Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Total reflection as derived from statistical scattering and coherent scattering theories

Identifieur interne : 000383 ( Istex/Corpus ); précédent : 000382; suivant : 000384

Total reflection as derived from statistical scattering and coherent scattering theories

Auteurs : D. A. L. Paul

Source :

RBID : ISTEX:38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D

Abstract

IN the past ten years there has been much investigation of the interesting phenomenon of microscopic bubbles in liquids, particularly liquid helium, which are maintained by the presence of a light particle, such as an electron1 or positron2. In both cases, with liquid helium the bubble is believed to arise from an effective repulsive potential between bulk liquid and the light particle. Coopersmith3 derived an expression for this effective potential by calculating the free energy of a light particle moving in a space having randomly distributed hard spheres.

Url:
DOI: 10.1038/252034a0

Links to Exploration step

ISTEX:38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Total reflection as derived from statistical scattering and coherent scattering theories</title>
<author>
<name sortKey="Paul, D A L" sort="Paul, D A L" uniqKey="Paul D" first="D. A. L." last="Paul">D. A. L. Paul</name>
<affiliation>
<mods:affiliation>University Trier-Kaiserslautern, 675 Kaiserslautern, Postfach 1049, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D</idno>
<date when="1974" year="1974">1974</date>
<idno type="doi">10.1038/252034a0</idno>
<idno type="url">https://api.istex.fr/document/38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000383</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000383</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Total reflection as derived from statistical scattering and coherent scattering theories</title>
<author>
<name sortKey="Paul, D A L" sort="Paul, D A L" uniqKey="Paul D" first="D. A. L." last="Paul">D. A. L. Paul</name>
<affiliation>
<mods:affiliation>University Trier-Kaiserslautern, 675 Kaiserslautern, Postfach 1049, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Nature</title>
<idno type="ISSN">0028-0836</idno>
<imprint>
<publisher>Nature Publishing Group</publisher>
<date type="published" when="1974-11-01">1974-11-01</date>
<biblScope unit="volume">252</biblScope>
<biblScope unit="issue">5478</biblScope>
<biblScope unit="page" from="34">34</biblScope>
<biblScope unit="page" to="35">35</biblScope>
</imprint>
<idno type="ISSN">0028-0836</idno>
</series>
<idno type="istex">38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D</idno>
<idno type="DOI">10.1038/252034a0</idno>
<idno type="ArticleID">252034a0</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0028-0836</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">IN the past ten years there has been much investigation of the interesting phenomenon of microscopic bubbles in liquids, particularly liquid helium, which are maintained by the presence of a light particle, such as an electron1 or positron2. In both cases, with liquid helium the bubble is believed to arise from an effective repulsive potential between bulk liquid and the light particle. Coopersmith3 derived an expression for this effective potential by calculating the free energy of a light particle moving in a space having randomly distributed hard spheres.</div>
</front>
</TEI>
<istex>
<corpusName>nature</corpusName>
<author>
<json:item>
<name>D. A. L. PAUL</name>
<affiliations>
<json:string>University Trier-Kaiserslautern, 675 Kaiserslautern, Postfach 1049, Germany</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>252034a0</json:string>
</articleId>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>Letters to Nature</json:string>
</originalGenre>
<abstract>IN the past ten years there has been much investigation of the interesting phenomenon of microscopic bubbles in liquids, particularly liquid helium, which are maintained by the presence of a light particle, such as an electron1 or positron2. In both cases, with liquid helium the bubble is believed to arise from an effective repulsive potential between bulk liquid and the light particle. Coopersmith3 derived an expression for this effective potential by calculating the free energy of a light particle moving in a space having randomly distributed hard spheres.</abstract>
<qualityIndicators>
<score>1.565</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>581.102 x 793.701 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>564</abstractCharCount>
<pdfWordCount>9</pdfWordCount>
<pdfCharCount>52</pdfCharCount>
<pdfPageCount>2</pdfPageCount>
<abstractWordCount>88</abstractWordCount>
</qualityIndicators>
<title>Total reflection as derived from statistical scattering and coherent scattering theories</title>
<refBibs>
<json:item>
<host>
<volume>18</volume>
<pages>
<first>1184</first>
</pages>
<author></author>
<title>Phys. Rev. Lett.</title>
</host>
</json:item>
<json:item>
<host>
<volume>20</volume>
<pages>
<first>493</first>
</pages>
<author></author>
<title>Phys. Rev. Lett.</title>
</host>
</json:item>
<json:item>
<host>
<volume>139</volume>
<pages>
<first>1359</first>
</pages>
<author></author>
<title>Phys. Rev.</title>
</host>
</json:item>
<json:item>
<host>
<volume>71</volume>
<pages>
<first>294</first>
</pages>
<author></author>
<title>Phys. Rev.</title>
</host>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>252</volume>
<pages>
<last>35</last>
<first>34</first>
</pages>
<issn>
<json:string>0028-0836</json:string>
</issn>
<issue>5478</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Nature</title>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>multidisciplinary sciences</json:string>
</wos>
<scienceMetrix>
<json:string>general</json:string>
<json:string>general science & technology</json:string>
<json:string>general science & technology</json:string>
</scienceMetrix>
</categories>
<publicationDate>1974</publicationDate>
<copyrightDate>1974</copyrightDate>
<doi>
<json:string>10.1038/252034a0</json:string>
</doi>
<id>38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D</id>
<score>0.5895642</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Total reflection as derived from statistical scattering and coherent scattering theories</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Nature Publishing Group</publisher>
<availability>
<p>©1974 Nature Publishing Group</p>
</availability>
<date>1974</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Total reflection as derived from statistical scattering and coherent scattering theories</title>
<author xml:id="author-1">
<persName>
<forename type="first">D. A. L.</forename>
<surname>PAUL</surname>
</persName>
<affiliation>University Trier-Kaiserslautern, 675 Kaiserslautern, Postfach 1049, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Nature</title>
<idno type="pISSN">0028-0836</idno>
<imprint>
<publisher>Nature Publishing Group</publisher>
<date type="published" when="1974-11-01"></date>
<biblScope unit="volume">252</biblScope>
<biblScope unit="issue">5478</biblScope>
<biblScope unit="page" from="34">34</biblScope>
<biblScope unit="page" to="35">35</biblScope>
</imprint>
</monogr>
<idno type="istex">38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D</idno>
<idno type="DOI">10.1038/252034a0</idno>
<idno type="ArticleID">252034a0</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1974</date>
</creation>
<abstract>
<p>IN the past ten years there has been much investigation of the interesting phenomenon of microscopic bubbles in liquids, particularly liquid helium, which are maintained by the presence of a light particle, such as an electron1 or positron2. In both cases, with liquid helium the bubble is believed to arise from an effective repulsive potential between bulk liquid and the light particle. Coopersmith3 derived an expression for this effective potential by calculating the free energy of a light particle moving in a space having randomly distributed hard spheres.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1974-08-12">Received</change>
<change when="1974-11-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus nature, element headerx not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NPG//DTD headerx//EN" URI="headerx.dtd" name="istex:docType"></istex:docType>
<istex:document>
<headerx>
<ArticleIdList>
<ArticleId>252034a0</ArticleId>
</ArticleIdList>
<pubfm>
<jtl>Nature</jtl>
<vol>252</vol>
<iss>5478</iss>
<idt>19741101</idt>
<categ id="lt"></categ>
<pp>
<spn>34</spn>
<epn>35</epn>
</pp>
<issn>0028-0836</issn>
<cpg>
<cpy>1974</cpy>
<cpn>Nature Publishing Group</cpn>
</cpg>
<doi>10.1038/252034a0</doi>
</pubfm>
<fm>
<atl>Total reflection as derived from statistical scattering and coherent scattering theories</atl>
<aug>
<au>
<fnm>D. A. L.</fnm>
<snm>PAUL</snm>
<inits>D. A. L.</inits>
</au>
<aff>University Trier-Kaiserslautern, 675 Kaiserslautern, Postfach 1049, Germany</aff>
</aug>
<hst>
<re year="1974" month="8" day="12"></re>
</hst>
<fp>
<p>IN the past ten years there has been much investigation of the interesting phenomenon of microscopic bubbles in liquids, particularly liquid helium, which are maintained by the presence of a light particle, such as an electron
<super>1</super>
or positron
<super>2</super>
. In both cases, with liquid helium the bubble is believed to arise from an effective repulsive potential between bulk liquid and the light particle. Coopersmith
<super>3</super>
derived an expression for this effective potential by calculating the free energy of a light particle moving in a space having randomly distributed hard spheres.</p>
</fp>
</fm>
<bdy> The hard spheres move as in a classical ideal gas and statistical equilibrium between light particle and gas is assumed. Only s-wave scattering was considered. The mean free energy of the light particle is found to have a minimum energy which is due to space-limitation of its motion. The interaction free energy was shown rigorously to be EF=2nnash2/m (1) due to single scattering, all higher order multiple scattering effects being zero. In equation (1) n is the density of scattering centres, as the scattering length and m the light particle mass. Thus a particle of mass m striking the surface of a liquid having n molecules per unit volume from outside would require a kinetic energy at least k2h2/2m=EF in order not to be totally reflected from the liquid surface. Therefore, the critical wave number for total reflection at normal incidence is given by k2=4nnas (2) Eighteen years earlier, Goldberger and Seitz4 investigated coherent scattering from randomly distributed scattering centres, and produced results which have, for example, been applied to neutron refraction at liquid surfaces. According to their theory a particle of mass m will be totally externally reflected when normally incident upon a liquid surface unless k* > 2A/(7ras)1/2(3) which agrees with equation (2) if we put ss=4pas2 and take the positive square root, indicating repulsion. So these two strikingly different approaches yield the same result in the low energy limit, for s-wave scattering.</bdy>
<bm>
<bibl>
<bib id="b1">
<reftxt>
<refau>
<snm>Northby</snm>
,
<fnm>J. A.</fnm>
</refau>
, and
<refau>
<snm>Sanders</snm>
,
<fnm>T. M.</fnm>
</refau>
,
<jtl>Phys. Rev. Lett.</jtl>
,
<vid>18</vid>
,
<ppf>1184</ppf>
(
<cd year="1967">1967</cd>
).</reftxt>
</bib>
<bib id="b2">
<reftxt>
<refau>
<snm>Briscoe</snm>
,
<fnm>C. V.</fnm>
</refau>
,
<refau>
<snm>Choi</snm>
,
<fnm>S.-I.</fnm>
</refau>
, and
<refau>
<snm>Stewart</snm>
,
<fnm>A. T.</fnm>
</refau>
,
<jtl>Phys. Rev. Lett.</jtl>
,
<vid>20</vid>
,
<ppf>493</ppf>
(
<cd year="1968">1968</cd>
).</reftxt>
</bib>
<bib id="b3">
<reftxt>
<refau>
<snm>Coopersmith</snm>
,
<fnm>M.</fnm>
</refau>
,
<jtl>Phys. Rev.</jtl>
A,
<vid>139</vid>
,
<ppf>1359</ppf>
(
<cd year="1965">1965</cd>
).</reftxt>
</bib>
<bib id="b4">
<reftxt>
<refau>
<snm>Goldberger</snm>
,
<fnm>M. L.</fnm>
</refau>
, and
<refau>
<snm>Seitz</snm>
,
<fnm>F.</fnm>
</refau>
,
<jtl>Phys. Rev.</jtl>
,
<vid>71</vid>
,
<ppf>294</ppf>
(
<cd year="1947">1947</cd>
).</reftxt>
</bib>
</bibl>
</bm>
</headerx>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Total reflection as derived from statistical scattering and coherent scattering theories</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Total reflection as derived from statistical scattering and coherent scattering theories</title>
</titleInfo>
<name type="personal">
<namePart type="given">D. A. L.</namePart>
<namePart type="family">PAUL</namePart>
<affiliation>University Trier-Kaiserslautern, 675 Kaiserslautern, Postfach 1049, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Letters to Nature"></genre>
<originInfo>
<publisher>Nature Publishing Group</publisher>
<dateIssued encoding="w3cdtf">1974-11-01</dateIssued>
<dateCaptured encoding="w3cdtf">1974-08-12</dateCaptured>
<copyrightDate encoding="w3cdtf">1974</copyrightDate>
</originInfo>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>IN the past ten years there has been much investigation of the interesting phenomenon of microscopic bubbles in liquids, particularly liquid helium, which are maintained by the presence of a light particle, such as an electron1 or positron2. In both cases, with liquid helium the bubble is believed to arise from an effective repulsive potential between bulk liquid and the light particle. Coopersmith3 derived an expression for this effective potential by calculating the free energy of a light particle moving in a space having randomly distributed hard spheres.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<genre type="journal" displayLabel="journal"></genre>
<identifier type="ISSN">0028-0836</identifier>
<part>
<date>1974</date>
<detail type="volume">
<caption>vol.</caption>
<number>252</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5478</number>
</detail>
<extent unit="pages">
<start>34</start>
<end>35</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D</identifier>
<identifier type="DOI">10.1038/252034a0</identifier>
<identifier type="ArticleID">252034a0</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1974 Nature Publishing Group</accessCondition>
<recordInfo>
<recordContentSource>NATURE</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000383 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000383 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:38BBC1FCDD04CD8C3DCAEBE0B083C4FD7847AF7D
   |texte=   Total reflection as derived from statistical scattering and coherent scattering theories
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024