Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Universal entire functions with gap power series

Identifieur interne : 000893 ( Istex/Corpus ); précédent : 000892; suivant : 000894

Universal entire functions with gap power series

Auteurs : Wolfgang Luh ; Valeri A. Martirosian ; Jürgen Müller

Source :

RBID : ISTEX:FF33B736421F5A07D6796054DEFBAAD73A8EFDB3

Abstract

Let M be the family of all compact sets in C which have connected complement. For K ϵ M we denote by A(K) the set of all functions which are continuous on K and holomorphic in its interior. Suppose that {zn} is any unbounded sequence of complex numbers and let Q be a given sub-sequence of N0. If Q has density Δ(Q) = 1 then there exists a universal entire function ϑ with lacunary power series 1. (1) ϑ(z) = ϵ∞v = 0 ϑvZv, ϑv = 0 for v ∉ Q, which has for all K ϵ M the following properties simultaneously 2. (2) the sequence {ϑ(Z + Zn)} is dense in A(K) 3. (3) the sequence {ϑ (ZZn)} is dense in A(K) if 0 ∉ K. Also a converse result is proved: If ϑ is an entire function of the form (1) which satisfies (3), then Q must have maximal density Δmax(Q) = 1.

Url:
DOI: 10.1016/S0019-3577(98)80032-3

Links to Exploration step

ISTEX:FF33B736421F5A07D6796054DEFBAAD73A8EFDB3

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Universal entire functions with gap power series</title>
<author>
<name sortKey="Luh, Wolfgang" sort="Luh, Wolfgang" uniqKey="Luh W" first="Wolfgang" last="Luh">Wolfgang Luh</name>
<affiliation>
<mods:affiliation>Fachbereich IV, Universität Trier, D-54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martirosian, Valeri A" sort="Martirosian, Valeri A" uniqKey="Martirosian V" first="Valeri A." last="Martirosian">Valeri A. Martirosian</name>
<affiliation>
<mods:affiliation>Department of Mathematics, Yerevan State University, Alex Manoogian St. 1, Yerevan 375049, Armenia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>∗ The research work of the second author has been supported by the German Academic Exchange Service (DAAD).</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Jurgen" sort="Muller, Jurgen" uniqKey="Muller J" first="Jürgen" last="Müller">Jürgen Müller</name>
<affiliation>
<mods:affiliation>Fachbereich IV, Universität Trier, D-54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FF33B736421F5A07D6796054DEFBAAD73A8EFDB3</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S0019-3577(98)80032-3</idno>
<idno type="url">https://api.istex.fr/document/FF33B736421F5A07D6796054DEFBAAD73A8EFDB3/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000893</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000893</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Universal entire functions with gap power series</title>
<author>
<name sortKey="Luh, Wolfgang" sort="Luh, Wolfgang" uniqKey="Luh W" first="Wolfgang" last="Luh">Wolfgang Luh</name>
<affiliation>
<mods:affiliation>Fachbereich IV, Universität Trier, D-54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martirosian, Valeri A" sort="Martirosian, Valeri A" uniqKey="Martirosian V" first="Valeri A." last="Martirosian">Valeri A. Martirosian</name>
<affiliation>
<mods:affiliation>Department of Mathematics, Yerevan State University, Alex Manoogian St. 1, Yerevan 375049, Armenia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>∗ The research work of the second author has been supported by the German Academic Exchange Service (DAAD).</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Jurgen" sort="Muller, Jurgen" uniqKey="Muller J" first="Jürgen" last="Müller">Jürgen Müller</name>
<affiliation>
<mods:affiliation>Fachbereich IV, Universität Trier, D-54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Indagationes Mathematicae</title>
<title level="j" type="abbrev">INDAG</title>
<idno type="ISSN">0019-3577</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">9</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="529">529</biblScope>
<biblScope unit="page" to="536">536</biblScope>
</imprint>
<idno type="ISSN">0019-3577</idno>
</series>
<idno type="istex">FF33B736421F5A07D6796054DEFBAAD73A8EFDB3</idno>
<idno type="DOI">10.1016/S0019-3577(98)80032-3</idno>
<idno type="PII">S0019-3577(98)80032-3</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0019-3577</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Let M be the family of all compact sets in C which have connected complement. For K ϵ M we denote by A(K) the set of all functions which are continuous on K and holomorphic in its interior. Suppose that {zn} is any unbounded sequence of complex numbers and let Q be a given sub-sequence of N0. If Q has density Δ(Q) = 1 then there exists a universal entire function ϑ with lacunary power series 1. (1) ϑ(z) = ϵ∞v = 0 ϑvZv, ϑv = 0 for v ∉ Q, which has for all K ϵ M the following properties simultaneously 2. (2) the sequence {ϑ(Z + Zn)} is dense in A(K) 3. (3) the sequence {ϑ (ZZn)} is dense in A(K) if 0 ∉ K. Also a converse result is proved: If ϑ is an entire function of the form (1) which satisfies (3), then Q must have maximal density Δmax(Q) = 1.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Wolfgang Luh</name>
<affiliations>
<json:string>Fachbereich IV, Universität Trier, D-54286 Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Valeri A. Martirosian</name>
<affiliations>
<json:string>Department of Mathematics, Yerevan State University, Alex Manoogian St. 1, Yerevan 375049, Armenia</json:string>
<json:string>∗ The research work of the second author has been supported by the German Academic Exchange Service (DAAD).</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jürgen Müller</name>
<affiliations>
<json:string>Fachbereich IV, Universität Trier, D-54286 Trier, Germany</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Let M be the family of all compact sets in C which have connected complement. For K ϵ M we denote by A(K) the set of all functions which are continuous on K and holomorphic in its interior. Suppose that {zn} is any unbounded sequence of complex numbers and let Q be a given sub-sequence of N0. If Q has density Δ(Q) = 1 then there exists a universal entire function ϑ with lacunary power series 1. (1) ϑ(z) = ϵ∞v = 0 ϑvZv, ϑv = 0 for v ∉ Q, which has for all K ϵ M the following properties simultaneously 2. (2) the sequence {ϑ(Z + Zn)} is dense in A(K) 3. (3) the sequence {ϑ (ZZn)} is dense in A(K) if 0 ∉ K. Also a converse result is proved: If ϑ is an entire function of the form (1) which satisfies (3), then Q must have maximal density Δmax(Q) = 1.</abstract>
<qualityIndicators>
<score>3.606</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>432 x 684 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>754</abstractCharCount>
<pdfWordCount>1746</pdfWordCount>
<pdfCharCount>10438</pdfCharCount>
<pdfPageCount>8</pdfPageCount>
<abstractWordCount>155</abstractWordCount>
</qualityIndicators>
<title>Universal entire functions with gap power series</title>
<pii>
<json:string>S0019-3577(98)80032-3</json:string>
</pii>
<refBibs>
<json:item>
<author>
<json:item>
<name>N.U. Arakelian</name>
</json:item>
<json:item>
<name>V.A. Martirosian</name>
</json:item>
</author>
<host>
<volume>235</volume>
<pages>
<last>252</last>
<first>249</first>
</pages>
<author></author>
<title>Dokladi Akad. Nauk USSR</title>
</host>
<title>Uniform approximations in the complex plane by gap polynomials</title>
</json:item>
<json:item>
<host>
<volume>18</volume>
<pages>
<last>904</last>
<first>901</first>
</pages>
<author></author>
<title>Soviet Math. Dokl.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Bernal-González</name>
</json:item>
<json:item>
<name>A. Montes-Rodriguez</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>56</last>
<first>47</first>
</pages>
<author></author>
<title>Complex Variables</title>
</host>
<title>Universal functions for composition operators</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.D. Birkhoff</name>
</json:item>
</author>
<host>
<volume>189</volume>
<pages>
<last>475</last>
<first>473</first>
</pages>
<author></author>
<title>C.R. Acad. Sci. Paris</title>
</host>
<title>Démonstration d'un théorème élémentaire sur les fonctions entières</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Dixon</name>
</json:item>
<json:item>
<name>J. Korevaar</name>
</json:item>
</author>
<host>
<author></author>
<title>Nederl. Akad. Wetensch. Proc., Ser. A</title>
</host>
<serie>
<author></author>
<title>Nederl. Akad. Wetensch. Proc., Ser. A</title>
</serie>
<title>Approximation by lacunary polynomials</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Vorlesungen über Approximation in Komplexen</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Darstellung und Begründung einiger neuerer Erebnisse der Funktionentheorie</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Luh</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>144</last>
<first>128</first>
</pages>
<author></author>
<title>J. Approx. Theory</title>
</host>
<title>Holomorphic monsters</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Luh</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>96</last>
<first>87</first>
</pages>
<author></author>
<title>Complex Variables</title>
</host>
<title>Entire functions with various universal properties</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V.A. Martirosian</name>
</json:item>
</author>
<host>
<volume>120</volume>
<pages>
<last>472</last>
<first>451</first>
</pages>
<author></author>
<title>Matem. Sbornik</title>
</host>
<title>On the uniform complex approximation by gap polynomials</title>
</json:item>
<json:item>
<host>
<volume>48</volume>
<pages>
<last>462</last>
<first>445</first>
</pages>
<author></author>
<title>Math. USSR Sbornik</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>S.N. Mergelian</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>122</last>
<first>31</first>
</pages>
<author></author>
<title>Uspekhi Matem. Nauk</title>
</host>
<title>Uniform approximation of functions of a complex variable</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Amer. Math. Soc. Transl.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Müller</name>
</json:item>
</author>
<host>
<author></author>
<title>Mitt. Math. Sem. Gieβen</title>
</host>
<serie>
<author></author>
<title>Mitt. Math. Sem. Gieβen</title>
</serie>
<title>Über analytische Fortsetzung mit Matrixverfahren</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Müller</name>
</json:item>
</author>
<host>
<author></author>
<title>Israel Math. Conf. Proc.</title>
</host>
<serie>
<author></author>
<title>Israel Math. Conf. Proc.</title>
</serie>
<title>Approximation with lacunary polynomials in the complex plane</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Pólya</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>640</last>
<first>549</first>
</pages>
<author></author>
<title>Math. Z.</title>
</host>
<title>Untersuchungen über Lücken und Singularitäten von Potenzreihen (1. Mitteilung)</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Real and complex analysis</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Runge</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>244</last>
<first>228</first>
</pages>
<author></author>
<title>Acta Math.</title>
</host>
<title>Zur Theorie der eindeutigen analytischen Funktionen</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Zappa</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>352</last>
<first>345</first>
</pages>
<author></author>
<title>Bollettino U.M.I. 2-A</title>
</host>
<title>On universal holomorphic functions</title>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<volume>80</volume>
<pages>
<last>194</last>
<first>176</first>
</pages>
<language>
<json:string>unknown</json:string>
</language>
<title>Nederl. Akad. Wetensch. Proc., Ser. A</title>
</serie>
<host>
<volume>9</volume>
<pii>
<json:string>S0019-3577(00)X0015-8</json:string>
</pii>
<pages>
<last>536</last>
<first>529</first>
</pages>
<issn>
<json:string>0019-3577</json:string>
</issn>
<issue>4</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Indagationes Mathematicae</title>
<publicationDate>1998</publicationDate>
</host>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1016/S0019-3577(98)80032-3</json:string>
</doi>
<id>FF33B736421F5A07D6796054DEFBAAD73A8EFDB3</id>
<score>0.5679757</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/FF33B736421F5A07D6796054DEFBAAD73A8EFDB3/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/FF33B736421F5A07D6796054DEFBAAD73A8EFDB3/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/FF33B736421F5A07D6796054DEFBAAD73A8EFDB3/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Universal entire functions with gap power series</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1998</date>
</publicationStmt>
<notesStmt>
<note>Communicated by Prof. J. Korevaar at the meeting of September 29, 1997</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Universal entire functions with gap power series</title>
<author xml:id="author-1">
<persName>
<forename type="first">Wolfgang</forename>
<surname>Luh</surname>
</persName>
<affiliation>Fachbereich IV, Universität Trier, D-54286 Trier, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Valeri A.</forename>
<surname>Martirosian</surname>
</persName>
<affiliation>Department of Mathematics, Yerevan State University, Alex Manoogian St. 1, Yerevan 375049, Armenia</affiliation>
<affiliation>∗ The research work of the second author has been supported by the German Academic Exchange Service (DAAD).</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Jürgen</forename>
<surname>Müller</surname>
</persName>
<affiliation>Fachbereich IV, Universität Trier, D-54286 Trier, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Indagationes Mathematicae</title>
<title level="j" type="abbrev">INDAG</title>
<idno type="pISSN">0019-3577</idno>
<idno type="PII">S0019-3577(00)X0015-8</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998"></date>
<biblScope unit="volume">9</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="529">529</biblScope>
<biblScope unit="page" to="536">536</biblScope>
</imprint>
</monogr>
<idno type="istex">FF33B736421F5A07D6796054DEFBAAD73A8EFDB3</idno>
<idno type="DOI">10.1016/S0019-3577(98)80032-3</idno>
<idno type="PII">S0019-3577(98)80032-3</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1998</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Let M be the family of all compact sets in C which have connected complement. For K ϵ M we denote by A(K) the set of all functions which are continuous on K and holomorphic in its interior. Suppose that {zn} is any unbounded sequence of complex numbers and let Q be a given sub-sequence of N0. If Q has density Δ(Q) = 1 then there exists a universal entire function ϑ with lacunary power series 1. (1) ϑ(z) = ϵ∞v = 0 ϑvZv, ϑv = 0 for v ∉ Q, which has for all K ϵ M the following properties simultaneously 2. (2) the sequence {ϑ(Z + Zn)} is dense in A(K) 3. (3) the sequence {ϑ (ZZn)} is dense in A(K) if 0 ∉ K. Also a converse result is proved: If ϑ is an entire function of the form (1) which satisfies (3), then Q must have maximal density Δmax(Q) = 1.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1998">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/FF33B736421F5A07D6796054DEFBAAD73A8EFDB3/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>INDAG</jid>
<aid>98800323</aid>
<ce:pii>S0019-3577(98)80032-3</ce:pii>
<ce:doi>10.1016/S0019-3577(98)80032-3</ce:doi>
<ce:copyright type="unknown" year="1998"></ce:copyright>
</item-info>
<head>
<ce:title>Universal entire functions with gap power series</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Wolfgang</ce:given-name>
<ce:surname>Luh</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Valeri A.</ce:given-name>
<ce:surname>Martirosian</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="FN1">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Jürgen</ce:given-name>
<ce:surname>Müller</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Fachbereich IV, Universität Trier, D-54286 Trier, Germany</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Department of Mathematics, Yerevan State University, Alex Manoogian St. 1, Yerevan 375049, Armenia</ce:textfn>
</ce:affiliation>
<ce:footnote id="FN1">
<ce:label></ce:label>
<ce:note-para>The research work of the second author has been supported by the German Academic Exchange Service (DAAD).</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:miscellaneous>Communicated by Prof. J. Korevaar at the meeting of September 29, 1997</ce:miscellaneous>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Let
<math altimg="si1.gif">
<sc>M</sc>
</math>
be the family of all compact sets in
<math altimg="si2.gif">
<sc>C</sc>
</math>
which have connected complement. For
<ce:italic>K</ce:italic>
<ce:italic>ϵ</ce:italic>
<ce:italic>M</ce:italic>
we denote by
<ce:italic>A</ce:italic>
(
<ce:italic>K</ce:italic>
) the set of all functions which are continuous on
<ce:italic>K</ce:italic>
and holomorphic in its interior.</ce:simple-para>
<ce:simple-para>Suppose that {z
<ce:inf>n</ce:inf>
} is any unbounded sequence of complex numbers and let
<ce:italic>Q</ce:italic>
be a given sub-sequence of
<math altimg="si3.gif">
<sc>N</sc>
</math>
<ce:inf>0</ce:inf>
.</ce:simple-para>
<ce:simple-para>If
<ce:italic>Q</ce:italic>
has density
<ce:italic>Δ</ce:italic>
(
<ce:italic>Q</ce:italic>
) = 1 then there exists a universal entire function ϑ with lacunary power series
<ce:list>
<ce:list-item>
<ce:label>1.</ce:label>
<ce:para>(1)
<ce:italic>ϑ</ce:italic>
(
<ce:italic>z</ce:italic>
) =
<ce:italic>ϵ</ce:italic>
<ce:sup></ce:sup>
<ce:inf>
<ce:italic>v</ce:italic>
= 0</ce:inf>
<ce:italic>ϑ</ce:italic>
<ce:inf>
<ce:italic>v</ce:italic>
</ce:inf>
<ce:italic>Z</ce:italic>
<ce:sup>
<ce:italic>v</ce:italic>
</ce:sup>
,
<ce:italic>ϑ</ce:italic>
<ce:inf>
<ce:italic>v</ce:italic>
</ce:inf>
= 0 for
<ce:italic>v</ce:italic>
<ce:italic>Q</ce:italic>
, which has for all
<ce:italic>K</ce:italic>
<ce:italic>ϵ</ce:italic>
<ce:italic>M</ce:italic>
the following properties simultaneously</ce:para>
</ce:list-item>
<ce:list-item>
<ce:label>2.</ce:label>
<ce:para>(2) the sequence {
<ce:italic>ϑ</ce:italic>
(
<ce:italic>Z</ce:italic>
+
<ce:italic>Z</ce:italic>
<ce:inf>
<ce:italic>n</ce:italic>
</ce:inf>
)} is dense in
<ce:italic>A</ce:italic>
(
<ce:italic>K</ce:italic>
)</ce:para>
</ce:list-item>
<ce:list-item>
<ce:label>3.</ce:label>
<ce:para>(3) the sequence {
<ce:italic>ϑ</ce:italic>
(
<ce:italic>ZZ</ce:italic>
<ce:inf>
<ce:italic>n</ce:italic>
</ce:inf>
)} is dense in
<ce:italic>A</ce:italic>
(
<ce:italic>K</ce:italic>
) if 0 ∉
<ce:italic>K</ce:italic>
.</ce:para>
</ce:list-item>
</ce:list>
</ce:simple-para>
<ce:simple-para>Also a converse result is proved: If ϑ is an entire function of the form (1) which satisfies (3), then
<ce:italic>Q</ce:italic>
must have maximal density
<ce:italic>Δ</ce:italic>
<ce:inf>
<ce:italic>max</ce:italic>
</ce:inf>
(
<ce:italic>Q</ce:italic>
) = 1.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Universal entire functions with gap power series</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Universal entire functions with gap power series</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wolfgang</namePart>
<namePart type="family">Luh</namePart>
<affiliation>Fachbereich IV, Universität Trier, D-54286 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valeri A.</namePart>
<namePart type="family">Martirosian</namePart>
<affiliation>Department of Mathematics, Yerevan State University, Alex Manoogian St. 1, Yerevan 375049, Armenia</affiliation>
<affiliation>∗ The research work of the second author has been supported by the German Academic Exchange Service (DAAD).</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jürgen</namePart>
<namePart type="family">Müller</namePart>
<affiliation>Fachbereich IV, Universität Trier, D-54286 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1998</dateIssued>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Let M be the family of all compact sets in C which have connected complement. For K ϵ M we denote by A(K) the set of all functions which are continuous on K and holomorphic in its interior. Suppose that {zn} is any unbounded sequence of complex numbers and let Q be a given sub-sequence of N0. If Q has density Δ(Q) = 1 then there exists a universal entire function ϑ with lacunary power series 1. (1) ϑ(z) = ϵ∞v = 0 ϑvZv, ϑv = 0 for v ∉ Q, which has for all K ϵ M the following properties simultaneously 2. (2) the sequence {ϑ(Z + Zn)} is dense in A(K) 3. (3) the sequence {ϑ (ZZn)} is dense in A(K) if 0 ∉ K. Also a converse result is proved: If ϑ is an entire function of the form (1) which satisfies (3), then Q must have maximal density Δmax(Q) = 1.</abstract>
<note>Communicated by Prof. J. Korevaar at the meeting of September 29, 1997</note>
<relatedItem type="host">
<titleInfo>
<title>Indagationes Mathematicae</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>INDAG</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">19981221</dateIssued>
</originInfo>
<identifier type="ISSN">0019-3577</identifier>
<identifier type="PII">S0019-3577(00)X0015-8</identifier>
<part>
<date>19981221</date>
<detail type="volume">
<number>9</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>477</start>
<end>636</end>
</extent>
<extent unit="pages">
<start>529</start>
<end>536</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">FF33B736421F5A07D6796054DEFBAAD73A8EFDB3</identifier>
<identifier type="DOI">10.1016/S0019-3577(98)80032-3</identifier>
<identifier type="PII">S0019-3577(98)80032-3</identifier>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
</recordInfo>
</mods>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000893 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000893 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:FF33B736421F5A07D6796054DEFBAAD73A8EFDB3
   |texte=   Universal entire functions with gap power series
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024