
<first>123</first>
</pages>
<author></author>
<title>Mertensiella</title>
<publicationDate>2003</publicationDate>
</host>
<title>Die Wechselkröte (Bufo viridis Laurenti , 1768) im Saarland</title>
<publicationDate>2003</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>T,U Grafe</name>
</json:item>
<json:item>
<name>I Meuche</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>444</last>
<first>437</first>
</pages>
<author></author>
<title>Amphibia-Reptilia</title>
<publicationDate>2005</publicationDate>
</host>
<title>Chorus tenure and estimates of population size of male European tree frogs Hyla arborea: implications for conservation</title>
<publicationDate>2005</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J,C Habel</name>
</json:item>
<json:item>
<name>M Junker</name>
</json:item>
<json:item>
<name>T Schmitt</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>478</last>
<first>467</first>
</pages>
<author></author>
<title>J. Insect Conserv</title>
<publicationDate>2010</publicationDate>
</host>
<title>High dispersal ability and low genetic differentiation in the widespread butterfly species Melanargia galathea</title>
<publicationDate>2010</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>T,B Hayes</name>
</json:item>
<json:item>
<name>P Case</name>
</json:item>
<json:item>
<name>S Chui</name>
</json:item>
<json:item>
<name>D Chung</name>
</json:item>
<json:item>
<name>C Haeffele</name>
</json:item>
<json:item>
<name>K Haston</name>
</json:item>
<json:item>
<name>M Lee</name>
</json:item>
<json:item>
<name>V,P Mai</name>
</json:item>
<json:item>
<name>Y Marjuoa</name>
</json:item>
<json:item>
<name>J Parker</name>
</json:item>
<json:item>
<name>M Tsui</name>
</json:item>
</author>
<host>
<volume>114</volume>
<pages>
<last>50</last>
<first>40</first>
</pages>
<author></author>
<title>Environ. Health Perspect</title>
<publicationDate>2006</publicationDate>
</host>
<title>Pesticide mixtures, endocrine disruption , and amphibian declines: are we underestimating the impact?</title>
<publicationDate>2006</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>K Henle</name>
</json:item>
<json:item>
<name>J Kuhn</name>
</json:item>
<json:item>
<name>R Podloucky</name>
</json:item>
<json:item>
<name>K Schmidt-Loske</name>
</json:item>
<json:item>
<name>C Bender</name>
</json:item>
</author>
<host>
<pages>
<last>184</last>
<first>133</first>
</pages>
<author></author>
<title>Individualerkennung und Markierung mitteleuropäischer Amphibien und Reptilien: Übersicht und Bewertung der Methoden; Empfehlungen aus Natur-und Tierschutzsicht</title>
<publicationDate>1997</publicationDate>
</host>
<publicationDate>1997</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>D,J Hocking</name>
</json:item>
<json:item>
<name>R,D Semlitsch</name>
</json:item>
</author>
<host>
<volume>138</volume>
<pages>
<last>513</last>
<first>506</first>
</pages>
<author></author>
<title>Biol. Conserv</title>
<publicationDate>2007</publicationDate>
</host>
<title>Effects of timber harvest on breeding site selection by gray treefrogs (Hyla versicolor)</title>
<publicationDate>2007</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J,E Houlahan</name>
</json:item>
<json:item>
<name>C,S Findlay</name>
</json:item>
<json:item>
<name>B,R Schmidt</name>
</json:item>
<json:item>
<name>A,H Meyer</name>
</json:item>
<json:item>
<name>S,L Kuzmin</name>
</json:item>
</author>
<host>
<volume>404</volume>
<pages>
<last>755</last>
<first>752</first>
</pages>
<author></author>
<title>Nature</title>
<publicationDate>2000</publicationDate>
</host>
<title>Quantitative evidence for global amphibian population declines</title>
<publicationDate>2000</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>M Junker</name>
</json:item>
<json:item>
<name>T Schmitt</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>246</last>
<first>237</first>
</pages>
<author></author>
<title>J. Insect Conserv</title>
<publicationDate>2010</publicationDate>
</host>
<title>Demography, dispersal and movement pattern of Euphydryas aurinia (Lepidoptera: Nymphalidae) at the Iberian Peninsula: an alarming example in an increasingly fragmented landscape</title>
<publicationDate>2010</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>M Junker</name>
</json:item>
<json:item>
<name>S Wagner</name>
</json:item>
<json:item>
<name>P Gros</name>
</json:item>
<json:item>
<name>T Schmitt</name>
</json:item>
</author>
<host>
<volume>164</volume>
<pages>
<last>980</last>
<first>971</first>
</pages>
<author></author>
<title>Oecologia</title>
<publicationDate>2010</publicationDate>
</host>
<title>Changing demography and dispersal behaviour: ecological adaptations in an alpine butterfly</title>
<publicationDate>2010</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>W,L Kendall</name>
</json:item>
</author>
<host>
<volume>80</volume>
<pages>
<last>2525</last>
<first>2517</first>
</pages>
<author></author>
<title>Ecology</title>
<publicationDate>1999</publicationDate>
</host>
<title>Robustness of closed capturerecapture methods to violations of the closure assumption</title>
<publicationDate>1999</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>M Kéry</name>
</json:item>
<json:item>
<name>M Schaub</name>
</json:item>
</author>
<host>
<author></author>
<title>Burlington Academic Press</title>
<publicationDate>2011</publicationDate>
</host>
<title>Bayesian population analysis using WinBUGS: a hierarchical perspective</title>
<publicationDate>2011</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>M Konvicka</name>
</json:item>
<json:item>
<name>J Novak</name>
</json:item>
<json:item>
<name>J Benes</name>
</json:item>
<json:item>
<name>Z Fric</name>
</json:item>
<json:item>
<name>J Bradley</name>
</json:item>
<json:item>
<name>P Keil</name>
</json:item>
<json:item>
<name>H Hrcek</name>
</json:item>
<json:item>
<name>K Chobot</name>
</json:item>
<json:item>
<name>P Marhoul</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>560</last>
<first>549</first>
</pages>
<author></author>
<title>J. Insect Conserv</title>
<publicationDate>2010</publicationDate>
</host>
<title>The last population of the Woodland brown butterfly (Lopinga achine) in the Czech Republic: habitat use, demography and site management</title>
<publicationDate>2010</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J.-D Lebreton</name>
</json:item>
<json:item>
<name>K,P Burnham</name>
</json:item>
<json:item>
<name>J Clobert</name>
</json:item>
<json:item>
<name>D,R Anderson</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>118</last>
<first>67</first>
</pages>
<author></author>
<title>Ecol. Monogr</title>
<publicationDate>1992</publicationDate>
</host>
<title>Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies</title>
<publicationDate>1992</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>M Manske</name>
</json:item>
<json:item>
<name>W,T Stobo</name>
</json:item>
<json:item>
<name>C,J Schwarz</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>155</last>
<first>145</first>
</pages>
<author></author>
<title>Mar. Mamm. Sci</title>
<publicationDate>2002</publicationDate>
</host>
<title>Estimation of age-specific probabilities of first return and annual survival rates for the male gray seal (Halichoerus gryphus ) on Sable Island from capture-recapture data</title>
<publicationDate>2002</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>M,J Mazerolle</name>
</json:item>
<json:item>
<name>L,L Bailey</name>
</json:item>
<json:item>
<name>W,L Kendall</name>
</json:item>
<json:item>
<name>J,A Royle</name>
</json:item>
<json:item>
<name>S,J Converse</name>
</json:item>
<json:item>
<name>J,D Nichols</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>689</last>
<first>672</first>
</pages>
<author></author>
<title>J. Herpetol</title>
<publicationDate>2007</publicationDate>
</host>
<title>Making great leaps forward: Accounting for detectability in herpetological field studies</title>
<publicationDate>2007</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>F Meyer</name>
</json:item>
<json:item>
<name>W.-R Grosse</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>92</last>
<first>79</first>
</pages>
<author></author>
<title>Mertensiella</title>
<publicationDate>1997</publicationDate>
</host>
<title>Populationsökologische Studien an Amphibien mit Hilfe der fotografischen Individualerkennung: Übersicht zur Methodik und Anwendung bei der Kreuzkröte (Bufo calamita)</title>
<publicationDate>1997</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J,D Nichols</name>
</json:item>
<json:item>
<name>L Thomas</name>
</json:item>
<json:item>
<name>P,B Conn</name>
</json:item>
</author>
<host>
<pages>
<last>235</last>
<first>201</first>
</pages>
<author></author>
<title>Modeling Demographic Processes in Marked Populations (Environmental and Ecological Studies 3)</title>
<publicationDate>2008</publicationDate>
</host>
<title>Inferences about landbird abundance from count data: Recent advances and future directions</title>
<publicationDate>2008</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>G,J Parra</name>
</json:item>
<json:item>
<name>P,J Corkeron</name>
</json:item>
<json:item>
<name>H Marsh</name>
</json:item>
</author>
<host>
<volume>129</volume>
<pages>
<last>180</last>
<first>167</first>
</pages>
<author></author>
<title>Biol. Conserv</title>
<publicationDate>2006</publicationDate>
</host>
<title>Population sizes, site fidelity and residence patterns of Australian snubfin and Indo-Pacific humpback dolphins: Implications for conservation</title>
<publicationDate>2006</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J Pellet</name>
</json:item>
<json:item>
<name>G Maze</name>
</json:item>
<json:item>
<name>N Perrin</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>361</last>
<first>353</first>
</pages>
<author></author>
<title>Popul. Ecol</title>
<publicationDate>2006</publicationDate>
</host>
<title>The contribution of patch topology and demographic parameters to PVA predictions: the case of the European tree frog</title>
<publicationDate>2006</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J Pellet</name>
</json:item>
<json:item>
<name>B,R Schmidt</name>
</json:item>
<json:item>
<name>F Fivaz</name>
</json:item>
<json:item>
<name>N Perrin</name>
</json:item>
<json:item>
<name>K Grossenbacher</name>
</json:item>
</author>
<host>
<volume>149</volume>
<pages>
<last>71</last>
<first>65</first>
</pages>
<author></author>
<title>Oecologia</title>
<publicationDate>2006</publicationDate>
</host>
<title>Density, climate and varying return points: an analysis of long-term population fluctuations in the threatened European tree frog</title>
<publicationDate>2006</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J Pellet</name>
</json:item>
<json:item>
<name>V Helfer</name>
</json:item>
<json:item>
<name>G Yannic</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>294</last>
<first>287</first>
</pages>
<author></author>
<title>Amphibia- Reptilia</title>
<publicationDate>2007</publicationDate>
</host>
<title>Estimating population size in the European tree frog (Hyla arborea) using individual recognition and chorus counts</title>
<publicationDate>2007</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>K,H Pollock</name>
</json:item>
</author>
<host>
<volume>46</volume>
<pages>
<last>760</last>
<first>757</first>
</pages>
<author></author>
<title>J. Wild. Manage</title>
<publicationDate>1982</publicationDate>
</host>
<title>A capture-recapture design robust to unequal probability of capture</title>
<publicationDate>1982</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>K,H Pollock</name>
</json:item>
<json:item>
<name>J,D Nichols</name>
</json:item>
<json:item>
<name>C Brownie</name>
</json:item>
<json:item>
<name>J,E Hines</name>
</json:item>
</author>
<host>
<volume>107</volume>
<pages>
<last>97</last>
<first>1</first>
</pages>
<author></author>
<title>Wildl. Monogr</title>
<publicationDate>1990</publicationDate>
</host>
<title>Statistical inference for capture-recapture experiments</title>
<publicationDate>1990</publicationDate>
</json:item>
<json:item>
<author></author>
<host>
<author></author>
<title>R Development Core Team</title>
<publicationDate>2009</publicationDate>
</host>
<title>R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing</title>
<publicationDate>2009</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J,A Royle</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>115</last>
<first>108</first>
</pages>
<author></author>
<title>Biometrics</title>
<publicationDate>2004</publicationDate>
</host>
<title>N-mixture models for estimating population size from spatially replicated counts</title>
<publicationDate>2004</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>B,R Schmidt</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>174</last>
<first>167</first>
</pages>
<author></author>
<title>Herpetol. J</title>
<publicationDate>2004</publicationDate>
</host>
<title>Declining amphibian populations: The pitfalls of count data in the study of diversity, distributions, dynamics, and demography</title>
<publicationDate>2004</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>B,R Schmidt</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>899</last>
<first>897</first>
</pages>
<author></author>
<title>Biol</title>
<publicationDate>2010</publicationDate>
</host>
<title>Estimating the impact of disease in species threatened by amphibian chytrid fungus: comment on Murray et al. Cons</title>
<publicationDate>2010</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>B,R Schmidt</name>
</json:item>
<json:item>
<name>J Pellet</name>
</json:item>
</author>
<host>
<pages>
<last>479</last>
<first>465</first>
</pages>
<author></author>
<title>Amphibian Ecology and Conservation</title>
<publicationDate>2009</publicationDate>
</host>
<title>Quantifying abundance: counts, detection probabilities, and estimates</title>
<publicationDate>2009</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>B,R Schmidt</name>
</json:item>
<json:item>
<name>M Schaub</name>
</json:item>
<json:item>
<name>B,R Anholt</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>388</last>
<first>375</first>
</pages>
<author></author>
<title>Amphibia-Reptilia</title>
<publicationDate>2002</publicationDate>
</host>
<title>Why you should use capture-recapture methods when estimating survival and breeding probabilities: on bias, temporary emigration, overdispersion, and common toads</title>
<publicationDate>2002</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>C,J Schwarz</name>
</json:item>
<json:item>
<name>A,N Arnason</name>
</json:item>
</author>
<host>
<volume>52</volume>
<pages>
<last>873</last>
<first>860</first>
</pages>
<author></author>
<title>Biometrics</title>
<publicationDate>1996</publicationDate>
</host>
<title>A general methodology for the analysis of open model capture recapture experiments</title>
<publicationDate>1996</publicationDate>
</json:item>
<json:item>
<host>
<pages>
<last>454</last>
<first>402</first>
</pages>
<author>
<json:item>
<name>C,J Schwarz</name>
</json:item>
<json:item>
<name>A,N Arnason</name>
</json:item>
</author>
<title>Jolly Seber models in MARK. In: Program Mark – A Gentle Introduction</title>
<publicationDate>2007</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>C,J Schwarz</name>
</json:item>
<json:item>
<name>R,E Bailey</name>
</json:item>
<json:item>
<name>J,R Irivine</name>
</json:item>
<json:item>
<name>F,C Dalziel</name>
</json:item>
</author>
<host>
<volume>50</volume>
<pages>
<last>1191</last>
<first>1181</first>
</pages>
<author></author>
<title>Canad. J. Fish. Aquat. Sci</title>
<publicationDate>1993</publicationDate>
</host>
<title>Estimating salmon spawning escapement using capture-recapture methods</title>
<publicationDate>1993</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>S,N Stuart</name>
</json:item>
<json:item>
<name>M Hoffmann</name>
</json:item>
<json:item>
<name>J,S Chanson</name>
</json:item>
<json:item>
<name>N,A Cox</name>
</json:item>
<json:item>
<name>R,J Berridge</name>
</json:item>
<json:item>
<name>P Ramani</name>
</json:item>
<json:item>
<name>B,E Young</name>
</json:item>
</author>
<host>
<volume>306</volume>
<pages>
<last>1786</last>
<first>1783</first>
</pages>
<author></author>
<title>Science</title>
<publicationDate>2004</publicationDate>
</host>
<title>Status and trends of amphibian declines and extinctions worldwide</title>
<publicationDate>2004</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>S,N Stuart</name>
</json:item>
<json:item>
<name>M Hoffmann</name>
</json:item>
<json:item>
<name>J,S Chanson</name>
</json:item>
<json:item>
<name>N,A Cox</name>
</json:item>
<json:item>
<name>R,J Berridge</name>
</json:item>
<json:item>
<name>P Ramani</name>
</json:item>
<json:item>
<name>B,E Young</name>
</json:item>
</author>
<host>
<author></author>
<title>Threatened Amphibians of the World</title>
<publicationDate>2008</publicationDate>
</host>
<publicationDate>2008</publicationDate>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>H,J Temple</name>
</json:item>
<json:item>
<name>N,A Cox</name>
</json:item>
</author>
<publicationDate>2009</publicationDate>
</host>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>U Tester</name>
</json:item>
</author>
<title>Artenschützerische relevante Aspekte zur Ökologie des Laubfroschs (Hyla arborea L.)</title>
<publicationDate>1990</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M,M Vasconcellos</name>
</json:item>
<json:item>
<name>G,R Colli</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>276</last>
<first>266</first>
</pages>
<author></author>
<title>Copeia</title>
<publicationDate>2009</publicationDate>
</host>
<title>Factors affecting the population dynamics of two toads (Anura: Bufonidae ) in a seasonal Neotropical savanna</title>
<publicationDate>2009</publicationDate>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name>K,D Wells</name>
</json:item>
</author>
<title>The Ecology and Behaviour of Amphibians</title>
<publicationDate>2007</publicationDate>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>G,C White</name>
</json:item>
<json:item>
<name>K,P Burnham</name>
</json:item>
</author>
<host>
<volume>46</volume>
<pages>
<last>139</last>
<first>120</first>
</pages>
<author></author>
<title>Bird Study</title>
<publicationDate>1999</publicationDate>
</host>
<title>Program MARK: survival estimation from populations of marked animals</title>
<publicationDate>1999</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>D,J Wilgers</name>
</json:item>
<json:item>
<name>E,A Horne</name>
</json:item>
<json:item>
<name>B,K Sandercock</name>
</json:item>
<json:item>
<name>A,W Volkmann</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>388</last>
<first>378</first>
</pages>
<author></author>
<title>Herpetologica</title>
<publicationDate>2006</publicationDate>
</host>
<title>Effects of rangeland management on community dynamics of the herpetofauna of the tallgrass prairie</title>
<publicationDate>2006</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>B,K Williams</name>
</json:item>
<json:item>
<name>J,D Nichols</name>
</json:item>
<json:item>
<name>M,J Conroy</name>
</json:item>
</author>
<host>
<author></author>
<title>Analysis and Management of Animal Populations</title>
<publicationDate>2002</publicationDate>
</host>
<publicationDate>2002</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>K,A Wiliams</name>
</json:item>
<json:item>
<name>P,C Frederick</name>
</json:item>
<json:item>
<name>J,D Nichols</name>
</json:item>
</author>
<host>
<author></author>
<title>Ecology</title>
<publicationDate>2010-04-18</publicationDate>
</host>
<title>Use of the superpopulation approach to estimate breeding population size: an example in asynchronously breeding birds</title>
<publicationDate>2010-04-18</publicationDate>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>32</volume>
<pages>
<last>332</last>
<first>323</first>
</pages>
<issn>
<json:string>0173-5373</json:string>
</issn>
<issue>3</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1568-5381</json:string>
</eissn>
<title>Amphibia-Reptilia</title>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>zoology</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>zoology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1163/017353711X579768</json:string>
</doi>
<id>37657DC0C6116DB9033504D2E8F2210B908DFFC7</id>
<score>0.0115440395</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/37657DC0C6116DB9033504D2E8F2210B908DFFC7/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/37657DC0C6116DB9033504D2E8F2210B908DFFC7/fulltext/zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/37657DC0C6116DB9033504D2E8F2210B908DFFC7/fulltext/txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/37657DC0C6116DB9033504D2E8F2210B908DFFC7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">The superpopulation approach for estimating the population size of 'prolonged' breeding amphibians: Examples from Europe</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>BRILL</publisher>
<pubPlace>The Netherlands</pubPlace>
<availability>
<p>© 2011 Koninklijke Brill NV, Leiden, The Netherlands</p>
</availability>
<date>2011</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">The superpopulation approach for estimating the population size of 'prolonged' breeding amphibians: Examples from Europe</title>
<author xml:id="author-1">
<persName>
<forename type="first">Jérôme</forename>
<surname>Pellet</surname>
</persName>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Benedikt R.</forename>
<surname>Schmidt</surname>
</persName>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Norman</forename>
<surname>Wagner</surname>
</persName>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Stefan</forename>
<surname>Lötters</surname>
</persName>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Thomas</forename>
<surname>Schmitt</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Amphibia-Reptilia</title>
<title level="j" type="sub">Publication of the Societas Europaea Herpetologica</title>
<title level="j" type="abbrev">AMRE</title>
<idno type="pISSN">0173-5373</idno>
<idno type="eISSN">1568-5381</idno>
<imprint>
<publisher>BRILL</publisher>
<pubPlace>The Netherlands</pubPlace>
<date type="published" when="2011"></date>
<biblScope unit="volume">32</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="323">323</biblScope>
<biblScope unit="page" to="332">332</biblScope>
</imprint>
</monogr>
<idno type="istex">37657DC0C6116DB9033504D2E8F2210B908DFFC7</idno>
<idno type="DOI">10.1163/017353711X579768</idno>
<idno type="href">15685381_032_03_s004_text.pdf</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>POPAN</term>
</item>
<item>
<term>CAPTURE-MARK-RECAPTURE</term>
</item>
<item>
<term>BUFO (PSEUDEPIDALEA) VIRIDIS</term>
</item>
<item>
<term>HYLA ARBOREA</term>
</item>
<item>
<term>SIMULATION</term>
</item>
<item>
<term>ABUNDANCE</term>
</item>
<item>
<term>JOLLY-SEBER MODEL</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011">Created</change>
<change when="2011">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-10-10">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-01-17">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus brill-journals not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="http://dtd.nlm.nih.gov/publishing/2.3/journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" dtd-version="2.3">
<front>
<journal-meta>
<journal-id journal-id-type="e-issn">15685381</journal-id>
<journal-title>Amphibia-Reptilia</journal-title>
<journal-subtitle>Publication of the Societas Europaea Herpetologica</journal-subtitle>
<abbrev-journal-title>AMRE</abbrev-journal-title>
<issn pub-type="ppub">0173-5373</issn>
<issn pub-type="epub">1568-5381</issn>
<publisher>
<publisher-name>BRILL</publisher-name>
<publisher-loc>The Netherlands</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1163/017353711X579768</article-id>
<title-group>
<article-title>The superpopulation approach for estimating the population size of 'prolonged' breeding amphibians: Examples from Europe</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Pellet</surname>
<given-names>Jérôme</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schmidt</surname>
<given-names>Benedikt R.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wagner</surname>
<given-names>Norman</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lötters</surname>
<given-names>Stefan</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schmitt</surname>
<given-names>Thomas</given-names>
</name>
</contrib>
</contrib-group>
<pub-date pub-type="epub">
<year>2011</year>
</pub-date>
<volume>32</volume>
<issue>3</issue>
<fpage>323</fpage>
<lpage>332</lpage>
<permissions>
<copyright-statement>© 2011 Koninklijke Brill NV, Leiden, The Netherlands</copyright-statement>
<copyright-year>2011</copyright-year>
<copyright-holder>Koninklijke Brill NV, Leiden, The Netherlands</copyright-holder>
</permissions>
<self-uri content-type="pdf" xlink:href="15685381_032_03_s004_text.pdf"></self-uri>
<kwd-group>
<kwd>POPAN</kwd>
<kwd>CAPTURE-MARK-RECAPTURE</kwd>
<kwd>BUFO (PSEUDEPIDALEA) VIRIDIS</kwd>
<kwd>HYLA ARBOREA</kwd>
<kwd>SIMULATION</kwd>
<kwd>ABUNDANCE</kwd>
<kwd>JOLLY-SEBER MODEL</kwd>
</kwd-group>
<custom-meta-wrap>
<custom-meta>
<meta-name>version</meta-name>
<meta-value>header</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<body>
<p>Amphibia-Reptilia 32 (2011): 323-332 The superpopulation approach for estimating the population size of ‘prolonged’ breeding amphibians: Examples from Europe Norman Wagner 1 ,* , Jérôme Pellet 2,3 , Stefan Lötters 1 , Benedikt R. Schmidt 2,4 , Thomas Schmitt 1 Abstract. Individual members of a population of ‘prolonged’ breeding amphibian species are asynchronously present at their breeding sites. Therefore, population size estimates can be misleading when based on commonly used closed or open-population capture-mark-recapture approaches. The superpopulation approach, a modified Jolly-Seber model, has been successfully applied in taxa other than amphibians with distinct migratory behaviour and where individuals are asynchronously present at the sampling site. In this paper, we suggest that the superpopulation approach is a useful population size estimator for ‘prolonged’ breeding amphibian species. Two case studies on European anurans show that superpopulation estimates are much higher than simple population counts. A simulation study showed that superpopulation estimates are unbiased but that accuracy can be low when either survival or detection probabilities (or both) are low. We recommend the superpopulation approach because it matches the natural history and phenology of amphibian species with prolonged breeding seasons. Keywords : abundance, Bufo ( Pseudepidalea ) viridis , capture-mark-recapture, Hyla arborea , Jolly-Seber model, POPAN, simulation. Introduction About one third of all known amphibian species is threatened with extinction (Stuart et al., 2008), and negative population trends have been found in almost all European species (Temple and Cox, 2009). Therefore, considerable con- servation effort is needed to prevent large-scale losses of amphibian biodiversity (Stuart et al., 2004, 2008; Gascon et al., 2007). In this con- text, it is crucial most to know the state of am- phibian populations. Because many populations decline but do not go extinct (Houlahan et al., 2000), reliable estimates of abundance – as op- posed to presence/absence data – are important. To determine the size of an amphibian popu- lation, two approaches are commonly used: 1 - Trier University, Department of Biogeography, 54286 Trier, Germany 2 - KARCH, Passage Maximilien-de-Meuron 6, 2000 Neuchâtel, Switzerland 3 - A. Maibach Sàrl, Ch. de la Poya 10, CP 99, 1610 Oron- la-Ville, Switzerland 4 - Institut für Evolutionsbiologie und Umweltwissenschaf- ten, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland * Corresponding author; e-mail: norman.wagner1@googlemail.com (i) trying to count all individuals of the popu- lation (e.g. using drift fences and pitfall traps) or (ii) estimating the population size. The first way seems attractive, but is almost impossible in many cases (Schmidt, 2004; Mazerolle et al., 2007). In any case, this method is expensive and time-consuming, and does not guarantee high and constant detection probabilities (Donnelly and Guyer, 1994; Schmidt, Schaub and Anholt, 2002). All methods of counting amphibians (adults, egg masses, or calling males) assume that detectability is perfect or at least constant, an assumption which is likely to be violated in many natural amphibian populations and which cannot be adequately tested. Therefore, the magnitude and direction of bias to remains un- known (Schmidt, 2004). It is suggested to apply methods that explicitly account for imperfect detectability. Capture-mark-recapture (CMR) methods adjust population size estimates for imperfect detection (Schmidt, 2004; Mazerolle et al., 2007). Additionally, the assumptions of these methods can be tested (Lebreton et al., 1992; Schmidt, Schaub and Anholt, 2002). Many different estimators for abundance are available for CMR data (e.g., Williams, Nichols and Conroy, 2002). However, the question re- © Koninklijke Brill NV, Leiden, 2011. DOI:10.1163/017353711X579768</p>
<p>324 N. Wagner et al. mains open which estimators are the best for amphibians, especially those with ‘prolonged’ breeding seasons. The best observation possi- bilities for amphibians are during the breed- ing season of pond-breeding species. Regard- ing the length of this breeding season, most European amphibian species can be classified either as ‘explosive’ or ‘prolonged’ breeders (Arak, 1983; Wells, 2007). In European species, the breeding season of prolonged breeders lasts for several weeks to months. Consequently, the members of the populations are asynchronously present at the breeding site and there is no pe- riod within a year with all individuals being present at the breeding site. When estimating the size of a population of an amphibian with a prolonged breeding season, the interest is in knowing the total (or cumula- tive) number of individuals that use the breeding site. Closed population size estimators can esti- mate this number (Kendall, 1999) but assume that populations are demographically closed, i.e. that there is no immigration, birth, emigra- tion and death during the study period. This as- sumption is violated in most populations, but in particular in those that have prolonged breed- ing. Hence, estimators for closed populations are useful only in some specific cases (Kendall, 1999). Instead, estimators for demographically open populations should be used. The most widely used open population size estimator is the Jolly-Seber model which pri- marily aims to estimate abundances (Pollock et al., 1990). A drawback of this model is its un- suitability for estimating the total or cumula- tive number of individuals at a breeding site, as it estimates the number of individuals that are present at one particular point in time (Pol- lock et al., 1990; Bailey, Simons and Pollock, 2004a). Therefore, neither the closed population estimators nor the original Jolly-Seber model are suitable tools to estimate population sizes of prolonged breeding amphibians, since neither method adequately matches the natural history of amphibians with prolonged breeding seasons. Therefore, researchers have used other methods. For example, several studies used the ‘robust design’ (Pollock, 1982) to estimate population sizes of amphibian populations (e.g., Bailey, Si- mons and Pollock, 2004a; Bailey, Simons and Pollock, 2004b), including prolonged breeders (e.g., Pellet, Helfer and Yannic, 2007). The ‘ro- bust design’ combines closed and open popula- tion analysis methods. Schwarz et al. (1993) and Schwarz and Ar- nason (1996) developed a modification of the Jolly-Seber model that, in our opinion, may be useful for amphibians with prolonged breed- ing seasons. Because this model was first im- plemented in the software POPAN (http://www. cs.umanitoba.ca/ ∼ popan/), we call it hereafter the ‘POPAN model’. Within a season, the POPAN model first estimates the number of in- dividuals present during the first capture oc- casion and then estimates the number of indi- viduals that enter the population between the first and the second capture occasion (and then the number of new entrants between all sub- sequent capture occasions). Thus, the POPAN model aims to estimate the number of amphib- ians present at any capture occasion and addi- tionally the total or cumulative number of am- phibians that use the breeding site during a sea- son. The total or cumulative number of amphib- ians is estimated by adding the number of indi- viduals present during the first capture occasion ( ˆ N 1 ) and the sum of the new entrants at subse- quent capture occasions ( ˆ B i ) : ˆ N ∗ = ˆ N 1 + k − 1 ∑ i = 1 ˆ B ∗ i . This sum ( ˆ N ∗ ) is called the ‘superpopulation’ (Schwarz and Arnason, 1996; Williams, Fred- erick and Nichols, 2011). The POPAN model makes the usual assumptions of Jolly-Seber models, namely that there is no heterogeneity among individuals in either survival or detection probabilities (Williams, Frederick and Nichols, 2011). Some parameters may be confounded with others (see Schwarz and Arnason, 2007). The POPAN model has been applied success- fully to different taxa with distinct migratory</p>
<p>The superpopulation approach for population size estimation 325 activity, including marine mammals (Manske, Stobo and Schwarz, 2002; Parra, Corkeron and Marsh, 2006), butterflies (Habel, Junker and Schmitt, 2010; Junker and Schmitt, 2010; Junker et al., 2010; Konvicka et al., 2010) and birds (Williams, Frederick and Nichols, 2011). Although the POPAN approach was used by some herpetologists (e.g., Wilgers et al., 2006; Hocking and Semlitsch, 2007; Vasconcellos and Colli, 2009), its ability to estimate the total number of amphibians that use a breeding site during a season is apparently not yet widely ap- preciated. For example, the POPAN approach was only briefly mentioned in a recent re- view of population analysis methods (Maze- rolle et al., 2007). We believe that this esti- mator matches the biology and phenology of prolonged-breeding amphibians very well. To illustrate the usability of the POPAN model for use with amphibian CMR data, we used it to estimate population sizes in two species of prolonged-breeding amphibian populations in Europe. CMR data collected during one breed- ing season of a Green toad ( Bufo ( Pseudep- idalea ) viridis Laurenti, 1768) population from western Germany and data of two European tree frog ( Hyla arborea (Linnaeus, 1758)) popula- tions from Switzerland (Pellet, Helfer and Yan- nic, 2007) collected during three years serve as case studies. Furthermore, to gain insight into the properties of the POPAN superpopulation estimator when sample sizes are small as in most amphibian field studies, we conducted a small simulation study (see also Arnason and Schwarz, 2002). Materials and methods Field studies and data analysis Bufo ( Pseudepidalea ) viridis toads were captured and marked (see below) for approximately half an hour per pond and session with a dip net by a single person (NW) in a for- mer mining area near Camphausen, Saarland, western Ger- many (49 ◦ 17 ′ N, 07 ◦ 01 ′ E, about 300 m a.s.l.). Ten sessions were conducted in 2009 from the beginning to the end of the breeding season (March-June). Two populations of Hyla arborea were studied, one in Camp Romain, Vaud, Switzerland (46 ◦ 31 ′ N, 06 ◦ 21 ′ E, about 600 m a.s.l.) and another one in Les Mossières, Vaud, Switzerland (46 ◦ 32 ′ N, 06 ◦ 21 ′ E, about 650 m a.s.l.). Studies were performed during the respective breeding activities in 2002, 2003 and 2004. Each year, three to four capture sessions spread across the breeding season were conducted by three persons (JP, V. Helfer, G. Yannic). For further details see Pellet, Helfer and Yannic (2007). Green toads were individually recognised (‘marked’) by their dorsal and snout patterns (see Henle et al., 1997; Meyer and Grosse, 1997). The documentation and indi- vidual recognition was managed via a digital photograph database. Likewise, the dark lateral line in the European tree frog allowed for photographic identification of individuals (Tester, 1990). Due to the lack of female recaptures, only data on male recapture rates was analysed for both species. The three data sets, i.e. Camphausen, Camp Romain, Les Mossières, were analysed with the software MARK (White and Burnham, 1999). All three data sets were analysed using the POPAN model. For the tree frogs, where three years of CMR data were available, we estimated abundance for each of the three years. Herein, we accounted for different time periods be- tween field surveys. We subsequently tested for each data set whether models with constant or time-varying parameters provided a better fit to the data. We used the sinus or logit function for survival ( φ ) and detection probabilities ( p ). For the probability of entry ( b i ), we always used the Mlogit link function and for N the log-link function (as recommended by Schwarz and Arnason, 2007). Best fitting models were chosen by their small sample Akaike Information Criterion values (AICc; Burnham and Anderson, 2002) and used for parameter estimation. Simulation study To assess the performance of the POPAN model, we sim- ulated capture histories and used these capture histories to estimate the size of the superpopulation. We simulated cap- ture histories in R (R Development Core Team, 2009) using an adapted version of the R function ‘simul.ch.js’ (Kéry and Schaub, 2011). Capture histories were imported into pro- gram MARK (White and Burnham, 1999) for population estimation. We simulated a study with ten capture occasions and a superpopulation size of N = 100. One hundred indi- viduals is a small sample size if the goal is to assess the performance of an estimator, but we were interested in an assessment with realistically small sample sizes. Individu- als entered the breeding population with probability b i and were detected with probability p . After entry, individuals survived with probability φ and were detected with proba- bility p (i.e., those probabilities were constant across time). We simulated eight scenarios in which we varied entry, sur- vival and detection probabilities. We simulated populations in which the probability of entry (i) was the same for all occasions ( b i = 0 . 1 ) or (ii) where most individuals en- tered the populations in the middle of the study (i.e., b i = 0 . 05 , 0 . 05 , 0 . 05 , 0 . 1 , 0 . 25 , 0 . 25 , 0 . 1 , 0 . 05 , 0 . 05 , 0 . 05 ) . We simulated capture histories with high and low survival prob- abilities ( φ = 0 . 8 and φ = 0 . 4 ) and high and low detection probabilities ( p = 0 . 8 and p = 0 . 4 ) . Each scenario was</p>
<p>326 N. Wagner et al. simulated five times. Within program MARK, we used the POPAN option to fit two models to every simulated data set: a model where all parameters were constant and a model where capture probability was constant and survival and en- try probabilities time-varying. Modelling followed Schwarz and Arnason (2007). Results Field studies The best fitting models all had a time-varying probability of entry (table 1). We used these models for parameter estimation. The annual population size estimates exceeded the total number of individuals captured or were some- times similar to them (table 2). All mean counts per capture session were lower than the per- session estimates. Likewise, all maximum num- bers of captures at one occasion were much lower than the annual population size estimates (table 2, figs 1-2). The POPAN abundance estimates for the cap- ture events within the seasons show distinct pat- Table 1. Best fitting POPAN models chosen by their AICc-values; K is the number of parameter. Link functions are given in parentheses for survival ( φ) and detection probabilities ( p ). A log link and a Mlogit link were used for superpopulation size ( N ) and entry probabilities ( pent = b i ) , respectively. Species, population, year Model AICc K Bufo ( Pseudepidalea ) viridis , Camphausen, 2009 φ ( · )p( t ) pent ( t )N 936.36 15 (logit link for φ and p ) Hyla arborea , Camp Romain, 2002 φ ( · )p( t ) pent ( t )N 79.85 5 (logit link for φ and p) Hyla arborea , Camp Romain, 2003 φ (t )p( t ) pent ( t )N 59.71 6 (logit link for φ and p) Hyla arborea , Camp Romain, 2004 φ ( · )p( t ) pent ( t )N 98.36 6 (logit link for φ and p) Hyla arborea , Les Mossières, 2002 φ ( · )p( t ) pent ( t )N 46.77 3 (logit link for φ and p) Hyla arborea , Les Mossières, 2003 φ ( · )p( · )pent ( t )N 87.00 4 (sinus link for φ and p) Hyla arborea , Les Mossières, 2004 φ ( t )p( t ) pent (t )N 172.86 7 (logit link for φ and p) Table 2. Total number of male individuals captured, total number of captures including recaptures, maximum number of captures at one occasion, mean number of individuals captured per session, and estimated annual population sizes. Estimates are means ± SE (95% confidence intervals in parentheses) and based on the best model shown in table 1. Species, population, Total number of Maximum number Mean number of Estimated annual year individuals one of captures at individuals captured population size captured occasion per session (POPAN model) Bufo viridis , 188 84 38.1 305 . 14 ± 21 . 0 Camphausen, 2009 (264.0; 346.3) Hyla arborea , 35 27 16 41 . 5 ± 3 . 9 Camp Romain, 2002 (33.9; 49.2) Hyla arborea , 34 21 12.3 31 . 9 ± 3 . 0 Camp Romain, 2003 (26.0; 37.7) Hyla arborea , 75 17 22 162 . 4 ± 35 . 2 Camp Romain, 2004 (93.3; 231.5) Hyla arborea , 29 22 13.3 28 . 7 ± 1 . 2 Les Mossières, 2002 (26.3; 31.1) Hyla arborea , 30 23 17.3 32 . 0 ± 1 . 0 Les Mossières, 2003 (30.2; 33.8) Hyla arborea , 45 34 22 46 . 2 ± 1 . 9 Les Mossières, 2004 (42.5; 49.9)</p>
<p>The superpopulation approach for population size estimation 327 Figure 1. Estimated male population size at every capture occasion of Green toads using the POPAN model (table 1) at Camphausen (estimates are means ± SE and represent population sizes at the sampling occasions). Figure 2. Estimated male population size at every capture occasion of European tree frogs using the POPAN model (table 1) at Camp Romain and at Les Mossières (estimates are means ± SE and represent population sizes at the sam- pling occasions). terns (figs 1-2). The number of Green toads at the breeding site was relatively stable. However, the number of toads present at any capture event was only about 50% of the superpopulation size (table 2). Within-season survival probabilities were high but detection probabilities were often quite low and variable (table 3). For both European tree frog populations, the POPAN within-season estimates showed rela- tively stable numbers of males present at the breeding site (fig. 2). Tree frog survival proba- bilities and detection probabilities were usually high (except for 2004). Detection probabilities were close to one, suggesting that most, and in some cases all, males present at the site were captured. As a consequence, the difference be- tween the total number of males caught and the superpopulation estimate was small. Simulation study The results of the simulation study are shown in fig. 3. The figure shows the results of the super- population estimates based on two models. On average, there appears to be no bias but individ- ual estimates can deviate from the true value. Estimates are best (high accuracy, i.e. minimal difference between the estimates and true super- population size) when both survival and capture probabilities were high ( φ = 0 . 8 ) . When ei- ther survival or capture probabilities were low, then estimates were more variable across repli- cate simulations of the same scenario (i.e., re- duced accuracy). Even though point estimates deviated from the true value, confidence inter- vals included true population size. When both survival and capture probabilities were low, then estimates were often far away from the true value. Under this scenario, confidence intervals were very wide but they nevertheless usually in- cluded the true value. Whether entry probabili- ties were constant or time varying had very little impact on the estimates. Discussion Conceptually, the POPAN model of Schwarz and Arnason (1996) is an appropriate model for the estimation of population size in prolonged breeding amphibian species. The superpopula- tion model provides estimates of abundance at</p>
<p>328 N. Wagner et al. Table 3. Survival probabilities ( φ) ± SE and detection probabilities ( p) ± SE for the Green toad population, western Germany, and the two European tree frog populations, Switzerland. Estimates are based on the best model shown in table 1. Species, population Capture occasion Survival probabilities ( φ) ± SE Detection probabilities ( p) ± SE Bufo viridis , Camphausen 20-IV-2009 – 1 . 00 ± 0 . 04 23-IV-2009 0 . 96 ± 0 . 01 0 . 18 ± 0 . 03 26-IV-2009 0 . 96 ± 0 . 01 0 . 59 ± 0 . 05 02-V-2009 0 . 96 ± 0 . 01 0 . 29 ± 0 . 05 08-V-2009 0 . 96 ± 0 . 01 0 . 26 ± 0 . 05 13-V-2009 0 . 96 ± 0 . 01 0 . 42 ± 0 . 06 19-V-2009 0 . 96 ± 0 . 01 0 . 47 ± 0 . 07 25-V-2009 0 . 96 ± 0 . 01 0 . 22 ± 0 . 05 02-VI-2009 0 . 96 ± 0 . 01 0 . 05 ± 0 . 02 08-VI-2009 0 . 96 ± 0 . 01 0 . 03 ± 0 . 02 Hyla arborea , Camp Romain 8-V-2002 – 1 . 00 ± 0 . 00 14-V-2002 0 . 89 ± 0 . 02 0 . 53 ± 0 . 16 24-V-2002 0 . 89 ± 0 . 02 1 . 00 ± 0 . 00 23-IV-2003 – 1 . 00 ± 0 . 00 25-IV-2003 0 . 82 ± 0 . 10 1 . 00 ± 0 . 00 28-IV-2003 1 . 00 ± 0 . 00 0 . 92 ± 0 . 12 8-V-2003 0 . 86 ± 0 . 04 1 . 00 ± 0 . 00 21-IV-2004 – 1 . 00 ± 0 . 00 27-IV-2004 1 . 00 ± 0 . 0 0 . 12 ± 0 . 08 28-IV-2004 1 . 00 ± 0 . 0 0 . 08 ± 0 . 03 10-V-2004 1 . 00 ± 0 . 0 0 . 33 ± 0 . 08 Hyla arborea , Les Mossières 7-V-2002 – 1 . 00 ± 0 . 00 12-V-2002 0 . 83 ± 0 . 04 1 . 00 ± 0 . 00 15-V-2002 0 . 83 ± 0 . 04 1 . 00 ± 0 . 00 25-IV-2003 – 0 . 92 ± 0 . 05 1-V-2003 0 . 98 ± 0 . 01 0 . 92 ± 0 . 05 12-V-2003 0 . 98 ± 0 . 01 0 . 92 ± 0 . 05 18-V-2003 0 . 98 ± 0 . 01 0 . 92 ± 0 . 05 23-IV-2004 – 1 . 00 ± 0 . 30 29-IV-2004 1 . 00 ± 0 . 00 0 . 42 ± 0 . 08 3-V-2004 0 . 88 ± 0 . 03 0 . 59 ± 0 . 10 11-V-2004 1 . 00 ± 1 . 43 0 . 88 ± 10 . 01 every sampling occasion (figs 1-2) and, most importantly, an estimate of cumulative, i.e. su- perpopulation, abundance (see table 2 and the equation in the introduction). Therefore, the su- perpopulation model is better than closed popu- lation estimators because it does not make the unrealistic assumption of demographic closure. It is better than the traditional Jolly-Seber model because it provides an estimate of cumulative abundance. We believe that the calculation of a super- population in the POPAN model best matches the reproductive phenology and activity of pro- longed breeding amphibians. The simulation re- sults showed that the POPAN model recovered true population sizes well. The results of the simulation study help to identify conditions un- der which the superpopulation model performs best (i.e., narrow confidence intervals and high accuracy; also see Arnason and Schwarz, 2002 and Williams, Frederick and Nichols, 2011). As expected, the superpopulation model per- forms best when both survival and capture prob- abilities are high. If either probability or both are lower, superpopulation estimates are worse (fig. 3). Individual estimates can deviate from the true value and confidence intervals are wide. The confidence interval, however, usually in- cludes the true value. Like all CMR models, the superpopulation model requires a sufficient amount of data in order to estimate demo- graphic parameters with a satisfactory level of</p>
<p>The superpopulation approach for population size estimation 329 Figure 3. Results of the simulation study. Symbols show superpopulation estimates and 95% confidence intervals (some exceed the range of the y-axis) for five replicates of eight simulation scenarios. The scenarios were: (a) high survival (phi = φ = 0 . 8 ) , high capture probability ( p = 0 . 8 ) and constant entry probabilities (pent = b = 0 . 1 ) , (b) high survival (phi = φ = 0 . 8 ) , high capture probability ( p = 0 . 4 ) and constant entry probabilities (pent = b = 0 . 1 ) , (c), high survival (phi = φ = 0 . 4 ) , high capture probability ( p = 0 . 8 ) and constant entry probabilities (pent = b = 0 . 1 ) , (d), high survival (phi = φ = 0 . 4 ) , high capture probability ( p = 0 . 4 ) and constant entry probabilities (pent = b = 0 . 1 ) , (e) high survival (phi = φ = 0 . 8 ) , high capture probability ( p = 0 . 8 ) and variable entry probabilities (pent; see text), (b) high survival (phi = φ = 0 . 8 ) , high capture probability ( p = 0 . 4 ) and variable entry probabilities (pent; see text), (c) high survival (phi = φ = 0 . 4 ) , high capture probability ( p = 0 . 8 ) and variable entry probabilities (pent; see text), (d) high survival (phi = φ = 0 . 4 ) , high capture probability ( p = 0 . 4 ) and variable entry probabilities (pent; see text). The upper panel shows estimates based on a model where all parameters were constant. The lower panel shows estimates based on a model where capture probability was constant and survival and entry probabilities were allowed to vary with time. The horizontal line at y = 100 indicates the true superpopulation size. confidence (Pollock et al., 1990). Thus, we sug- gest that researchers should try to maximize ef- fort in the field such that capture probabilities are high. The superpopulation approach that we de- scribed is useful if abundance has to be esti- mated at a single site. When abundances have to be estimated at multiple sites at the same time, the point count models by Royle (2004) and Dail and Madsen (2011) may be an even better choice, as they also account for im- perfect detection (Nichols, Thomas and Conn, 2008; see Dodd and Dorazio (2004) for a case study on salamanders). Thus, those models can also deal with temporary emigration and with asynchronous presence of individuals at the sampling site (see Nichols, Thomas and Conn (2008) for a detailed discussion). Field studies Due to the lack of data on female individuals, only the number of males could be estimated. As this is a common problem, monitoring pro- grammes and ecological studies often focus on males (e.g., Pellet et al., 2006). For conservation measures, herpetologists therefore have to as- sume that the state and dynamics of males also reflects the state and dynamics of females. How- ever, this procedure might bear problems when proportions of males and females are changing over time, e.g., caused by ‘demasculinisation’ of amphibians by some pesticides (e.g., Hayes et al., 2006). Beside this, there is a clear need to better understand the temporal patterns of re- productive activities of individual males (Friedl and Klump, 2005; Grafe and Meuche, 2005; Broquet, Jaquiéry and Perrin, 2009). For exam- ple, the survival estimates presented in table 3 suggest that many male tree frogs spend sev- eral weeks at the breeding site (Schmidt, 2010). In contrast, several studies on sexual selection in tree frogs reported short stays at the breed- ing site (Friedl and Klump, 2005; Grafe and Meuche, 2005; Broquet et al., 2009).</p>
<p>330 N. Wagner et al. Green toad population High survival probabilities (table 3) suggest that most toads stay at the breeding site for most of the season (Schmidt, 2010). Detection probabil- ities were low and variable (table 3) even though one would expect that calling males should be easy to detect. Comparing the estimates of sur- vival (high) and capture probabilities (low) to the results of the simulation (fig. 3), this sug- gests that the estimates are of intermediate qual- ity in terms of confidence interval width and ac- curacy. To obtain better estimates, capture effort in the field should be increased such that detec- tion probabilities are higher. According to the rules defined by the German federal agency for nature conservation for popu- lation assessment under the European Habitats Directive, the Camphausen population would be declared to be in a ‘good’ state. This is because the maximum count at a capture occasion was n = 88. However, with a superpopulation es- timate of ∼ 300 male Green toads in 2009, we consider the population to be in a better state than ‘good’. This highlights the fact that differ- ent methods of quantifying population size can result in different assessments of the state of a population. Indeed, the Camphausen population is the largest population of this species known in the German state of Saarland and therefore should be a special target of conservation effort. In the past, similarly larger populations were known, but they all declined, mainly due to eco- logical changes of the mining areas (e.g., refor- estation) due to the end of coal mining (Gerst- ner, 2003). Tree frog populations Estimates of survival and capture probabilities were high (table 3) which suggests that the es- timates of superpopulation size for 2002 and 2003 should be of high quality (i.e., when com- pared to the results of the simulation study; fig. 3). Estimates for 2004 probably are not reliable. At Camp Romain, this may be partly caused by the fact that many ‘new’ frogs appeared at the site at the third capture occasion while most ‘old’ frogs were no longer captured. The rea- son(s) for this turnover of individuals are un- known. Both tree frog populations studied are source populations in a remnant metapopulation sys- tem of western Switzerland (Pellet, Maze and Perrin, 2006). They were part of a long term monitoring program aimed at the detection of early changes in breeding population sizes. The European tree frog has a relatively short life span; therefore, it is of high importance to get the best information possible on its population sizes. Thereby, conservation efforts may focus on breeding sites with decreasing population trends. Conclusion We believe that population estimates are more valuable than counts that are not adjusted to im- perfect detection (Schmidt, 2004; Schmidt and Pellet, 2009). In our field studies, the mean counts per capture session as well as the max- imum numbers of individuals captured at a sin- gle occasion were lower than the per-session estimates of abundance and much lower than the superpopulation estimate of abundance (ta- ble 2, figs 1-2). These findings support the idea that simple count data underestimate true popu- lation sizes, as also has been pointed out by other authors (e.g., Bailey, Simons and Pollock, 2004b; Dodd and Dorazio, 2004; Mazerolle et al., 2007). As described for the Green toad population, the use of counts or estimates may lead to different population status assessments. We would like to emphasise that when using CMR methods for estimating population size of amphibians, one should carefully choose the most suitable estimator. The statistical model should account for the natural history and phe- nology of the species. We recommend the POPAN model to estimate population sizes of amphibians with prolonged breeding seasons because it matches the natural history and phe- nology of prolonged-breeding amphibians well.</p>
<p>The superpopulation approach for population size estimation 331 Superpopulation estimates are a very useful description of the state (i.e. size) of a biological population and therefore they should be useful for the assessment of conservation status of populations of species that are listed in the EU Habitats Directive appendices. Additionally, the superpopulation estimates are in our opinion the best description of population size if the goal is to learn whether a population is stationary or declining. Acknowledgements. We thank M. Schaub for providing the R function ‘simul.ch.js’ ahead of print. We are grateful to M. Junker for discussions on the topic and A. Mehling for valuable comments on the manuscript. The ‘Zentrum für Biodokumentation’ granted permission to conduct field studies in the Saarland to N. Wagner. Funding of European tree frog study was provided by the Center for Fauna and Nature Conservation (Canton Vaud) and the Swiss federal Office for Environment, Forest and Landscape. Authoriza- tion #1661 for the manipulation of wild animals was granted to J. Pellet by the state veterinarian. References Arak, A. (1983): Male-male competition and mate choice in anuran amphibians. In: Mate Choice, p. 181-210. Bate- son, P., Ed., Cambridge, Cambridge University Press. Arnason, A.N., Schwarz, C.J. (2002): POPAN-6: exploring convergence and estimate properties with SIMULATE. J. Appl. Stat. 29 : 649-668. Bailey, L.L., Simons, T.R., Pollock, K.H. (2004a): Compar- ing population size estimators for plethodontid salaman- ders. J. Herpetol. 38 : 370-380. Bailey, L.L., Simons, T.R., Pollock, K.H. (2004b): Estimat- ing detection probability parameters for Plethodon sala- manders using the robust capture-recapture design. J. Wildl. Manage. 68 : 1-13. Broquet, T., Jaquiéry, J., Perrin, N. (2009): Opportunity for sexual selection and effective population size in the lek- breeding European treefrog ( Hyla arborea ). Evolution 63 : 674-683. Burnham, K.P., Anderson, D.R. (2002): Model Selection and Multi-model Inference: A Practical Information- Theoretic Approach. 2nd Edition. New York, Springer. Dail, D., Madsen, L. (2011): Models for estimating abun- dance from repeated counts of an open metapopulation. Biometrics, in press. Dodd, C.K., Jr., Dorazio, R.M. (2004): Using counts to si- multaneously estimate abundance and detection proba- bilities in a salamander community. Herpetologica 60 : 468-478. Donnelly, M.A., Guyer, C. (1994): Estimating population size. In: Measuring and Monitoring Biological Diver- sity: Standard Methods for Amphibians, p. 183-205. Heyer, W.R., Donnelly, M.A., McDiarmid, R.W., Hayek, L.-A. C., Foster, M.S., Eds, Washington, Smithonian. Friedl, T.W.P., Klump, G.M. (2005): Sexual selection in the lek-breeding European tree frog: body size, chorus at- tendance, random mating and good genes. Anim. Behav. 70 : 1141-1154. Gascon, C., Collins, J.P., Moore, R.D., Church, D.R., McKay, J.E., Mendelson III, J.R. (2007): Amphib- ian Conservation Action Plan. Gland and Cambridge, IUCN/SSC Amphibian Specialist Group. Gerstner, J. (2003): Die Wechselkröte ( Bufo viridis Lau- renti, 1768) im Saarland. Mertensiella 14 : 123-129. Grafe, T.U., Meuche, I. (2005): Chorus tenure and estimates of population size of male European tree frogs Hyla ar- borea : implications for conservation. Amphibia-Reptilia 26 : 437-444. Habel, J.C., Junker, M., Schmitt, T. (2010): High dispersal ability and low genetic differentiation in the widespread butterfly species Melanargia galathea . J. Insect Conserv. 14 : 467-478. Hayes, T.B., Case, P., Chui, S., Chung, D., Haeffele, C., Haston, K., Lee, M., Mai, V.P., Marjuoa, Y., Parker, J., Tsui, M. (2006): Pesticide mixtures, endocrine disrup- tion, and amphibian declines: are we underestimating the impact? Environ. Health Perspect. 114 : 40-50. Henle, K., Kuhn, J., Podloucky, R., Schmidt-Loske, K., Bender, C. (1997): Individualerkennung und Markie- rung mitteleuropäischer Amphibien und Reptilien: Übersicht und Bewertung der Methoden; Empfehlungen aus Natur- und Tierschutzsicht. Mertensiella 7 : 133-184. Hocking, D.J., Semlitsch, R.D. (2007): Effects of timber harvest on breeding site selection by gray treefrogs ( Hyla versicolor ). Biol. Conserv. 138 : 506-513. Houlahan, J.E., Findlay, C.S., Schmidt, B.R., Meyer, A.H., Kuzmin, S.L. (2000): Quantitative evidence for global amphibian population declines. Nature 404 : 752-755. Junker, M., Schmitt, T. (2010): Demography, dispersal and movement pattern of Euphydryas aurinia (Lepidoptera: Nymphalidae) at the Iberian Peninsula: an alarming example in an increasingly fragmented landscape. J. Insect Conserv. 14 : 237-246. Junker, M., Wagner, S., Gros, P., Schmitt, T. (2010): Chang- ing demography and dispersal behaviour: ecological adaptations in an alpine butterfly. Oecologia 164 : 971- 980. Kendall, W.L. (1999): Robustness of closed capture- recapture methods to violations of the closure assump- tion. Ecology 80 : 2517-2525. Kéry, M., Schaub, M. (2011): Bayesian population analysis using WinBUGS: a hierarchical perspective. Burlington, Burlington Academic Press, in press. Konvicka, M., Novak, J., Benes, J., Fric, Z., Bradley, J., Keil, P., Hrcek, H., Chobot, K., Marhoul, P. (2010): The last population of the Woodland brown butterfly ( Lopinga achine ) in the Czech Republic: habitat use, demography and site management. J. Insect Conserv. 12 : 549-560. Lebreton, J.-D., Burnham, K.P., Clobert, J., Anderson, D.R. (1992): Modeling survival and testing biological hy- potheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62 : 67-118.</p>
<p>332 N. Wagner et al. Manske, M., Stobo, W.T., Schwarz, C.J. (2002): Estimation of age-specific probabilities of first return and annual survival rates for the male gray seal ( Halichoerus gry- phus ) on Sable Island from capture-recapture data. Mar. Mamm. Sci. 18 : 145-155. Mazerolle, M.J., Bailey, L.L., Kendall, W.L., Royle, J.A., Converse, S.J., Nichols, J.D. (2007): Making great leaps forward: Accounting for detectability in herpetological field studies. J. Herpetol. 41 : 672-689. Meyer, F., Grosse, W.-R. (1997): Populationsökologische Studien an Amphibien mit Hilfe der fotografischen Indi- vidualerkennung: Übersicht zur Methodik und Anwen- dung bei der Kreuzkröte ( Bufo calamita ). Mertensiella 7 : 79-92. Nichols, J.D., Thomas, L., Conn, P.B. (2008): Inferences about landbird abundance from count data: Recent ad- vances and future directions. In: Modeling Demographic Processes in Marked Populations (Environmental and Ecological Studies 3), p. 201-235. Thomson, D.L., Cooch, E.G., Conroy, M.J., Eds, Berlin, Springer. Parra, G.J., Corkeron, P.J., Marsh, H. (2006): Population sizes, site fidelity and residence patterns of Australian snubfin and Indo-Pacific humpback dolphins: Implica- tions for conservation. Biol. Conserv. 129 : 167-180. Pellet, J., Maze, G., Perrin, N. (2006): The contribution of patch topology and demographic parameters to PVA predictions: the case of the European tree frog. Popul. Ecol. 48 : 353-361. Pellet, J., Schmidt, B.R., Fivaz, F., Perrin, N., Grossen- bacher, K. (2006): Density, climate and varying return points: an analysis of long-term population fluctuations in the threatened European tree frog. Oecologia 149 : 65- 71. Pellet, J., Helfer, V., Yannic, G. (2007): Estimating popu- lation size in the European tree frog ( Hyla arborea ) us- ing individual recognition and chorus counts. Amphibia- Reptilia 28 : 287-294. Pollock, K.H. (1982): A capture-recapture design robust to unequal probability of capture. J. Wild. Manage. 46 : 757-760. Pollock, K.H., Nichols, J.D., Brownie, C., Hines, J.E. (1990): Statistical inference for capture-recapture exper- iments. Wildl. Monogr. 107 : 1-97. R Development Core Team (2009): R: A Language and En- vironment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing. ISBN 3-900051- 07-0, available at http://www.R-project.org. Royle, J.A. (2004): N-mixture models for estimating popu- lation size from spatially replicated counts. Biometrics 60 : 108-115. Schmidt, B.R. (2004): Declining amphibian populations: The pitfalls of count data in the study of diversity, distributions, dynamics, and demography. Herpetol. J. 14 : 167-174. Schmidt, B.R. (2010): Estimating the impact of disease in species threatened by amphibian chytrid fungus: com- ment on Murray et al. Cons. Biol. 24 : 897-899. Schmidt, B.R., Pellet, J. (2009): Quantifying abundance: counts, detection probabilities, and estimates. In: Am- phibian Ecology and Conservation, p. 465-479. Dodd, K.C., Ed., Oxford, Oxford University Press. Schmidt, B.R., Schaub, M., Anholt, B.R. (2002): Why you should use capture-recapture methods when estimat- ing survival and breeding probabilities: on bias, tem- porary emigration, overdispersion, and common toads. Amphibia-Reptilia 23 : 375-388. Schwarz, C.J., Arnason, A.N. (1996): A general method- ology for the analysis of open model capture recapture experiments. Biometrics 52 : 860-873. Schwarz, C.J., Arnason, A.N. (2007): Jolly Seber models in MARK. In: Program Mark – A Gentle Introduction, 8th Edition, p. 402-454. Cooch, E., White, G., Eds, available at http://www.phidot.org/software/mark/docs/book/. Schwarz, C.J., Bailey, R.E., Irivine, J.R., Dalziel, F.C. (1993): Estimating salmon spawning escapement using capture-recapture methods. Canad. J. Fish. Aquat. Sci. 50 : 1181-1191. Stuart, S.N., Hoffmann, M., Chanson, J.S., Cox, N.A., Berridge, R.J., Ramani, P., Young, B.E. (2004): Status and trends of amphibian declines and extinctions world- wide. Science 306 : 1783-1786. Stuart, S.N., Hoffmann, M., Chanson, J.S., Cox, N.A., Berridge, R.J., Ramani, P., Young, B.E. (2008): Threat- ened Amphibians of the World. Barcelona, Lynx Edi- cions. Temple, H.J., Cox, N.A. (2009): European Red List of Am- phibians. Luxemburg, Office for Official Publications of the European Communities. Tester, U. (1990): Artenschützerische relevante Aspekte zur Ökologie des Laubfroschs ( Hyla arborea L.). Ph.D. The- sis, Medizinische Biologie, University of Basel, Basel, Switzerland. Vasconcellos, M.M., Colli, G.R. (2009): Factors affect- ing the population dynamics of two toads (Anura: Bu- fonidae) in a seasonal Neotropical savanna. Copeia 2 : 266-276. Wells, K.D. (2007): The Ecology and Behaviour of Am- phibians. Chicago, University of Chicago Press. White, G.C., Burnham, K.P. (1999): Program MARK: sur- vival estimation from populations of marked animals. Bird Study 46 : 120-139. Wilgers, D.J., Horne, E.A., Sandercock, B.K., Volkmann, A.W. (2006): Effects of rangeland management on com- munity dynamics of the herpetofauna of the tallgrass prairie. Herpetologica 62 : 378-388. Williams, B.K., Nichols, J.D., Conroy, M.J. (2002): Analy- sis and Management of Animal Populations. New York, Academic Press. Wiliams, K.A., Frederick, P.C., Nichols, J.D. (2011): Use of the superpopulation approach to estimate breeding population size: an example in asynchronously breeding birds. Ecology, in press. Received: September 7, 2010. Accepted: April 18, 2011.</p>
</body>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>The superpopulation approach for estimating the population size of 'prolonged' breeding amphibians: Examples from Europe</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>The superpopulation approach for estimating the population size of 'prolonged' breeding amphibians: Examples from Europe</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jérôme</namePart>
<namePart type="family">Pellet</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benedikt R.</namePart>
<namePart type="family">Schmidt</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Norman</namePart>
<namePart type="family">Wagner</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Lötters</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Schmitt</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<originInfo>
<publisher>BRILL</publisher>
<place>
<placeTerm type="text">The Netherlands</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011</dateIssued>
<dateCreated encoding="w3cdtf">2011</dateCreated>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<subject>
<genre>keywords</genre>
<topic>POPAN</topic>
<topic>CAPTURE-MARK-RECAPTURE</topic>
<topic>BUFO (PSEUDEPIDALEA) VIRIDIS</topic>
<topic>HYLA ARBOREA</topic>
<topic>SIMULATION</topic>
<topic>ABUNDANCE</topic>
<topic>JOLLY-SEBER MODEL</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Amphibia-Reptilia</title>
<subTitle>Publication of the Societas Europaea Herpetologica</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>AMRE</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0173-5373</identifier>
<identifier type="eISSN">1568-5381</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>323</start>
<end>332</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">37657DC0C6116DB9033504D2E8F2210B908DFFC7</identifier>
<identifier type="DOI">10.1163/017353711X579768</identifier>
<identifier type="href">15685381_032_03_s004_text.pdf</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2011 Koninklijke Brill NV, Leiden, The Netherlands</accessCondition>
<recordInfo>
<recordContentSource>BRILL Journals</recordContentSource>
<recordOrigin>Koninklijke Brill NV, Leiden, The Netherlands</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F20 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000F20 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:37657DC0C6116DB9033504D2E8F2210B908DFFC7
   |texte=   The superpopulation approach for estimating the population size of 'prolonged' breeding amphibians: Examples from Europe
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024