Serveur d'exploration Lota lota

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Historical change in fish species distribution: shifting reference conditions and global warming effects

Identifieur interne : 000039 ( Pmc/Corpus ); précédent : 000038; suivant : 000040

Historical change in fish species distribution: shifting reference conditions and global warming effects

Auteurs : Didier Pont ; M. Logez ; G. Carrel ; C. Rogers ; G. Haidvogl

Source :

RBID : PMC:4525805

Abstract

Species distributions models (SDM) that rely on estimated relationships between present environmental conditions and species presence-absence are widely used to forecast changes of species distributions caused by global warming but far less to reconstruct historical assemblages. By compiling historical fish data from the turn to the middle of the twentieth century in a similar way for several European catchments (Rhône, Danube), and using already published SDMs based on current observations, we: (1) tested the predictive accuracy of such models for past climatic conditions, (2) compared observed and expected cumulated historical species occurrences at sub-catchment level, and (3) compared the annual variability in the predictions within one sub-catchment (Salzach) under a future climate scenario to the long-term variability of occurrences reconstructed during an extended historical period (1800–2000). We finally discuss the potential of these SDMs to define a “reference condition”, the possibility of a shift in baseline condition in relation with anthropogenic pressures, and past and future climate variability. The results of this study clearly highlight the potential of SDM to reconstruct the past composition of European fish assemblages and to analyze the historical ecological status of European rivers. Assessing the uncertainty associated with species distribution projections is of primary importance before evaluating and comparing the past and future distribution of species within a given catchment.


Url:
DOI: 10.1007/s00027-014-0386-z
PubMed: 26257502
PubMed Central: 4525805

Links to Exploration step

PMC:4525805

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Historical change in fish species distribution: shifting reference conditions and global warming effects</title>
<author>
<name sortKey="Pont, Didier" sort="Pont, Didier" uniqKey="Pont D" first="Didier" last="Pont">Didier Pont</name>
<affiliation>
<nlm:aff id="Aff1">Irstea UR HBAN, 1 rue Pierre-Gilles de Gennes-CS 10030, 92761 Antony, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Logez, M" sort="Logez, M" uniqKey="Logez M" first="M." last="Logez">M. Logez</name>
<affiliation>
<nlm:aff id="Aff2">Irstea UR HYAX, Pôle Onema-Irstea Hydroécologie Plans d’eau, 3275, Route de Cézanne-CS 4006, 13182 Aix-en-Provence Cedex 5, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Carrel, G" sort="Carrel, G" uniqKey="Carrel G" first="G." last="Carrel">G. Carrel</name>
<affiliation>
<nlm:aff id="Aff3">Irstea UR HYAX, 3275 Route de Cézanne-CS 4006, 13182 Aix-en-Provence Cedex 5, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rogers, C" sort="Rogers, C" uniqKey="Rogers C" first="C." last="Rogers">C. Rogers</name>
<affiliation>
<nlm:aff id="Aff3">Irstea UR HYAX, 3275 Route de Cézanne-CS 4006, 13182 Aix-en-Provence Cedex 5, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haidvogl, G" sort="Haidvogl, G" uniqKey="Haidvogl G" first="G." last="Haidvogl">G. Haidvogl</name>
<affiliation>
<nlm:aff id="Aff4">Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences Vienna, Max-Emanuel-Strasse 17, 1180 Vienna, Austria</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26257502</idno>
<idno type="pmc">4525805</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525805</idno>
<idno type="RBID">PMC:4525805</idno>
<idno type="doi">10.1007/s00027-014-0386-z</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000039</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000039</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Historical change in fish species distribution: shifting reference conditions and global warming effects</title>
<author>
<name sortKey="Pont, Didier" sort="Pont, Didier" uniqKey="Pont D" first="Didier" last="Pont">Didier Pont</name>
<affiliation>
<nlm:aff id="Aff1">Irstea UR HBAN, 1 rue Pierre-Gilles de Gennes-CS 10030, 92761 Antony, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Logez, M" sort="Logez, M" uniqKey="Logez M" first="M." last="Logez">M. Logez</name>
<affiliation>
<nlm:aff id="Aff2">Irstea UR HYAX, Pôle Onema-Irstea Hydroécologie Plans d’eau, 3275, Route de Cézanne-CS 4006, 13182 Aix-en-Provence Cedex 5, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Carrel, G" sort="Carrel, G" uniqKey="Carrel G" first="G." last="Carrel">G. Carrel</name>
<affiliation>
<nlm:aff id="Aff3">Irstea UR HYAX, 3275 Route de Cézanne-CS 4006, 13182 Aix-en-Provence Cedex 5, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rogers, C" sort="Rogers, C" uniqKey="Rogers C" first="C." last="Rogers">C. Rogers</name>
<affiliation>
<nlm:aff id="Aff3">Irstea UR HYAX, 3275 Route de Cézanne-CS 4006, 13182 Aix-en-Provence Cedex 5, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haidvogl, G" sort="Haidvogl, G" uniqKey="Haidvogl G" first="G." last="Haidvogl">G. Haidvogl</name>
<affiliation>
<nlm:aff id="Aff4">Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences Vienna, Max-Emanuel-Strasse 17, 1180 Vienna, Austria</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Aquatic Sciences</title>
<idno type="ISSN">1015-1621</idno>
<idno type="eISSN">1420-9055</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Species distributions models (SDM) that rely on estimated relationships between present environmental conditions and species presence-absence are widely used to forecast changes of species distributions caused by global warming but far less to reconstruct historical assemblages. By compiling historical fish data from the turn to the middle of the twentieth century in a similar way for several European catchments (Rhône, Danube), and using already published SDMs based on current observations, we: (1) tested the predictive accuracy of such models for past climatic conditions, (2) compared observed and expected cumulated historical species occurrences at sub-catchment level, and (3) compared the annual variability in the predictions within one sub-catchment (Salzach) under a future climate scenario to the long-term variability of occurrences reconstructed during an extended historical period (1800–2000). We finally discuss the potential of these SDMs to define a “reference condition”, the possibility of a shift in baseline condition in relation with anthropogenic pressures, and past and future climate variability. The results of this study clearly highlight the potential of SDM to reconstruct the past composition of European fish assemblages and to analyze the historical ecological status of European rivers. Assessing the uncertainty associated with species distribution projections is of primary importance before evaluating and comparing the past and future distribution of species within a given catchment.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Austin, M" uniqKey="Austin M">M Austin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bailey, Rc" uniqKey="Bailey R">RC Bailey</name>
</author>
<author>
<name sortKey="Kennedy, Mg" uniqKey="Kennedy M">MG Kennedy</name>
</author>
<author>
<name sortKey="Dervish, Mz" uniqKey="Dervish M">MZ Dervish</name>
</author>
<author>
<name sortKey="Taylor, Rm" uniqKey="Taylor R">RM Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bagliniere, Jl" uniqKey="Bagliniere J">JL Baglinière</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bravard, Jp" uniqKey="Bravard J">JP Bravard</name>
</author>
<author>
<name sortKey="Petts, Ge" uniqKey="Petts G">GE Petts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buisson, L" uniqKey="Buisson L">L Buisson</name>
</author>
<author>
<name sortKey="Thuiller, W" uniqKey="Thuiller W">W Thuiller</name>
</author>
<author>
<name sortKey="Casajus, N" uniqKey="Casajus N">N Casajus</name>
</author>
<author>
<name sortKey="Lek, S" uniqKey="Lek S">S Lek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buisson, L" uniqKey="Buisson L">L Buisson</name>
</author>
<author>
<name sortKey="Thuiller, W" uniqKey="Thuiller W">W Thuiller</name>
</author>
<author>
<name sortKey="Lek, S" uniqKey="Lek S">S Lek</name>
</author>
<author>
<name sortKey="Lim, P" uniqKey="Lim P">P Lim</name>
</author>
<author>
<name sortKey="Grenouillet, G" uniqKey="Grenouillet G">G Grenouillet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carrel, G" uniqKey="Carrel G">G Carrel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casselman, Jm" uniqKey="Casselman J">JM Casselman</name>
</author>
<author>
<name sortKey="Lewis, Ca" uniqKey="Lewis C">CA Lewis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chimany, B" uniqKey="Chimany B">B Chimany</name>
</author>
<author>
<name sortKey="Matulla, C" uniqKey="Matulla C">C Matulla</name>
</author>
<author>
<name sortKey="Bohm, R" uniqKey="Bohm R">R Böhm</name>
</author>
<author>
<name sortKey="Hofst Tter, M" uniqKey="Hofst Tter M">M Hofstätter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Comte, L" uniqKey="Comte L">L Comte</name>
</author>
<author>
<name sortKey="Grenouillet, G" uniqKey="Grenouillet G">G Grenouillet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crimmins, Sm" uniqKey="Crimmins S">SM Crimmins</name>
</author>
<author>
<name sortKey="Dobrowski, Sz" uniqKey="Dobrowski S">SZ Dobrowski</name>
</author>
<author>
<name sortKey="Greenberg, Ja" uniqKey="Greenberg J">JA Greenberg</name>
</author>
<author>
<name sortKey="Abatzoglou, Jt" uniqKey="Abatzoglou J">JT Abatzoglou</name>
</author>
<author>
<name sortKey="Mynsberge, Ar" uniqKey="Mynsberge A">AR Mynsberge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Jager, Al" uniqKey="De Jager A">AL de Jager</name>
</author>
<author>
<name sortKey="Vogt, Jv" uniqKey="Vogt J">JV Vogt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dormann, Cf" uniqKey="Dormann C">CF Dormann</name>
</author>
<author>
<name sortKey="Elith, J" uniqKey="Elith J">J Elith</name>
</author>
<author>
<name sortKey="Bacher, S" uniqKey="Bacher S">S Bacher</name>
</author>
<author>
<name sortKey="Buchmann, C" uniqKey="Buchmann C">C Buchmann</name>
</author>
<author>
<name sortKey="Carl, G" uniqKey="Carl G">G Carl</name>
</author>
<author>
<name sortKey="Carre, G" uniqKey="Carre G">G Carré</name>
</author>
<author>
<name sortKey="Marquez, Jrg" uniqKey="Marquez J">JRG Marquéz</name>
</author>
<author>
<name sortKey="Gruber, B" uniqKey="Gruber B">B Gruber</name>
</author>
<author>
<name sortKey="Lafourcade, B" uniqKey="Lafourcade B">B Lafourcade</name>
</author>
<author>
<name sortKey="Leitao, Pj" uniqKey="Leitao P">PJ Leitão</name>
</author>
<author>
<name sortKey="Munkemuller, T" uniqKey="Munkemuller T">T Münkemüller</name>
</author>
<author>
<name sortKey="Mcclean, C" uniqKey="Mcclean C">C McClean</name>
</author>
<author>
<name sortKey="Osborne, Pe" uniqKey="Osborne P">PE Osborne</name>
</author>
<author>
<name sortKey="Reineking, B" uniqKey="Reineking B">B Reineking</name>
</author>
<author>
<name sortKey="Schroder, B" uniqKey="Schroder B">B Schröder</name>
</author>
<author>
<name sortKey="Skidmore, Ak" uniqKey="Skidmore A">AK Skidmore</name>
</author>
<author>
<name sortKey="Zurell, D" uniqKey="Zurell D">D Zurell</name>
</author>
<author>
<name sortKey="Lautenbach, S" uniqKey="Lautenbach S">S Lautenbach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dudgeon, D" uniqKey="Dudgeon D">D Dudgeon</name>
</author>
<author>
<name sortKey="Arthington, Ah" uniqKey="Arthington A">AH Arthington</name>
</author>
<author>
<name sortKey="Gessner, Mo" uniqKey="Gessner M">MO Gessner</name>
</author>
<author>
<name sortKey="Kawabata, Z I" uniqKey="Kawabata Z">Z-I Kawabata</name>
</author>
<author>
<name sortKey="Knowler, Dj" uniqKey="Knowler D">DJ Knowler</name>
</author>
<author>
<name sortKey="Leveque, C" uniqKey="Leveque C">C Leveque</name>
</author>
<author>
<name sortKey="Naiman, Rj" uniqKey="Naiman R">RJ Naiman</name>
</author>
<author>
<name sortKey="Prieur Richard, A H" uniqKey="Prieur Richard A">A-H Prieur-Richard</name>
</author>
<author>
<name sortKey="Soto, D" uniqKey="Soto D">D Soto</name>
</author>
<author>
<name sortKey="Stiassny, Mlj" uniqKey="Stiassny M">MLJ Stiassny</name>
</author>
<author>
<name sortKey="Sullivan, Ca" uniqKey="Sullivan C">CA Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fausch, Kd" uniqKey="Fausch K">KD Fausch</name>
</author>
<author>
<name sortKey="Lyons, J" uniqKey="Lyons J">J Lyons</name>
</author>
<author>
<name sortKey="Karr, Jr" uniqKey="Karr J">JR Karr</name>
</author>
<author>
<name sortKey="Angermeier, Pl" uniqKey="Angermeier P">PL Angermeier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiedling, Ah" uniqKey="Fiedling A">AH Fiedling</name>
</author>
<author>
<name sortKey="Bell, Jf" uniqKey="Bell J">JF Bell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flato, Gm" uniqKey="Flato G">GM Flato</name>
</author>
<author>
<name sortKey="Boer, Gj" uniqKey="Boer G">GJ Boer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldewijk, Kk" uniqKey="Goldewijk K">KK Goldewijk</name>
</author>
<author>
<name sortKey="Beusen, A" uniqKey="Beusen A">A Beusen</name>
</author>
<author>
<name sortKey="Van Drecht, G" uniqKey="Van Drecht G">G van Drecht</name>
</author>
<author>
<name sortKey="De Vos, M" uniqKey="De Vos M">M de Vos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gordon, C" uniqKey="Gordon C">C Gordon</name>
</author>
<author>
<name sortKey="Cooper, C" uniqKey="Cooper C">C Cooper</name>
</author>
<author>
<name sortKey="Senior, Ca" uniqKey="Senior C">CA Senior</name>
</author>
<author>
<name sortKey="Banks, H" uniqKey="Banks H">H Banks</name>
</author>
<author>
<name sortKey="Gregory, Jm" uniqKey="Gregory J">JM Gregory</name>
</author>
<author>
<name sortKey="Johns, Tc" uniqKey="Johns T">TC Johns</name>
</author>
<author>
<name sortKey="Mitchell, Jfb" uniqKey="Mitchell J">JFB Mitchell</name>
</author>
<author>
<name sortKey="Wood, Ra" uniqKey="Wood R">RA Wood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gordon, Nd" uniqKey="Gordon N">ND Gordon</name>
</author>
<author>
<name sortKey="Mcmahon, Ta" uniqKey="Mcmahon T">TA McMahon</name>
</author>
<author>
<name sortKey="Finlayson, Bl" uniqKey="Finlayson B">BL Finlayson</name>
</author>
<author>
<name sortKey="Gippel, Cj" uniqKey="Gippel C">CJ Gippel</name>
</author>
<author>
<name sortKey="Nathan, Rj" uniqKey="Nathan R">RJ Nathan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="G Rski, K" uniqKey="G Rski K">K Górski</name>
</author>
<author>
<name sortKey="De Leeuw, Jj" uniqKey="De Leeuw J">JJ De Leeuw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham, Mh" uniqKey="Graham M">MH Graham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham, Ct" uniqKey="Graham C">CT Graham</name>
</author>
<author>
<name sortKey="Harrod, C" uniqKey="Harrod C">C Harrod</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haidvogl, G" uniqKey="Haidvogl G">G Haidvogl</name>
</author>
<author>
<name sortKey="Lajus, D" uniqKey="Lajus D">D Lajus</name>
</author>
<author>
<name sortKey="Pont, D" uniqKey="Pont D">D Pont</name>
</author>
<author>
<name sortKey="Schmid, M" uniqKey="Schmid M">M Schmid</name>
</author>
<author>
<name sortKey="Jungwirth, M" uniqKey="Jungwirth M">M Jungwirth</name>
</author>
<author>
<name sortKey="Lajus, J" uniqKey="Lajus J">J Lajus</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harding, Js" uniqKey="Harding J">JS Harding</name>
</author>
<author>
<name sortKey="Benfield, Ef" uniqKey="Benfield E">EF Benfield</name>
</author>
<author>
<name sortKey="Bolstad, Pv" uniqKey="Bolstad P">PV Bolstad</name>
</author>
<author>
<name sortKey="Helfman, Gs" uniqKey="Helfman G">GS Helfman</name>
</author>
<author>
<name sortKey="Jones, Ebd" uniqKey="Jones E">EBD Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirst, Ac" uniqKey="Hirst A">AC Hirst</name>
</author>
<author>
<name sortKey="O Arrell, Sp" uniqKey="O Arrell S">SP O’Farrell</name>
</author>
<author>
<name sortKey="Gordon, Hb" uniqKey="Gordon H">HB Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hosmer, Dw" uniqKey="Hosmer D">DW Hosmer</name>
</author>
<author>
<name sortKey="Lemeshow, S" uniqKey="Lemeshow S">S Lemeshow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huet, M" uniqKey="Huet M">M Huet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kirchhofer, A" uniqKey="Kirchhofer A">A Kirchhofer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kottelat, M" uniqKey="Kottelat M">M Kottelat</name>
</author>
<author>
<name sortKey="Freyhof, J" uniqKey="Freyhof J">J Freyhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Labay, B" uniqKey="Labay B">B Labay</name>
</author>
<author>
<name sortKey="Cohen, Ae" uniqKey="Cohen A">AE Cohen</name>
</author>
<author>
<name sortKey="Sissel, B" uniqKey="Sissel B">B Sissel</name>
</author>
<author>
<name sortKey="Hendrickson, Da" uniqKey="Hendrickson D">DA Hendrickson</name>
</author>
<author>
<name sortKey="Martin, Fd" uniqKey="Martin F">FD Martin</name>
</author>
<author>
<name sortKey="Sarkar, S" uniqKey="Sarkar S">S Sarkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lahoz Montfort, Jj" uniqKey="Lahoz Montfort J">JJ Lahoz-Montfort</name>
</author>
<author>
<name sortKey="Guillera Arroita, G" uniqKey="Guillera Arroita G">G Guillera-Arroita</name>
</author>
<author>
<name sortKey="Wintle, Ba" uniqKey="Wintle B">BA Wintle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lasalle, G" uniqKey="Lasalle G">G Lasalle</name>
</author>
<author>
<name sortKey="Rochard, E" uniqKey="Rochard E">E Rochard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leger, L" uniqKey="Leger L">L Leger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Logez, M" uniqKey="Logez M">M Logez</name>
</author>
<author>
<name sortKey="Bady, P" uniqKey="Bady P">P Bady</name>
</author>
<author>
<name sortKey="Pont, D" uniqKey="Pont D">D Pont</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maceda Veiga, A" uniqKey="Maceda Veiga A">A Maceda-Veiga</name>
</author>
<author>
<name sortKey="Monleon Getino, A" uniqKey="Monleon Getino A">A Monleon-Getino</name>
</author>
<author>
<name sortKey="Caiola, N" uniqKey="Caiola N">N Caiola</name>
</author>
<author>
<name sortKey="Casals, F" uniqKey="Casals F">F Casals</name>
</author>
<author>
<name sortKey="De Sostoa, A" uniqKey="De Sostoa A">A de Sostoa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matthews, Wj" uniqKey="Matthews W">WJ Matthews</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muhar, S" uniqKey="Muhar S">S Muhar</name>
</author>
<author>
<name sortKey="Kainz, M" uniqKey="Kainz M">M Kainz</name>
</author>
<author>
<name sortKey="Kaufmann, M" uniqKey="Kaufmann M">M Kaufmann</name>
</author>
<author>
<name sortKey="Schwarz, M" uniqKey="Schwarz M">M Schwarz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noble, Raa" uniqKey="Noble R">RAA Noble</name>
</author>
<author>
<name sortKey="Cowx, Ig" uniqKey="Cowx I">IG Cowx</name>
</author>
<author>
<name sortKey="Goffaux, D" uniqKey="Goffaux D">D Goffaux</name>
</author>
<author>
<name sortKey="Kestemont, P" uniqKey="Kestemont P">P Kestemont</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oberdorff, T" uniqKey="Oberdorff T">T Oberdorff</name>
</author>
<author>
<name sortKey="Pont, D" uniqKey="Pont D">D Pont</name>
</author>
<author>
<name sortKey="Hugueny, B" uniqKey="Hugueny B">B Hugueny</name>
</author>
<author>
<name sortKey="Chessel, D" uniqKey="Chessel D">D Chessel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ormerod, Sj" uniqKey="Ormerod S">SJ Ormerod</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parmesan, C" uniqKey="Parmesan C">C Parmesan</name>
</author>
<author>
<name sortKey="Yohe, G" uniqKey="Yohe G">G Yohe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pauly, D" uniqKey="Pauly D">D Pauly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petts, Ge" uniqKey="Petts G">GE Petts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pont, D" uniqKey="Pont D">D Pont</name>
</author>
<author>
<name sortKey="Hugueny, B" uniqKey="Hugueny B">B Hugueny</name>
</author>
<author>
<name sortKey="Beier, U" uniqKey="Beier U">U Beier</name>
</author>
<author>
<name sortKey="Goffaux, D" uniqKey="Goffaux D">D Goffaux</name>
</author>
<author>
<name sortKey="Melcher, A" uniqKey="Melcher A">A Melcher</name>
</author>
<author>
<name sortKey="Noble, R" uniqKey="Noble R">R Noble</name>
</author>
<author>
<name sortKey="Rogers, C" uniqKey="Rogers C">C Rogers</name>
</author>
<author>
<name sortKey="Roset, N" uniqKey="Roset N">N Roset</name>
</author>
<author>
<name sortKey="Schmutz, S" uniqKey="Schmutz S">S Schmutz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pont, D" uniqKey="Pont D">D Pont</name>
</author>
<author>
<name sortKey="Hugueny, B" uniqKey="Hugueny B">B Hugueny</name>
</author>
<author>
<name sortKey="Oberdorff, T" uniqKey="Oberdorff T">T Oberdorff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pont, D" uniqKey="Pont D">D Pont</name>
</author>
<author>
<name sortKey="Piegay, H" uniqKey="Piegay H">H Piégay</name>
</author>
<author>
<name sortKey="Farinetti, A" uniqKey="Farinetti A">A Farinetti</name>
</author>
<author>
<name sortKey="Allain, S" uniqKey="Allain S">S Allain</name>
</author>
<author>
<name sortKey="Landon, N" uniqKey="Landon N">N Landon</name>
</author>
<author>
<name sortKey="Liebault, F" uniqKey="Liebault F">F Liébault</name>
</author>
<author>
<name sortKey="Dumont, B" uniqKey="Dumont B">B Dumont</name>
</author>
<author>
<name sortKey="Richard Mazet, A" uniqKey="Richard Mazet A">A Richard-Mazet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pounds, Njg" uniqKey="Pounds N">NJG Pounds</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schiemer, F" uniqKey="Schiemer F">F Schiemer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schurer, Ap" uniqKey="Schurer A">AP Schurer</name>
</author>
<author>
<name sortKey="Hegerl, Gc" uniqKey="Hegerl G">GC Hegerl</name>
</author>
<author>
<name sortKey="Me, Mann" uniqKey="Me M">Mann Me</name>
</author>
<author>
<name sortKey="Tett, Sb" uniqKey="Tett S">SB Tett</name>
</author>
<author>
<name sortKey="Phipps, Sj" uniqKey="Phipps S">SJ Phipps</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swets, K" uniqKey="Swets K">K Swets</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stoddard, Jl" uniqKey="Stoddard J">JL Stoddard</name>
</author>
<author>
<name sortKey="Larsen, Dp" uniqKey="Larsen D">DP Larsen</name>
</author>
<author>
<name sortKey="Hawkins, Cp" uniqKey="Hawkins C">CP Hawkins</name>
</author>
<author>
<name sortKey="Johnson, Rk" uniqKey="Johnson R">RK Johnson</name>
</author>
<author>
<name sortKey="Norris, Rh" uniqKey="Norris R">RH Norris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tingley, Mw" uniqKey="Tingley M">MW Tingley</name>
</author>
<author>
<name sortKey="Beissinger, Sr" uniqKey="Beissinger S">SR Beissinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Walter, Rc" uniqKey="Walter R">RC Walter</name>
</author>
<author>
<name sortKey="Merritts, Dj" uniqKey="Merritts D">DJ Merritts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webb, Bw" uniqKey="Webb B">BW Webb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winter, Hv" uniqKey="Winter H">HV Winter</name>
</author>
<author>
<name sortKey="Lapinska, M" uniqKey="Lapinska M">M Lapinska</name>
</author>
<author>
<name sortKey="De Leeuw, Jj" uniqKey="De Leeuw J">JJ de Leeuw</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Worthington, T" uniqKey="Worthington T">T Worthington</name>
</author>
<author>
<name sortKey="Kemp, P" uniqKey="Kemp P">P Kemp</name>
</author>
<author>
<name sortKey="Osborne, Pe" uniqKey="Osborne P">PE Osborne</name>
</author>
<author>
<name sortKey="Howes, C" uniqKey="Howes C">C Howes</name>
</author>
<author>
<name sortKey="Easton, K" uniqKey="Easton K">K Easton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xenopoulos, Ma" uniqKey="Xenopoulos M">MA Xenopoulos</name>
</author>
<author>
<name sortKey="Lodge, Dm" uniqKey="Lodge D">DM Lodge</name>
</author>
<author>
<name sortKey="Alcamo, J" uniqKey="Alcamo J">J Alcamo</name>
</author>
<author>
<name sortKey="Marker, M" uniqKey="Marker M">M Marker</name>
</author>
<author>
<name sortKey="Schulze, K" uniqKey="Schulze K">K Schulze</name>
</author>
<author>
<name sortKey="Van Vuuren, Dp" uniqKey="Van Vuuren D">DP Van Vuuren</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Aquat Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Aquat Sci</journal-id>
<journal-title-group>
<journal-title>Aquatic Sciences</journal-title>
</journal-title-group>
<issn pub-type="ppub">1015-1621</issn>
<issn pub-type="epub">1420-9055</issn>
<publisher>
<publisher-name>Springer Basel</publisher-name>
<publisher-loc>Basel</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26257502</article-id>
<article-id pub-id-type="pmc">4525805</article-id>
<article-id pub-id-type="publisher-id">386</article-id>
<article-id pub-id-type="doi">10.1007/s00027-014-0386-z</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Historical change in fish species distribution: shifting reference conditions and global warming effects</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Pont</surname>
<given-names>Didier</given-names>
</name>
<address>
<phone>+ 33 (0)1 40 96 65 52</phone>
<email>didier.pont@irstea.fr</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Logez</surname>
<given-names>M.</given-names>
</name>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Carrel</surname>
<given-names>G.</given-names>
</name>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rogers</surname>
<given-names>C.</given-names>
</name>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Haidvogl</surname>
<given-names>G.</given-names>
</name>
<xref ref-type="aff" rid="Aff4"></xref>
</contrib>
<aff id="Aff1">
<label></label>
Irstea UR HBAN, 1 rue Pierre-Gilles de Gennes-CS 10030, 92761 Antony, France</aff>
<aff id="Aff2">
<label></label>
Irstea UR HYAX, Pôle Onema-Irstea Hydroécologie Plans d’eau, 3275, Route de Cézanne-CS 4006, 13182 Aix-en-Provence Cedex 5, France</aff>
<aff id="Aff3">
<label></label>
Irstea UR HYAX, 3275 Route de Cézanne-CS 4006, 13182 Aix-en-Provence Cedex 5, France</aff>
<aff id="Aff4">
<label></label>
Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences Vienna, Max-Emanuel-Strasse 17, 1180 Vienna, Austria</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>3</day>
<month>1</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>3</day>
<month>1</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2015</year>
</pub-date>
<volume>77</volume>
<issue>3</issue>
<fpage>441</fpage>
<lpage>453</lpage>
<history>
<date date-type="received">
<day>17</day>
<month>5</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>18</day>
<month>11</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2014</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p>Species distributions models (SDM) that rely on estimated relationships between present environmental conditions and species presence-absence are widely used to forecast changes of species distributions caused by global warming but far less to reconstruct historical assemblages. By compiling historical fish data from the turn to the middle of the twentieth century in a similar way for several European catchments (Rhône, Danube), and using already published SDMs based on current observations, we: (1) tested the predictive accuracy of such models for past climatic conditions, (2) compared observed and expected cumulated historical species occurrences at sub-catchment level, and (3) compared the annual variability in the predictions within one sub-catchment (Salzach) under a future climate scenario to the long-term variability of occurrences reconstructed during an extended historical period (1800–2000). We finally discuss the potential of these SDMs to define a “reference condition”, the possibility of a shift in baseline condition in relation with anthropogenic pressures, and past and future climate variability. The results of this study clearly highlight the potential of SDM to reconstruct the past composition of European fish assemblages and to analyze the historical ecological status of European rivers. Assessing the uncertainty associated with species distribution projections is of primary importance before evaluating and comparing the past and future distribution of species within a given catchment.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Historical data</kwd>
<kwd>Species distribution model</kwd>
<kwd>Fish</kwd>
<kwd>Climate change</kwd>
<kwd>Uncertainty</kwd>
<kwd>Reference conditions</kwd>
<kwd>Shifting baseline</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer Basel 2015</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="intro">
<title>Introduction</title>
<p>For decades, freshwater biodiversity has been recognized as highly threatened due to the long history of anthropogenic modifications of continental aquatic ecosystems (Dudgeon et al.
<xref ref-type="bibr" rid="CR14">2006</xref>
). Among aquatic species, fish react to almost every kind of water quality and habitat alterations (Ormerod
<xref ref-type="bibr" rid="CR46">2003</xref>
). Fish sensitivity to human pressures is a basis for using fish-based biological monitoring tools to assess environmental change (Fausch et al.
<xref ref-type="bibr" rid="CR16">1990</xref>
). More recently, numerous papers have also pointed out the influence of climate modifications on freshwater ecosystems (Webb
<xref ref-type="bibr" rid="CR61">1996</xref>
) and in particular on fish species distributions (Xenopoulos et al.
<xref ref-type="bibr" rid="CR65">2005</xref>
; Graham and Harrod
<xref ref-type="bibr" rid="CR24">2009</xref>
). Long-term changes in climate during the last millennia are well known, particularly those since the end of the little ice age in the mid-19th century (Schurer et al.
<xref ref-type="bibr" rid="CR56">2013</xref>
). Evidence is now accumulating that one of the main species responses to global warming is a shift poleward or upward in elevation to colonize favorable thermal habitats (Parmesan and Yohe
<xref ref-type="bibr" rid="CR47">2003</xref>
; Crimmins et al.
<xref ref-type="bibr" rid="CR11">2011</xref>
; Comte and Grenouillet
<xref ref-type="bibr" rid="CR10">2013</xref>
).</p>
<p>In both cases, human alteration and climate change, the impact of environmental modifications on species distributions is based on the comparison between an observed or a predicted situation and a benchmark. In bioassessment methods, a reference condition is determined from sites undisturbed by anthropogenic stressors, thus representing continuity with a former condition (Bailey et al.
<xref ref-type="bibr" rid="CR2">1998</xref>
). In Europe, most catchment landscapes and rivers have undergone modifications during the last two centuries. Undisturbed habitats are becoming increasingly rare and bioassessment methods generally rely on what are now judged to be minimally-disturbed sites (Stoddard et al.
<xref ref-type="bibr" rid="CR58">2006</xref>
). Moreover, even for such sites, the distributions of species could continuously evolve in response to large-scale anthropogenic disturbance, past changing thermal and rainfall conditions, and to the expected future climate trend (Tingley and Beissinger
<xref ref-type="bibr" rid="CR59">2009</xref>
). The term “shifting baseline” was developed to refer to such long-term changes over generations which are difficult to recognize (Pauly
<xref ref-type="bibr" rid="CR48">1995</xref>
).</p>
<p>Historical reconstruction of species distribution could allow testing such “shifting baseline” effects. Numerous studies have used printed historical information on fish communities from the late eighteenth and nineteenth centuries to reconstruct the long-term evolution of fish faunas (Rinne et al.
<xref ref-type="bibr" rid="CR54">2005</xref>
; Maceda-Veiga et al.
<xref ref-type="bibr" rid="CR40">2010</xref>
), to estimate reference conditions (Carrel
<xref ref-type="bibr" rid="CR7">2002</xref>
; Wolter et al.
<xref ref-type="bibr" rid="CR63">2005</xref>
; Winter et al.
<xref ref-type="bibr" rid="CR62">2009</xref>
) or to define specific conservation programs (Worthington et al.
<xref ref-type="bibr" rid="CR64">2010</xref>
). Different types of historical sources have been identified depending on the possibility to gain quantitative or only qualitative data at different scales (Haidvogl et al.
<xref ref-type="bibr" rid="CR25">2013a</xref>
). From the late eighteenth century on, early scientific fish ecological surveys were conducted compiling scientific inventories and systematic or selective enquiries of fishermen and fishmongers. From the second half of the nineteenth century, fish distribution maps were also produced in several catchments across Europe, localizing species occurrences in precise rivers or river sections (Haidvogl et al.
<xref ref-type="bibr" rid="CR27">2015</xref>
; Carrel
<xref ref-type="bibr" rid="CR7">2002</xref>
). As opposed to most other written sources, historical maps are among the most informative because the aim of the historical maps was to describe the complete fish fauna and not only the species of commercial interest (Haidvogl et al.
<xref ref-type="bibr" rid="CR25">2013a</xref>
).</p>
<p>Several authors have attempted to model historical fish species distribution. Lassalle and Rochard (
<xref ref-type="bibr" rid="CR37">2009</xref>
) compiled literature on past occurrences of anadromous species to model their distribution before the twentieth century and to simulate potential change due to climate change. In a recent work, Labay et al. (
<xref ref-type="bibr" rid="CR35">2011</xref>
)—using both historical and present data—applied species distribution models (SDM) to establish baseline conditions and to assess the current status of a river fish community. Such models are also widely used to predict the change of fish distributions under climate change scenarios (Austin
<xref ref-type="bibr" rid="CR1">2007</xref>
; Buisson et al.
<xref ref-type="bibr" rid="CR6">2008</xref>
). A classical approach is to model present fish distributions based on recent sampling surveys and to compare the currently forecasted distribution with the expected distribution under different climate conditions (Buisson et al.
<xref ref-type="bibr" rid="CR6">2008</xref>
).</p>
<p>The main aim of the present paper was to examine the ability of SDM to reconstruct historical freshwater fish assemblages and discuss the implication of using baseline conditions in the context of predicting species distribution under changing environmental conditions. The already published SDM used here are based on current observations from European rivers qualified as current “reference sites” (Logez et al.
<xref ref-type="bibr" rid="CR39">2012</xref>
).</p>
<p>The analyses we presented are based on historical species occurrence from two large catchments (Upper Danube, Salzach catchment: late nineteenth—early twentieth century, Rhône catchment: first half of the twentieth century). Our objectives were: (1) to compile historical data in a comparative manner for these two catchments, (2) to use the previously published SDM (Logez et al.
<xref ref-type="bibr" rid="CR39">2012</xref>
) to predict the species occurrences in the historical period and to compare them with the historical observations, (3) to compare the SDM’s performances between catchments and to analyze the capability of predicted occurrences to reflect the historical community structure within the different studied catchments, and (4) to compare the annual variability in the predictions within one sub-catchment (Salzach) under a future climate scenario to that reconstructed during an extended historical period (1800–2000). The main aim of this last point is to evaluate the potential importance of past and future climatic change on the species distributions Finally, we discussed the potential of these SDMs to define a “reference condition” and the possibility of a shift in baseline condition within the last century in relation with climatic variability and/or anthropogenic modification of the river system.</p>
</sec>
<sec id="Sec2" sec-type="methods">
<title>Methods</title>
<sec id="Sec3">
<title>SDM based on current observations</title>
<p>We applied SDM previously published by Logez et al. (
<xref ref-type="bibr" rid="CR39">2012</xref>
) to evaluate the ability of SDM, based on present data, to correctly reconstruct historical fish species distributions. These SDM were calibrated using a dataset of 1548 European sites considered as representative of reference conditions. These “minimally disturbed sites” (Stoddard et al.
<xref ref-type="bibr" rid="CR58">2006</xref>
) were selected using an explicit set of water quality and physical-habitat criteria (Pont et al.
<xref ref-type="bibr" rid="CR50">2006</xref>
). The sites were sampled using electrofishing methods either by wading or by boat during the last 30 years (1981–2007).</p>
<p>Four environmental variables were considered to estimate the habitat requirements of species. The upstream drainage area (UDA in km
<sup>2</sup>
) is a descriptor of the position of the stream reach along the hydrographic network (Pont et al.
<xref ref-type="bibr" rid="CR51">2005</xref>
) and also reflects habitat diversity because stream complexity increases along the longitudinal gradient (Matthews
<xref ref-type="bibr" rid="CR41">1998</xref>
). Stream power (STP, watt m
<sup>−1</sup>
) is ‘the rate of potential energy expenditure over a reach or STP per unit of stream length’ (Gordon et al.
<xref ref-type="bibr" rid="CR21">2004</xref>
). It varies with both river slope and stream discharge and reflects the power of a stream to move bed substrate and change hydraulic conditions, two environmental variables of primary importance for fish. The mean air temperature in July (TJUL, °C) was used as a proxy for water temperature, and the thermal amplitude between July and January (TDIF, °C) allowed considering the annual variability of thermal condition and the differences between oceanic and continental climates (definition of the growth period of fish). TJUL and TDIF were also chosen for their low correlation in order to limit the multicollinearity between explanatory variables. As the objective was to describe the habitat requirements of fish species “independently” from local human alterations, these SDM attempted to avoid parameters overly influenced by anthropogenic disturbances. For example, the mean annual discharge value used to estimate STP was a mean annual run-off, depending only on the annual rainfall and the annual evaporation over UDA. All the environmental variables describing climatic conditions (temperature, rainfall) were averaged over the 10 years before the sampling date in order to consider the mean climatic conditions prevailing during the life span of most of the fish species considered.</p>
<p>Logistic regression, a special case of generalized linear model (GLM) with binomial error distribution, is a classical statistical method and is recognized for its capability to estimate a species’ niche (Austin
<xref ref-type="bibr" rid="CR1">2007</xref>
) when the model includes quadratic terms for environmental variables. In addition, GLM enables computing confidence intervals around expected values for a future observation (CI) (Faraway
<xref ref-type="bibr" rid="CR15">2006</xref>
).</p>
</sec>
<sec id="Sec4">
<title>Historical study area</title>
<p>The study area comprised river sections belonging to the Danube (D) and to the Rhône (R) catchment (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). The Salzach River, with a total catchment area of 6,734 km
<sup>2</sup>
(D-SALZ) is a 225-km-long tributary of the Inn River, which is itself the largest sub-catchment of the Upper Danube (251 m
<sup>3</sup>
 s
<sup>−1</sup>
at the confluence of the Inn River). The discharge regime is snow-dominated but with glacial influences in the southern upstream part of the catchment (Muhar et al.
<xref ref-type="bibr" rid="CR43">1996</xref>
). The mountainous climate is alpine with low temperatures and a high annual rainfall.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Studied areas in the Danube and Rhône catchments: Salzach River (D-SALZ), Rhône alpine tributaries (R-ALPS), Rhône valley tributaries (R-VALL) and Saône River (R-SAON)</p>
</caption>
<graphic xlink:href="27_2014_386_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
<p>Downstream from Lake Geneva, the average discharge of the Rhône River is 340 m
<sup>3</sup>
 s
<sup>−1</sup>
. Within the French part of the Rhône catchment (90,000 km
<sup>2</sup>
), the studied rivers belong to three main sub-catchment types. The alpine tributaries (R-ALPS), situated on the Rhône’s left eastern bank, flow from the highest alpine mountains. They comprised the upper Rhône tributaries (upstream from Lyon), the river Isère (11,890 km
<sup>2</sup>
, 333 m
<sup>3</sup>
 s
<sup>−1</sup>
) and the upper part of the Durance catchment. The hydrological regime is both influenced by rainfall and snowmelt due to the high elevation of these catchments and the dominance of a mountainous climate. The Rhône valley tributaries (R-VALL), the most important of which are the rivers Ain (3,765 km
<sup>2</sup>
, 123 m
<sup>3</sup>
 s
<sup>−1</sup>
), Ardèche (2,376 km
<sup>2</sup>
, 65 m
<sup>3</sup>
 s
<sup>−1</sup>
) and Drôme (1,663 km
<sup>2</sup>
, 20 m
<sup>3</sup>
 s
<sup>−1</sup>
), join the Rhône along its course. Their catchments are mountainous but with a hydrological regime linked to rainfall and a Mediterranean-influenced climate for the southern rivers. Near its mouth, the Rhône river discharge is 1,701 m
<sup>3</sup>
 s
<sup>−1</sup>
with a pluvial regime, whereas the streamflow regime of the Upper-Rhône (upstream from the Saone River confluence) remains influenced by snowmelt. Coming from the north, the Saône River (R-SAON) is the largest tributary of the Rhône River (29,950 km
<sup>2</sup>
, 400 m
<sup>3</sup>
 s
<sup>−1</sup>
). The catchment comprises sedimentary plains surrounded by medium-sized mountains. The climate is continental and the streamflow regime depends on rainfall. Conversely to the three others areas, R-SAON is characterized by a lower elevation and the dominance of low to moderate river bed slopes.</p>
</sec>
<sec id="Sec5">
<title>Historical fish fauna data</title>
<p>Among the different types of written fish historical sources, historical maps are one of the most informative because (1) they are based on fish surveys conducted by experts educated in biology and aimed at depicting the occurrence of all fish species, and (2) the species occurrences and species range limits are located on precise river sections of a few kilometers in length (Haidvogl et al.
<xref ref-type="bibr" rid="CR25">2013a</xref>
). These fish maps are of great interest as they enable analyzing with good accuracy the spatial distribution of species and their habitat requirements during industrialization, prior to the construction of the large dams and hydropower plants (Carrel
<xref ref-type="bibr" rid="CR7">2002</xref>
) and just after the end of the little ice age.</p>
<p>Two main sources were used to describe the occurrences of fish species at the turn of the twentieth century in D-SALZ (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
): the Kollmann’s map (1898) and the Fishery Cadastre of the Federal State Salzburg (1904). Information sources were questionnaires completed by the responsible fishing right owners and administrative authorities. They provided information about 26 occurring fish species for the river segments within their responsibility (Haidvogl et al.
<xref ref-type="bibr" rid="CR27">2015</xref>
).</p>
<p>Concerning the three areas within the Rhône catchment, the historical occurrences of fish species were obtained from 13 district or catchment fish maps (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) drawn from 1910 to 1956 by Louis Léger (1866–1948) and his collaborators, providing information about 45 fish species (Carrel
<xref ref-type="bibr" rid="CR7">2002</xref>
): six maps for R-ALPS (1910,1910,1913, 1931, 1934,1942), four maps for R-VALL (1927, 1945, 1954, 1955), three maps for R-SAON (1924, 1927, 1945).</p>
<p>By the end of the nineteenth century, extensive civil engineering had already been carried out on Alpine tributaries to provide protection against erosion damage and flooding, and on the Rhone to improve navigation. No large hydroelectric dams, however, were operating on the Rhone itself, with few exceptions downstream of Lake Geneva (Bravard and Petts
<xref ref-type="bibr" rid="CR4">1996</xref>
).</p>
<p>All these maps provided the list of species and their location in the different river segments of the hydrographic network (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). For our analyses, fish species were identified based on current taxonomy (Kottelat and Freyhof
<xref ref-type="bibr" rid="CR34">2007</xref>
). Most fish species could be determined without doubt, but the identification of some at the species level is not absolutely certain (e.g.
<italic>Alburnus alburnus, Leuciscus leuciscus</italic>
, Petromyzontidae).
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Example of an historical map of the Rhône catchment: the Ain district map, upstream from the town of Lyon (Léger
<xref ref-type="bibr" rid="CR38">1927</xref>
). Details from the area around the town of Pont d’Ain, along the course of the river Ain. The species names are indicated by
<italic>capital letters</italic>
</p>
</caption>
<graphic xlink:href="27_2014_386_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
</sec>
<sec id="Sec6">
<title>Associated environmental variables</title>
<p>We considered only river segments with an upstream drainage area greater than 10 km
<sup>2</sup>
. The length of the river segments increased from upstream (7.1 km median length for upstream drainage area less than 50 km
<sup>2</sup>
) to downstream (23.7 median length for upstream drainage area over 1,000 km
<sup>2</sup>
). A GIS (Arc-GIS) and digital river networks were used to delineate all river segments defined on the historical maps and the associated historical fish occurrences (Austrian National River Network, French BD Carthage river network).</p>
<p>In order to predict historical fish species occurrences using the SDM from Logez et al. (
<xref ref-type="bibr" rid="CR39">2012</xref>
), we estimated for each river segment UDA, STP, TJUL and TDIF. By intersecting the digital river network with digital elevation models (Rhône: 250 m resolution, Salzach: 10 m resolution), we defined UDA for each river segment, the elevation at the two extremities (of each river segment) and the river bed slope. For D-SALZ, UDA was obtained from the CCM-river network (v. 2.1; de Jager and Vogt
<xref ref-type="bibr" rid="CR12">2010</xref>
). For the Rhône catchment, the air temperature and precipitation values were extracted from the Tyndall data center (spatial resolution 10 × 10 min, Mitchell et al.
<xref ref-type="bibr" rid="CR42">2004</xref>
) for the periods corresponding to the establishment of the different fish maps. For D-SALZ, the air temperature and precipitation values were extracted from the Austrian historical temperature database of Chimany et al. (
<xref ref-type="bibr" rid="CR9">2013</xref>
) (spatial resolution 5 min) for the period corresponding to Kollmann’s map (1891–1899).</p>
<p>A GIS layer was created for each monthly or yearly period for, respectively, air temperature and precipitation. For each river segment and for a considered time period, the mean monthly air temperatures were obtained by intersecting the corresponding temperature layers with the digital river network. The intersection between the temperature/precipitation layers and the layer defining the limit of the upstream catchment of each of the river segments allowed computing the mean annual values of temperature and precipitation for each UDA. The final parameters describing the climatic conditions (TJU and TDIF) were averaged over the 10 years before the edition of the historical maps.</p>
</sec>
<sec id="Sec7">
<title>Testing SDM for predicting historical observations</title>
<p>We focused on the 14 fish species common to the Rhône and the Salzach catchments. We predicted their past occurrences using Logez et al. (
<xref ref-type="bibr" rid="CR39">2012</xref>
) SDM and environmental conditions prevailing in the past; these were compared with historical observations. The models’ goodness of fit was estimated by area under the receiver operating characteristic curve, (AUC), sensitivity (% presence correctly predicted), specificity (% absence correctly predicted) and the overall correct classification rate (Fiedling and Bell
<xref ref-type="bibr" rid="CR17">1997</xref>
; Hosmer and Lemeshow
<xref ref-type="bibr" rid="CR31">2000</xref>
). AUC does not require transformation of the probability to binary data, and we used this criterion to evaluate the performance of the 14 models. AUC values range from 0 to 1, where 0.5 indicates that the model’s discrimination is no better than random sorting and 1 indicates that the model discriminates perfectly (Swets
<xref ref-type="bibr" rid="CR57">1988</xref>
). The application of these 14 SDM on our historical data was a “true” external validation and the AUC’s values were compared to the AUC values of the cross validation realized by Logez et al. (
<xref ref-type="bibr" rid="CR39">2012</xref>
) on present data.</p>
</sec>
<sec id="Sec8">
<title>Observed vs expected occurrences at the regional scale</title>
<p>There is a general scarcity of information at the local scale. Accordingly, examination of species occurrences across the watershed by combining historical observations yields a better understanding of the influence of human activities on the composition of the fish fauna at a given historical period (Harding et al.
<xref ref-type="bibr" rid="CR28">1998</xref>
). To evaluate the ability of the SDM to estimate the historical occurrences of each species for all sites and at the sub-catchment scale (D-SALZ, R-ALPS, R-VALL, R-SAON), we computed the cumulated observed presences (OBS) and the cumulated expected probabilities (EXP). For each species and each river segment, we computed the confidence interval (CI 95 %) around the expected probability value and, by summing up all the lower and the upper CI limits, we tested the significance (5 % level) of the difference between OBS and EXP; i.e. if OBS was within the range of the cumulated confidence interval.</p>
<p>To compare the quality of our predictions at the scale of each of the four areas, we regressed the cumulated observed occurrences (OBS) of the 14 species on their cumulated expected probabilities (EXP). If the whole assemblage of a given area was correctly predicted, we expected that the coefficient of determination of the regression would be significant, that the intercept of the regression line would not be significantly different from zero, and that the slope would not differ from one (Oberdorff et al.
<xref ref-type="bibr" rid="CR45">2001</xref>
).</p>
</sec>
<sec id="Sec9">
<title>Long-term past and future species occurrences</title>
<p>We compared the past variability of species occurrences (1810–1999) in D-SALZ with the potential future variability (2000–2069) by computing the 260 annual predicted probabilities of presence for each river segment. From 1810 to 1999, we used Chimany et al. (
<xref ref-type="bibr" rid="CR9">2013</xref>
) to reconstruct the annual evolution of the climate variables. To examine the effect of climate change on the distribution of species in the future, we used the Tyndall Centre for Climate Change Research Set of Scenarios (Mitchell et al.
<xref ref-type="bibr" rid="CR42">2004</xref>
). Potential future distributions (2000–2069) were predicted by the climate expected under SRES scenario A1 (very rapid economic growth, a global population that peaks in mid-century, and rapid introduction of new and more efficient technologies). Future climatic data were derived and averaged from three global circulation models (GCM), namely HadCM3 (Gordon et al.
<xref ref-type="bibr" rid="CR20">2000</xref>
), CGCM2 (Flato and Boer
<xref ref-type="bibr" rid="CR18">2001</xref>
), CSIRO-Mk2 (Hirst et al.
<xref ref-type="bibr" rid="CR30">2000</xref>
). We limited our predictions to the first two-thirds of the twenty first century so as not to apply the SDM outside of the range of the predictors used to calibrate the models. The associated uncertainties were estimated by computing the ratio between the mean difference between upper and lower limits of CI at 95 % and the mean predicted probability within a given time period. Results are presented for the species showing the most contrasted temporal pattern.</p>
</sec>
</sec>
<sec id="Sec10" sec-type="results">
<title>Results</title>
<p>Within the 936 rivers segments considered (Table 
<xref rid="Tab1" ref-type="table">1</xref>
), 58 species were mentioned for a total number of 3,831 historical occurrences. The 14 studied species represented 68.6 % of these occurrences (D-SALZ: 91 %, Rhône catchment: 65 %) and they were mainly representative of three of the classical river types (Huet
<xref ref-type="bibr" rid="CR32">1959</xref>
): from upstream to downstream, the trout zone (
<italic>Salmo trutta, Cottus gobio, Phoxinus phoxinus, Barbatula barbatula</italic>
), the grayling zone (
<italic>Thymallus thymallus</italic>
) and the barbel zone (
<italic>Barbus barbus, Chondrostoma nasus, L. leuciscus, Lota lota,</italic>
<italic>Squalius cephalus</italic>
). In contrast, species commonly inhabiting downstream river segments (bream zone) were underrepresented (
<italic>A. alburnus, Esox lucius, Perca fluviatilis, Rutilus rutilus</italic>
) due to the low number of river segments belonging to this last river type.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Environmental characteristics within the four studied areas: median and minimal-maximal values between brackets</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Areas</th>
<th align="left">N</th>
<th align="left">Elevation</th>
<th align="left">UDA</th>
<th align="left">SLOPE</th>
<th align="left">TJUL</th>
<th align="left">TDIF</th>
<th align="left">Pann</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">R-ALPS</td>
<td align="left">240</td>
<td align="left">710 (134–1,379)</td>
<td align="left">63.5 (10.0–12,860)</td>
<td char="(" align="char">24.7 (0.2–174.7)</td>
<td char="(" align="char">14.33 (5.8–18.7)</td>
<td char="(" align="char">15.5 (11.3–17)</td>
<td char="(" align="char">1,058 (764–1,427)</td>
</tr>
<tr>
<td align="left">R-VALL</td>
<td align="left">316</td>
<td align="left">417 (64–1,103)</td>
<td align="left">39.9 (10.0–69,720)</td>
<td char="(" align="char">26.1 (0.4–200.6)</td>
<td char="(" align="char">16.5 (12.7–19.7)</td>
<td char="(" align="char">14.4 (13–17.5)</td>
<td char="(" align="char">796 (690–1,124)</td>
</tr>
<tr>
<td align="left">D-SALZ</td>
<td align="left">206</td>
<td align="left">867 (327–2,154)</td>
<td align="left">35.9 (10.1–3,381)</td>
<td char="(" align="char">37.3 (1.1–276.9)</td>
<td char="(" align="char">14.1 (7.1–17.4)</td>
<td char="(" align="char">18 (14.8–22)</td>
<td char="(" align="char">1,479 (1,202–1,819)</td>
</tr>
<tr>
<td align="left">R-SAON</td>
<td align="left">174</td>
<td align="left">259 (165–594)</td>
<td align="left">65.7 (10.2–27,930)</td>
<td char="(" align="char">4.5 (0.1–72.5)</td>
<td char="(" align="char">16.5 (14.6–17.9)</td>
<td char="(" align="char">14.2 (13.6–17.3)</td>
<td char="(" align="char">805 (743–1,065)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>UDA</italic>
upstream drainage area,
<italic> SLOPE</italic>
river slope,
<italic> TJUL</italic>
monthly temperature in July,
<italic> TDIF</italic>
annual temperature range,
<italic> Pann</italic>
annual precipitation</p>
</table-wrap-foot>
</table-wrap>
</p>
<sec id="Sec11">
<title>SDM performance on historical data</title>
<p>Predictive performances of the models (Table 
<xref rid="Tab2" ref-type="table">2</xref>
) were considered as good to excellent for nine species (AUC > 0.8), acceptable for four species (0.7 < AUC < 0.8,
<italic>S. trutta, P. phoxinus, B. barbatula, T. thymallus</italic>
) and poor for
<italic>C. gobio</italic>
(AUC close to 0.5). For this last species, the sensitivity was in particular very low. For the 13 remaining species, there was no clear tendency toward a higher specificity than sensitivity (respective mean values 0.80 and 0.78). AUC estimated based on historical data were greater than AUC estimated on the present data used to calibrate SDM excepted for
<italic>C. gobio</italic>
and
<italic>S. trutta</italic>
(Table 
<xref rid="Tab2" ref-type="table">2</xref>
).
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Goodness-of-fit statistics of the species distribution models applied to the historical data: species prevalence (Prev), relative occurrence in % (% Occ), area under the receiver operating characteristic curve (AUC), sensitivity (Sens), specificity (Spec) and overall correct classification (OCC)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Species</th>
<th align="left">Prev</th>
<th align="left">% Occ</th>
<th align="left">AUC</th>
<th align="left">Sens</th>
<th align="left">Spec</th>
<th align="left">OCC</th>
<th align="left">AUC
<sup>a</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<italic>Alburnus alburnus</italic>
</td>
<td char="." align="char">83</td>
<td char="." align="char">8.9</td>
<td align="left">0.901</td>
<td align="left">0.843</td>
<td align="left">0.803</td>
<td align="left">0.807</td>
<td align="left">0.804</td>
</tr>
<tr>
<td align="left">
<italic>Barbatula barbatula</italic>
</td>
<td char="." align="char">225</td>
<td char="." align="char">24.0</td>
<td align="left">0.782</td>
<td align="left">0.831</td>
<td align="left">0.653</td>
<td align="left">0.696</td>
<td align="left">0.659</td>
</tr>
<tr>
<td align="left">
<italic>Barbus barbus</italic>
</td>
<td char="." align="char">105</td>
<td char="." align="char">11.2</td>
<td align="left">0.881</td>
<td align="left">0.800</td>
<td align="left">0.828</td>
<td align="left">0.825</td>
<td align="left">0.859</td>
</tr>
<tr>
<td align="left">
<italic>Chondrostoma nasus</italic>
</td>
<td char="." align="char">76</td>
<td char="." align="char">8.1</td>
<td align="left">0.858</td>
<td align="left">0.789</td>
<td align="left">0.851</td>
<td align="left">0.846</td>
<td align="left">0.830</td>
</tr>
<tr>
<td align="left">
<italic>Cottus gobio</italic>
</td>
<td char="." align="char">304</td>
<td char="." align="char">32.5</td>
<td align="left">0.464</td>
<td align="left">0.132</td>
<td align="left">0.889</td>
<td align="left">0.643</td>
<td align="left">0.703</td>
</tr>
<tr>
<td align="left">
<italic>Esox lucius</italic>
</td>
<td char="." align="char">125</td>
<td char="." align="char">13.4</td>
<td align="left">0.873</td>
<td align="left">0.864</td>
<td align="left">0.764</td>
<td align="left">0.778</td>
<td align="left">0.761</td>
</tr>
<tr>
<td align="left">
<italic>Leuciscus leuciscus</italic>
</td>
<td char="." align="char">88</td>
<td char="." align="char">9.4</td>
<td align="left">0.880</td>
<td align="left">0.932</td>
<td align="left">0.748</td>
<td align="left">0.765</td>
<td align="left">0.780</td>
</tr>
<tr>
<td align="left">
<italic>Lota lota</italic>
</td>
<td char="." align="char">40</td>
<td char="." align="char">4.3</td>
<td align="left">0.902</td>
<td align="left">0.850</td>
<td align="left">0.886</td>
<td align="left">0.885</td>
<td align="left">0.741</td>
</tr>
<tr>
<td align="left">
<italic>Perca fluviatilis</italic>
</td>
<td char="." align="char">86</td>
<td char="." align="char">9.2</td>
<td align="left">0.876</td>
<td align="left">0.826</td>
<td align="left">0.780</td>
<td align="left">0.784</td>
<td align="left">0.744</td>
</tr>
<tr>
<td align="left">
<italic>Phoxinus phoxinus</italic>
</td>
<td char="." align="char">362</td>
<td char="." align="char">38.7</td>
<td align="left">0.736</td>
<td align="left">0.638</td>
<td align="left">0.739</td>
<td align="left">0.700</td>
<td align="left">0.627</td>
</tr>
<tr>
<td align="left">
<italic>Rutilus rutilus</italic>
</td>
<td char="." align="char">81</td>
<td char="." align="char">8.7</td>
<td align="left">0.908</td>
<td align="left">0.877</td>
<td align="left">0.796</td>
<td align="left">0.803</td>
<td align="left">0.764</td>
</tr>
<tr>
<td align="left">
<italic>Salmo trutta fario</italic>
</td>
<td char="." align="char">737</td>
<td char="." align="char">78.7</td>
<td align="left">0.711</td>
<td align="left">0.682</td>
<td align="left">0.698</td>
<td align="left">0.686</td>
<td align="left">0.764</td>
</tr>
<tr>
<td align="left">
<italic>Squalius cephalus</italic>
</td>
<td char="." align="char">242</td>
<td char="." align="char">25.9</td>
<td align="left">0.869</td>
<td align="left">0.851</td>
<td align="left">0.741</td>
<td align="left">0.769</td>
<td align="left">0.726</td>
</tr>
<tr>
<td align="left">
<italic>Thymallus thymallus</italic>
</td>
<td char="." align="char">73</td>
<td char="." align="char">7.8</td>
<td align="left">0.745</td>
<td align="left">0.630</td>
<td align="left">0.803</td>
<td align="left">0.790</td>
<td align="left">0.718</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a</sup>
AUC obtained by Logez et al. (
<xref ref-type="bibr" rid="CR39">2012</xref>
) with a cross-validation exercise using the same models with present data</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec12">
<title>Historical fish species distribution at the catchment level</title>
<p>When considering all the studied sites (Table 
<xref rid="Tab3" ref-type="table">3</xref>
), the sum of the observed historical occurrences of five species were within the limits of the confidence intervals at 95 % of EXP, and could thus be considered as correctly estimated (
<italic>B. barbatula, L. lota, P. fluviatilis, R. rutilus and T. thymallus</italic>
). The presence of
<italic>A. alburnus</italic>
,
<italic>Esox Lucius</italic>
and of the four large rheophilic cyprinids
<italic>C. nasus, L. leuciscus,</italic>
<italic>S. cephalus</italic>
and
<italic>B. barbus,</italic>
were underestimated by the models, especially the three last species. For these six last species, the results were similar when considering the four studied areas separately, except for R-VALL for
<italic>E. lucius</italic>
. Conversely,
<italic>S. trutta</italic>
was the only species overestimated by the models when considering all sites and three of the four areas separately (correct estimation for R-ALPS). For the other species, the ability of the SDM to correctly predict the historical species occurrences varied between the four studied areas (Table 
<xref rid="Tab3" ref-type="table">3</xref>
).
<table-wrap id="Tab3">
<label>Table 3</label>
<caption>
<p>Ability of the 14 species-specific models to predict the cumulated observed historical species prevalence for all sites and within each of the four studied areas (D-SALZ, R-ALPS, R-VALL, R-SAON): cumulated observed prevalence (OBS), cumulated expected probabilities (EXP) and 95 % confidence interval associated (CI)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2">Species</th>
<th align="left" colspan="2">All sites</th>
<th align="left" colspan="2">D-SALZ</th>
<th align="left" colspan="2">R-ALPS</th>
<th align="left" colspan="2">R-VALL</th>
<th align="left" colspan="2">R-SAON</th>
</tr>
<tr>
<th align="left">OBS</th>
<th align="left">EXP [CI 95 %]</th>
<th align="left">OBS</th>
<th align="left">EXP [CI 95 %]</th>
<th align="left">OBS</th>
<th align="left">EXP [CI 95 %]</th>
<th align="left">OBS</th>
<th align="left">EXP [CI 95 %]</th>
<th align="left">OBS</th>
<th align="left">EXP [CI 95 %]</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">
<italic>Alburnus alburnus</italic>
</td>
<td char="." align="char">83</td>
<td char="[" align="char">23.4 [13.7–38.4]</td>
<td char="." align="char">6</td>
<td char="[" align="char">2.3 [1.3–4.3]</td>
<td char="." align="char">9</td>
<td char="[" align="char">3.3 [1.8–6.3]</td>
<td char="." align="char">30</td>
<td char="[" align="char">10.9 [6.6–16.5]</td>
<td char="." align="char">38</td>
<td char="[" align="char">6.9 [4.0–11.3]</td>
</tr>
<tr>
<td align="left">
<italic>Barbatula barbatula</italic>
</td>
<td char="." align="char">225</td>
<td char="[" align="char">212.2 [168.7–268.8]</td>
<td char="." align="char">7</td>
<td char="[" align="char">24.4 [17.1–35.8]</td>
<td char="." align="char">30</td>
<td char="[" align="char">35.7 [25.9–51.0]</td>
<td char="." align="char">100</td>
<td char="[" align="char">85.2 [69.9–103.6]</td>
<td char="." align="char">88</td>
<td char="[" align="char">66.8 [55.9–78.5]</td>
</tr>
<tr>
<td align="left">
<italic>Barbus barbus</italic>
</td>
<td char="." align="char">105</td>
<td char="[" align="char">18.1 [9.7–36]</td>
<td char="." align="char">10</td>
<td char="[" align="char">1.4 [0.6–3.8]</td>
<td char="." align="char">30</td>
<td char="[" align="char">3.1 [1.7–7.0]</td>
<td char="." align="char">45</td>
<td char="[" align="char">10.2 [6.0–17.6]</td>
<td char="." align="char">20</td>
<td char="[" align="char">3.3 [1.5–7.5]</td>
</tr>
<tr>
<td align="left">
<italic>Chondrostoma nasus</italic>
</td>
<td char="." align="char">76</td>
<td char="[" align="char">10.4 [4.4–25.6]</td>
<td char="." align="char">14</td>
<td char="[" align="char">0.5 [0.1–2.2]</td>
<td char="." align="char">9</td>
<td char="[" align="char">1.9 [0.9–4.4]</td>
<td char="." align="char">28</td>
<td char="[" align="char">7.1 [3.1–15.8]</td>
<td char="." align="char">25</td>
<td char="[" align="char">0.8 [0.2–3.1]</td>
</tr>
<tr>
<td align="left">
<italic>Cottus gobio</italic>
</td>
<td char="." align="char">304</td>
<td char="[" align="char">332.4 [270.5–407.5]</td>
<td char="." align="char">81</td>
<td char="[" align="char">58.9 [43.9–79.0]</td>
<td char="." align="char">117</td>
<td char="[" align="char">69.7 [53.0–92.2]</td>
<td char="." align="char">34</td>
<td char="[" align="char">121.7 [102.7–142.6]</td>
<td char="." align="char">72</td>
<td char="[" align="char">82.1 [70.9–93.6]</td>
</tr>
<tr>
<td align="left">
<italic>Esox lucius</italic>
</td>
<td char="." align="char">125</td>
<td char="[" align="char">63.6 [45.0–90.7]</td>
<td char="." align="char">22</td>
<td char="[" align="char">5.2 [3.3–8.5]</td>
<td char="." align="char">19</td>
<td char="[" align="char">9.6 [5.9–16.1]</td>
<td char="." align="char">19</td>
<td char="[" align="char">25.3 [18.3–34.7]</td>
<td char="." align="char">65</td>
<td char="[" align="char">23.5 [17.5–31.3]</td>
</tr>
<tr>
<td align="left">
<italic>Leuciscus leuciscus</italic>
</td>
<td char="." align="char">88</td>
<td char="[" align="char">60.9 [42.7–87.0]</td>
<td char="." align="char">3</td>
<td char="[" align="char">2.3 [1.3–4.4]</td>
<td char="." align="char">17</td>
<td char="[" align="char">7.2 [4.5–12.2]</td>
<td char="." align="char">12</td>
<td char="[" align="char">29.1 [21.2–39.5]</td>
<td char="." align="char">56</td>
<td char="[" align="char">22.3 [15.8–31.0]</td>
</tr>
<tr>
<td align="left">
<italic>Lota lota</italic>
</td>
<td char="." align="char">40</td>
<td char="[" align="char">39.1 [22.4–67.3]</td>
<td char="." align="char">7</td>
<td char="[" align="char">8.6 [5.4–13.9]</td>
<td char="." align="char">7</td>
<td char="[" align="char">9.6 [5.0–17.9]</td>
<td char="." align="char">7</td>
<td char="[" align="char">11.7 [6.6–20.2]</td>
<td char="." align="char">19</td>
<td char="[" align="char">9.2 [5.4–15.3]</td>
</tr>
<tr>
<td align="left">
<italic>Perca fluviatilis</italic>
</td>
<td char="." align="char">86</td>
<td char="[" align="char">62.0 [45.1–86.0]</td>
<td char="." align="char">4</td>
<td char="[" align="char">4.2 [2.7–6.9]</td>
<td char="." align="char">10</td>
<td char="[" align="char">8.4 [5.5–13.1]</td>
<td char="." align="char">17</td>
<td char="[" align="char">28.8 [21.8–38.1]</td>
<td char="." align="char">55</td>
<td char="[" align="char">20.6 [15.1–27.9]</td>
</tr>
<tr>
<td align="left">
<italic>Phoxinus phoxinus</italic>
</td>
<td char="." align="char">362</td>
<td char="[" align="char">288.4 [236.1–353.1]</td>
<td char="." align="char">42</td>
<td char="[" align="char">40.1 [29.4–55.4]</td>
<td char="." align="char">45</td>
<td char="[" align="char">56.9 [42.8–76.6]</td>
<td char="." align="char">170</td>
<td char="[" align="char">112.5 [95.3–131.6]</td>
<td char="." align="char">105</td>
<td char="[" align="char">78.9 [68.6–89.5]</td>
</tr>
<tr>
<td align="left">
<italic>Rutilus rutilus</italic>
</td>
<td char="." align="char">81</td>
<td char="[" align="char">81.6 [60.7–110.0]</td>
<td char="." align="char">3</td>
<td char="[" align="char">4.5 [2.9–7.3]</td>
<td char="." align="char">12</td>
<td char="[" align="char">11.1 [7.5–16.8]</td>
<td char="." align="char">17</td>
<td char="[" align="char">37.5 [28.9–48.4]</td>
<td char="." align="char">49</td>
<td char="[" align="char">28.5 [21.4–37.4]</td>
</tr>
<tr>
<td align="left">
<italic>Salmo trutta fario</italic>
</td>
<td char="." align="char">737</td>
<td char="[" align="char">878.7 [852.1–896.1]</td>
<td char="." align="char">183</td>
<td char="[" align="char">197.7 [192.0–200.8]</td>
<td char="." align="char">223</td>
<td char="[" align="char">228.9 [220.7–233.3]</td>
<td char="." align="char">240</td>
<td char="[" align="char">295.5 [288.7–300.8]</td>
<td char="." align="char">91</td>
<td char="[" align="char">156.6 [150.7–161.2]</td>
</tr>
<tr>
<td align="left">
<italic>Squalius cephalus</italic>
</td>
<td char="." align="char">242</td>
<td char="[" align="char">82.3 [62.1–109.1]</td>
<td char="." align="char">18</td>
<td char="[" align="char">6.8 [4.5–10.3]</td>
<td char="." align="char">47</td>
<td char="[" align="char">12.1 [8.6–17.6]</td>
<td char="." align="char">93</td>
<td char="[" align="char">39.5 [31.0–50.0]</td>
<td char="." align="char">84</td>
<td char="[" align="char">23.9 [18.1–31.2]</td>
</tr>
<tr>
<td align="left">
<italic>Thymallus thymallus</italic>
</td>
<td char="." align="char">73</td>
<td char="[" align="char">106.6 [68.3–169.4]</td>
<td char="." align="char">47</td>
<td char="[" align="char">28.6 [18.3–45.8]</td>
<td char="." align="char">12</td>
<td char="[" align="char">25.0 [15.1–43.6]</td>
<td char="." align="char">9</td>
<td char="[" align="char">33.5 [21.9–51.1]</td>
<td char="." align="char">5</td>
<td char="[" align="char">19.5 [13.1–28.9]</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p>In D_SALZ and R-ALPS, OBS and EXP did not differ for five and six species, respectively. But the occurrences of only three and one species were correctly predicted in R-VALL and R-SAON, respectively. In R-SAON, most of the species were underestimated, except for
<italic>S. trutta</italic>
and
<italic>T. thymallus</italic>
(overestimation).</p>
<p>The regressions (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
) of the 14 species-specific OBS on the corresponding EXP were highly significant for D-SALZ, R-ALPS and R_VALL (
<italic>p</italic>
 < 0.001), but only at
<italic>p</italic>
 < 0.01 for R-SAON (Table 
<xref rid="Tab4" ref-type="table">4</xref>
). The determination coefficients were excellent for R-ALPS and D-SALZ (over 0.91) but lower for R-VALL (0.706). For R-SAON, only 50 % of the variability of OBS was explained by EXP. The intercept and the slope of the regression lines were not statistically different from respectively zero and one (Table 
<xref rid="Tab4" ref-type="table">4</xref>
) for D-SALZ, R-ALPS and R-VALL. But these two parameters differed significantly from, respectively, zero and one for R-SAON.
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Plots of expected (sum of probability values) vs historically observed occurrence values of the 14 species (
<italic>black dots</italic>
) for the four areas (D-SALZ, R-ALPS, R-VALL, R-SAON). Confidence interval limits (95 %,
<italic>hatched lines</italic>
) around the regression lines (
<italic>bold solid lines</italic>
). Regression line of slope 1 and intercept 0 (
<italic>solid line</italic>
)</p>
</caption>
<graphic xlink:href="27_2014_386_Fig3_HTML" id="MO3"></graphic>
</fig>
<table-wrap id="Tab4">
<label>Table 4</label>
<caption>
<p>Regressions of the sum of the observed occurrences on the sum of the predicted occurrences for each of the four studied areas: determination coefficient (R
<sup>2</sup>
), intercept (between brackets: significance of Student
<italic>t</italic>
test against zero), intercept (between brackets: significance of Student
<italic>t</italic>
test against one)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Areas</th>
<th align="left">R
<sup>2</sup>
</th>
<th align="left">Intercept</th>
<th align="left">Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">D-SALZ</td>
<td char="(" align="char">0.951 (
<italic>p</italic>
 < 0.001)</td>
<td char="(" align="char">6.702 (ns)</td>
<td char="(" align="char">0.916 (ns)</td>
</tr>
<tr>
<td align="left">R-ALPS</td>
<td char="(" align="char">0.914 (
<italic>p</italic>
 < 0.001)</td>
<td char="(" align="char">9.065 (ns)</td>
<td char="(" align="char">0.953 (ns)</td>
</tr>
<tr>
<td align="left">R-VALL</td>
<td char="(" align="char">0.736 (
<italic>p</italic>
 < 0.001)</td>
<td char="(" align="char">11.728 (ns)</td>
<td char="(" align="char">0.774 (ns)</td>
</tr>
<tr>
<td align="left">R-SAON</td>
<td char="(" align="char">0.506 (
<italic>p</italic>
 < 0.01)</td>
<td char="(" align="char">35.460 (
<italic>p</italic>
 < 0.001)</td>
<td char="(" align="char">0.508 (
<italic>p</italic>
 < 0.01)</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec id="Sec13">
<title>Long-term variability</title>
<p>The reconstruction of the potential temporal variability of the species’ mean annual probabilities of occurrence enables comparing the past and the potential future species distribution (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). The mean annual rainfall (all mean values as moving averages over the previous 10 years) were similar during the nineteenth and twentieth centuries (1,447 and 1,490 mm, respectively), as were the mean air temperatures (4.48 and 4.69 °C, respectively). As a consequence, the STP values were quite similar during these two last centuries. From 2000 to 2069, the mean air temperature would increase by 2.69 °C, rising to 8.4 °C. From 2010 on, the fish have been and will continue experiencing, each year, a mean air temperature always higher than maximum air temperature recorded during the last two centuries (5.64 °C). In contrast, the range of the mean annual rainfall expected during the first half of the twenty first century is comparable to the range observed during the nineteenth and the twentieth century (1,273–1,576 and 1,280–1,555 mm, respectively).
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Evolution of the mean annual air temperature, the mean annual rainfall (simple moving averages over the previous 10 years), and the expected variability of four species occurrences within the Salzach catchment (D-SALZ) from 1810 to 2069:
<italic>B. barbatula</italic>
,
<italic>B. barbus</italic>
,
<italic>P. phoxinus</italic>
and
<italic>S. trutta</italic>
. Mean annual probability of presence (
<italic>bold solid line</italic>
) and associated confidence interval (95 %,
<italic>grey lines</italic>
). From 2000 on, the considered climate values are those from the IPCC scenario A1</p>
</caption>
<graphic xlink:href="27_2014_386_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
<p>For the past period (1810–1999), the mean annual expected probabilities and their range for all segments were as follows:
<italic>B. barbus</italic>
0.008 (0.002–0.028),
<italic>B. barbatula</italic>
0.121 (0.090–0.155),
<italic>P. phoxinus</italic>
0.198 (0.166–0.230) and
<italic>S. trutta</italic>
0.961 (0.949–0.975). The associated uncertainties were very high for
<italic>B. barbus</italic>
, high for
<italic>B. barbatula</italic>
and
<italic>P. phoxinus</italic>
, and limited for
<italic>S. trutta</italic>
.</p>
<p>Under the climatic scenario used in this study, the mean probabilities for the period 2000–2069 were 0.053 (
<italic>B. barbus</italic>
), 0.168 (
<italic>B. barbatula</italic>
), 0.232 (
<italic>P. phoxinus</italic>
) and 0.942 (
<italic>S. trutta</italic>
) with associated uncertainties of 1.01, 0.58, 0.50 and 0.04, respectively.
<italic>B. barbus</italic>
probability increased regularly and significantly until 2050 in relation with the temperature change.
<italic>P. phoxinus</italic>
also tended to increase its prevalence, but the associated CI showed that this species remained in its previous range of variability. The increase of
<italic>B. barbatula</italic>
was clearer, but the overlap between the CI before and after 2000 was large.
<italic>S. trutta</italic>
decreased quite clearly with a more limited CI overlap between past and future conditions. Finally, only
<italic>B. barbus</italic>
and
<italic>S. trutta</italic>
showed a clear potential change in their probability of occurrence in the Salzach catchment within the next century.</p>
</sec>
</sec>
<sec id="Sec14" sec-type="discussion">
<title>Discussion</title>
<p>In this paper, we predicted historical fish species occurrences from the nineteenth century to the two-thirds mark of the twenty first century using present-data-based SDM and compared these expected values with historically observed occurrences from four different sub-catchments located in France and Austria.</p>
<sec id="Sec15">
<title>SDM performances for historical data</title>
<p>Our results highlight the good predictive performance of the SDM on historical data for 13 of the 14 studied species. For all of them except two, the AUC values associated with the comparison between prediction and historical observations are higher than AUC values obtained by Logez et al. (
<xref ref-type="bibr" rid="CR39">2012</xref>
) with a cross-validation. In addition, the present data used to calibrate the models and the historical occurrences were not obtained using similar sampling techniques. Present species occurrences were obtained using classical electro-fishing techniques either by wading or by boat, depending on stream depth (Pont et al.
<xref ref-type="bibr" rid="CR50">2006</xref>
). Historical occurrences were based on fish surveys conducted by experts educated in sciences and in collaboration with professional fishermen.</p>
<p>A major classical problem with such historical data is that, most of the time, absence is not really registered (i.e. mainly presence-only data). In our study, this does not seem to be the case. For the 13 species correctly predicted by the models, the sensitivity was in general comparable to specificity, and we conclude that our historical maps yield accurate information about both species presence and absence. This contrasts with many other historical sources (fisheries sources, fish trading sources, fish consumption description), which typically focused only on particular species of commercial interest (Haidvogl et al.
<xref ref-type="bibr" rid="CR25">2013a</xref>
). The good performances of the present-data-based models tend to demonstrate that, in the case of such historical fish maps, the quality of the historical information provided by these experts is comparable to that obtained from classical electrofishing sampling. Nevertheless, as demonstrated by Lahoz-Montfort et al. (
<xref ref-type="bibr" rid="CR36">2014</xref>
), the imperfect detection of species occurrence can have serious consequences for the efficiency of SDM, and the quality of presence-absence data remains a major objective for species distribution modelling.</p>
<p>A potential limit of our work was the type of statistical models we used: more recent techniques are considered to outperform the traditional GLM (Buisson et al.
<xref ref-type="bibr" rid="CR5">2010</xref>
). Among other methodological limits, SDM are very sensitive to collinearity between predictor variables (Graham
<xref ref-type="bibr" rid="CR23">2003</xref>
). Collinearity has huge effects on prediction quality as soon as the collinearity between the predictor variables is modified or if the model is used to predict species’ distributions in new geographic regions or under changed climatic conditions. Dormann et al. (
<xref ref-type="bibr" rid="CR13">2013</xref>
), however, demonstrated that more recent methods specifically designed for collinearity did not outperform classical GLM with respect to sensitivity to collinearity variation. Moreover, Lahoz-Montfort et al. (
<xref ref-type="bibr" rid="CR36">2014</xref>
) recently demonstrated that presence-background methods are equally affected by false absence as the classical presence-absence method. Logez et al. (
<xref ref-type="bibr" rid="CR39">2012</xref>
) also showed that the model response to different ecological gradients was in agreement with the known ecology of the considered species, a point that is as important as model performance (Austin
<xref ref-type="bibr" rid="CR1">2007</xref>
). Finally, the ability to associate a confidence interval to the expected probability provides the opportunity to more precisely evaluate the quality of the fit between the model and the observed occurrences at different scales (see below).</p>
</sec>
<sec id="Sec16">
<title>Shifting baseline reference conditions</title>
<p>Beyond the classical analysis of models, examining species-specific OBS and EXP at the regional level (sub-catchment) allows interpreting discrepancies between observed and predicted historical species distributions within the four areas. The seven species showing the same relationships between OBS and EXP for each of the four areas are of primary interest.</p>
<p>The four large cyprinids (
<italic>C. nasus, L. Leuciscus,</italic>
<italic>S. cephalus</italic>
and
<italic>B. barbus</italic>
) were always underestimated by our current-data-based SDM. These species are large rheophilic cyprinids inhabiting medium-sized to large rivers (barbel zone).
<italic>B. Barbus</italic>
,
<italic>C. nasus</italic>
and
<italic>S. cephalus</italic>
are potamodromic (Noble et al.
<xref ref-type="bibr" rid="CR44">2007</xref>
) and undergo migration for reproduction within the tributaries or the floodplain (Kirchhofer
<xref ref-type="bibr" rid="CR33">1996</xref>
; Schiemer
<xref ref-type="bibr" rid="CR55">2000</xref>
). Since the late nineteenth century, most of rivers have been channelized, diked and disconnected from their previous floodplain (Petts
<xref ref-type="bibr" rid="CR49">1984</xref>
). In Austria, Haidvogl et al. (
<xref ref-type="bibr" rid="CR26">2013b</xref>
), analyzing the historical distributions of
<italic>B. barbus</italic>
and
<italic>C. nasus</italic>
in the nineteenth century, showed that, nowadays, they occur in only 58 and 68 % of their past distributional area.</p>
<p>Similarly,
<italic>E. lucius</italic>
occurrences were also underestimated by SDM. This species lives in slow-flowing waters, migrates towards floodplains during high discharge periods for reproduction and has also been severely affected by channelization (Casselman and Lewis
<xref ref-type="bibr" rid="CR8">1996</xref>
). In addition, the afforestation of most of the alpine catchments since the end of the nineteenth century drastically reduced the coarse sediment load within the river network and induced a shift in the fluvial dynamics of rivers from aggradation to incision (Pont et al.
<xref ref-type="bibr" rid="CR52">2009</xref>
). This led to a continuous shrinkage of their associated floodplains and the favorable habitats for
<italic>E</italic>
.
<italic>lucius</italic>
reproduction (D-SALZ, R-ALPS). Our present-data-based SDMs were calibrated using a dataset of sites not or only slightly impacted by local anthropogenic pressures. This was done to describe a “reference situation”, following the minimally disturbed condition concept (Stoddard et al.
<xref ref-type="bibr" rid="CR58">2006</xref>
). Nevertheless, the quasi-absence of medium-sized to large rivers unaffected by channelization and dike erection lead to the selection of a calibration dataset of river segments where the consequences of these long-term hydromorphological modifications of rivers on the fish communities cannot be easily noticed. In the case of these four species (
<italic>C. nasus, B. barbus, S. cephalus, E. lucius</italic>
), the shifting baseline concept is applicable to describe this shift towards the description of current reference condition differing from those prevailing in rivers before the late nineteenth century.</p>
</sec>
<sec id="Sec17">
<title>Past historical anthropogenic alteration of fish assemblages</title>
<p>In contrast, the brown trout
<italic>S. trutta</italic>
was overestimated by SDM within each of the four studied areas. It is also the only species for which AUC estimated based on historical data were lower than AUC estimated on the present data used to calibrate SDM. For almost a century, the European brown trout populations have been largely affected by stocking because of fishery interest (Bagliniere
<xref ref-type="bibr" rid="CR3">1991</xref>
). This is one potential explanation for its increased occurrence nowadays compared to the nineteenth century. In addition, this species is classified as highly intolerant to human disturbances (stenothermic, oxygen depletion intolerant and reproducing only in fast-flowing habitat); it is underrepresented when degraded ecological conditions prevail (Pont et al.
<xref ref-type="bibr" rid="CR50">2006</xref>
; Noble et al.
<xref ref-type="bibr" rid="CR44">2007</xref>
). Such an interpretation could also be considered for
<italic>T. thymallus</italic>
, another well-known intolerant species in the Rhône catchment (R-ALPS, R-VALL, R-SAON). The overestimation of the occurrence of these two species could then be related to historical anthropogenic alterations of the studied rivers.</p>
<p>Such a possible impact of anthropogenic pressures can be analyzed by comparing the ability of our SDM to correctly predict the historical fish assemblages between the four studied areas. The high value of the determination coefficients of the regressions between OBS and EXP for D-SALZ and R-ALPS demonstrated that our models were able to correctly describe the structure of the fish assemblages in these two areas. Forecasted fish assemblages were probably not far from the fish assemblage that could be expected in the absence of significant local anthropogenic pressures. In contrast, the lower quality of the linear regressions for R-VALL and R-SAON could be interpreted as an impact of anthropogenic disturbances affecting the fish assemblage (Oberdorff et al.
<xref ref-type="bibr" rid="CR45">2001</xref>
). In addition, in the case of R-SAON, the significant differences of the slope and the intercept of the regression line from zero and one highlight the important deviation of the fish assemblage from the expected one in the absence of major human disturbance. At the end of the nineteenth century, the R-VALL and R-SAON catchments were characterized by high human densities and the dominance of cropland, whereas the two alpine areas D-SALZ and R-ALPS were less human-impacted (Goldewijk et al.
<xref ref-type="bibr" rid="CR19">2010</xref>
). The historical maps describing the R-SAON area reveal the presence of numerous ponds and canals, and several cases of water pollution are described (Hesse and Paris
<xref ref-type="bibr" rid="CR29">1924</xref>
). Such altered ecological conditions could explain the SDM underestimation of the occurrences of the two tolerant and slow-flowing species
<italic>P. fluviatilis</italic>
and
<italic>R. rutilus</italic>
in R-VALL and R-SAON (Noble et al.
<xref ref-type="bibr" rid="CR44">2007</xref>
), whereas the observed occurrences of the intolerant species
<italic>S. trutta</italic>
and
<italic>T. thymallus</italic>
are much lower than expected. Finally, note that four of the seven fish maps from R-VALL and R-SAON have been edited after the Second World War. In contrast, the D_SALZ map and three of the six fish maps for R-ALPS were edited before the end of the First World War. Accordingly, our results demonstrate the increase of anthropogenic impacts and the degradation of fish communities during the first half of the twentieth century.</p>
</sec>
<sec id="Sec18">
<title>Influence of climate variability on long-term past and future species distribution</title>
<p>The comparison of the past expected temporal variability of the species prevalence and the associated uncertainties with the potential evolution under the applied climate scenario in the next century allows a more comprehensive discussion of the SDM prediction for the future. The prevalence of only two of the four species tested seemed to significantly change in D-SALZ (
<italic>B. barbus</italic>
and
<italic>S. trutta</italic>
). This agrees with previous results in the literature: a decrease of cold to cool-water species and the expansion of cyprinids (Buisson et al.
<xref ref-type="bibr" rid="CR6">2008</xref>
; Comte and Grenouillet
<xref ref-type="bibr" rid="CR10">2013</xref>
). Nevertheless, in the two other cases (
<italic>B. barbatula, P. phoxinus</italic>
), the uncertainties associated with the past occurrences were too large in relation to the expected future trends. Moreover, the temporal variability during the two last centuries is not trivial. For example, the prevalence of
<italic>B. barbatula</italic>
was 57 % higher during the warmer and low rainfall period 1871–1877 than during the colder and high rainfall period 1915–1922 (mean July temperature of 12.96 versus 14.8 °C, mean annual rainfall of 1,554 versus 1,338 mm). These results highlight the need to consider the past variability of species distribution when analyzing future trends in relation with global warming scenarios and to consider the uncertainties associated with SDM predictions (Buisson et al.
<xref ref-type="bibr" rid="CR5">2010</xref>
).</p>
</sec>
</sec>
<sec id="Sec19" sec-type="conclusions">
<title>Conclusion</title>
<p>The comparison between observed and predicted historical fish species distribution in four different European areas demonstrated the utility of SDM in reconstructing past fish assemblages and their long-term changes. Uncertainties associated with SDM predictions were very useful to assess the efficiency of these models. In general, the efficiency of SDM based on current fish sampling in minimally disturbed river segments to describe historical reference conditions is acceptable, especially for the upstream part of the river networks (trout zone, grayling zone). Nevertheless, for those species depending on the main channel but also on floodplain water bodies, the comparison between predicted and historically observed data showed a clear shifting baseline in reference conditions. In fact, very few naturally functioning floodplain rivers remain in Europe (Górski et al.
<xref ref-type="bibr" rid="CR22">2011</xref>
), limiting the possibilities to describe current undisturbed fish communities from large rivers. In practice, the use of the reference condition approach to assess rivers in Europe is adequate. Nonetheless, one has to consider that minimally disturbed conditions can only be taken into consideration for the main channel of rivers.</p>
<p>One could argue that reference conditions based on historical observations are more efficient. Historical data, however, do not always reflect undisturbed conditions. Our results highlight that fish assemblages were seriously altered in several areas by human activities at the turn of the twentieth century. The nineteenth century was already a period of intense human pressures within most European catchments, reflecting the dense human population, deforestation, agriculture, mining and the presence of industries (Pounds
<xref ref-type="bibr" rid="CR53">1985</xref>
; Bravard and Petts
<xref ref-type="bibr" rid="CR4">1996</xref>
; Pont et al.
<xref ref-type="bibr" rid="CR52">2009</xref>
). In addition, major changes in river morphology occurred in Europe long before the industrialization period. This, in particular, refers to deforestation and implementation of small structures (water mills) along the river course (Walter and Merritts
<xref ref-type="bibr" rid="CR60">2008</xref>
).</p>
<p>The long-term evolution of fish species distribution also depends on environmental variables acting at the large scale, such as climate. Past variability in temperature and rainfall during the two last centuries may have considerably modified the composition of fish assemblages, in particular during warmer and low rainfall periods. Using models to reconstruct the past variability of species distributions and their associated uncertainties is a major first step to more comprehensively understand the consequences of future global warming, and in particular to test whether species will be subjected to an environmental situation they never experienced in the past.</p>
<p>A more detailed analysis of the intensity of human pressures acting historically, and of the impact of climate variability, is necessary to confirm and detail our interpretations. Nonetheless, our results show the potential of SDM based on present “undisturbed sites” to analyze the historical ecological status of European rivers. In agreement with Tingley and Beissinger (
<xref ref-type="bibr" rid="CR59">2009</xref>
), we claim that historical data are of primary importance to document fish range changes in relation to human activities, environmental modifications and global warming: the keepers of historical data have crucial roles in curating data and collaborating with aquatic ecologists.</p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>This article is part of the special issue ‘Historical ecology of riverine fish in Europe’.</p>
</fn>
</fn-group>
<ack>
<p>Research for this paper was done within the DYNAFISH project with the financial support of the Austrian Science Fund (FWF): I450-B17. The study has been also supported by the French Water Agency Rhône Mediterranée Corse. Thanks are due to Michael Stachowitsch for proof-reading.</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Austin</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Species distribution models and ecological theory: a critical assessment and some possible new approaches</article-title>
<source>Ecol Model</source>
<year>2007</year>
<volume>200</volume>
<fpage>1</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="doi">10.1016/j.ecolmodel.2006.07.005</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bailey</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Kennedy</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Dervish</surname>
<given-names>MZ</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Biological assessment of freshwater ecosystems using a reference approach: comparing predicted and actual benthic invertebrate communities in Yukon streams</article-title>
<source>Freshw Biol</source>
<year>1998</year>
<volume>39</volume>
<fpage>765</fpage>
<lpage>774</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2427.1998.00317.x</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Baglinière</surname>
<given-names>JL</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Baglinière</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Maisse</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>La truite commune (Salmo trutta), son origine, son aire de répartition, ses intérêts économique et scientifique</article-title>
<source>La truite, biologie et écologie</source>
<year>1991</year>
<publisher-loc>Paris</publisher-loc>
<publisher-name>INRA/ENSA</publisher-name>
<fpage>11</fpage>
<lpage>22</lpage>
</element-citation>
</ref>
<ref id="CR4">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bravard</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Petts</surname>
<given-names>GE</given-names>
</name>
</person-group>
<source>The fluvial hydrosystems</source>
<year>1996</year>
<publisher-loc>London</publisher-loc>
<publisher-name>Chapman</publisher-name>
</element-citation>
</ref>
<ref id="CR5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buisson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Thuiller</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Casajus</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lek</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Uncertainty in ensemble forecasting of species distribution</article-title>
<source>Glob Change Biol</source>
<year>2010</year>
<volume>16</volume>
<fpage>1145</fpage>
<lpage>1157</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2486.2009.02000.x</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buisson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Thuiller</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lek</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Grenouillet</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Climate change hastens the turnover of stream fish assemblages</article-title>
<source>Glob Change Biol</source>
<year>2008</year>
<volume>14</volume>
<fpage>2232</fpage>
<lpage>2248</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2486.2008.01657.x</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carrel</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Prospecting for historical fish data from the Rhône river basin: a contribution to the assessment of reference conditions</article-title>
<source>Arch Hydrobiol</source>
<year>2002</year>
<volume>155</volume>
<fpage>273</fpage>
<lpage>290</lpage>
</element-citation>
</ref>
<ref id="CR8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Casselman</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Habitat requirements of northern pike (
<italic>Esox lucius</italic>
)</article-title>
<source>Can J Fish Aquat Sci</source>
<year>1996</year>
<volume>53</volume>
<fpage>161</fpage>
<lpage>174</lpage>
<pub-id pub-id-type="doi">10.1139/f96-019</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chimany</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Matulla</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Böhm</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hofstätter</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>A new high resolution absolute temperature grid for the Greater Alpine Region back to 1780</article-title>
<source>Int J Climatol</source>
<year>2013</year>
<volume>33</volume>
<fpage>2129</fpage>
<lpage>2141</lpage>
<pub-id pub-id-type="doi">10.1002/joc.3574</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Comte</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Grenouillet</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Do stream fish track climate change? Assessing distribution shifts in recent decades</article-title>
<source>Ecography</source>
<year>2013</year>
<volume>36</volume>
<fpage>1236</fpage>
<lpage>1246</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-0587.2013.00282.x</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crimmins</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Dobrowski</surname>
<given-names>SZ</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Abatzoglou</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Mynsberge</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Changes in climate water balance drive downhill shifts in plant species optimum elevations</article-title>
<source>Science</source>
<year>2011</year>
<volume>331</volume>
<fpage>324</fpage>
<lpage>327</lpage>
<pub-id pub-id-type="doi">10.1126/science.1199040</pub-id>
<pub-id pub-id-type="pmid">21252344</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Jager</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Vogt</surname>
<given-names>JV</given-names>
</name>
</person-group>
<article-title>Development and demonstration of a structured hydrological feature coding system for Europe</article-title>
<source>Hydrolog Sci J</source>
<year>2010</year>
<volume>55</volume>
<fpage>661</fpage>
<lpage>675</lpage>
<pub-id pub-id-type="doi">10.1080/02626667.2010.490786</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dormann</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Elith</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bacher</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Buchmann</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Carl</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Carré</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Marquéz</surname>
<given-names>JRG</given-names>
</name>
<name>
<surname>Gruber</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lafourcade</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Leitão</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Münkemüller</surname>
<given-names>T</given-names>
</name>
<name>
<surname>McClean</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Osborne</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Reineking</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Schröder</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Skidmore</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Zurell</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lautenbach</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Collinearity: a review of methods to deal with it and a simulation study evaluating their performance</article-title>
<source>Ecography</source>
<year>2013</year>
<volume>36</volume>
<fpage>27</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-0587.2012.07348.x</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dudgeon</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Arthington</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Gessner</surname>
<given-names>MO</given-names>
</name>
<name>
<surname>Kawabata</surname>
<given-names>Z-I</given-names>
</name>
<name>
<surname>Knowler</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Leveque</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Naiman</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Prieur-Richard</surname>
<given-names>A-H</given-names>
</name>
<name>
<surname>Soto</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Stiassny</surname>
<given-names>MLJ</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Freshwater biodiversity: importance, threats, status and conservation challenges</article-title>
<source>Biol Rev</source>
<year>2006</year>
<volume>81</volume>
<fpage>163</fpage>
<lpage>182</lpage>
<pub-id pub-id-type="doi">10.1017/S1464793105006950</pub-id>
<pub-id pub-id-type="pmid">16336747</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<mixed-citation publication-type="other">Faraway JJ (2006) Extending the linear model with R. Generalized linear, mixed effects and nonparametric regression models. Chapman & Hall/CRC, Boca Raton</mixed-citation>
</ref>
<ref id="CR16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fausch</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Lyons</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Karr</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Angermeier</surname>
<given-names>PL</given-names>
</name>
</person-group>
<article-title>Fish communities as indicators of environmental degradation</article-title>
<source>Am Fish Soc Symp</source>
<year>1990</year>
<volume>8</volume>
<fpage>123</fpage>
<lpage>144</lpage>
</element-citation>
</ref>
<ref id="CR17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fiedling</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Bell</surname>
<given-names>JF</given-names>
</name>
</person-group>
<article-title>A review of methods for the assessment of prediction error in conservation presence/absence models</article-title>
<source>Environ Conserv</source>
<year>1997</year>
<volume>24</volume>
<fpage>38</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="doi">10.1017/S0376892997000088</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flato</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Boer</surname>
<given-names>GJ</given-names>
</name>
</person-group>
<article-title>Warming asymmetry in climate change simulations</article-title>
<source>Geophys Res Lett</source>
<year>2001</year>
<volume>28</volume>
<fpage>195</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="doi">10.1029/2000GL012121</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldewijk</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Beusen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>van Drecht</surname>
<given-names>G</given-names>
</name>
<name>
<surname>de Vos</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years</article-title>
<source>Glob Ecol Biogeogr</source>
<year>2010</year>
<volume>587</volume>
<fpage>1</fpage>
<lpage>14</lpage>
</element-citation>
</ref>
<ref id="CR20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gordon</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Senior</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Banks</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gregory</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Johns</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>JFB</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments</article-title>
<source>Clim Dyn</source>
<year>2000</year>
<volume>16</volume>
<fpage>147</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="doi">10.1007/s003820050010</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Gordon</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>McMahon</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Finlayson</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Gippel</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Nathan</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<source>Stream hydrology. An introduction for ecologists</source>
<year>2004</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Wiley</publisher-name>
</element-citation>
</ref>
<ref id="CR22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Górski</surname>
<given-names>K</given-names>
</name>
<name>
<surname>De Leeuw</surname>
<given-names>JJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Fish recruitment in a large, temperate floodplain: the importance of annual flooding, temperature and habitat complexity</article-title>
<source>Freshw Biol</source>
<year>2011</year>
<volume>56</volume>
<fpage>2210</fpage>
<lpage>2225</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2427.2011.02647.x</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graham</surname>
<given-names>MH</given-names>
</name>
</person-group>
<article-title>Confronting multicollinearity in ecological multiple regression</article-title>
<source>Ecology</source>
<year>2003</year>
<volume>84</volume>
<fpage>2809</fpage>
<lpage>2815</lpage>
<pub-id pub-id-type="doi">10.1890/02-3114</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graham</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Harrod</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Implications of climate change for the fishes of the British Isles</article-title>
<source>J Fish Biol</source>
<year>2009</year>
<volume>74</volume>
<fpage>1143</fpage>
<lpage>1205</lpage>
<pub-id pub-id-type="doi">10.1111/j.1095-8649.2009.02180.x</pub-id>
<pub-id pub-id-type="pmid">20735625</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<mixed-citation publication-type="other">Haidvogl G, Galik A, Pont D (2013a) Vers une histoire de la biodiversité piscicole du Danube autrichien: apports croisés des sources archéologiques et écrites. Revue du Nord—Collection Art et Archéologie 19 (Special Issue):131–142</mixed-citation>
</ref>
<ref id="CR26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haidvogl</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lajus</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pont</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jungwirth</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lajus</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Reconstructing historical changes of riverine fish: a classification of written sources based on the examples of the Austrian Danube and North-Russian Rivers</article-title>
<source>Ecol Freshw Fish</source>
<year>2013</year>
</element-citation>
</ref>
<ref id="CR27">
<mixed-citation publication-type="other">Haidvogl G, Dolak H, Hohensimmer S, Pont D (2015) Long-term evolution of fish communities in European mountainous rivers: past log driving effects, river management and species introduction (Salzach River, Danube). Aquat Sci (accepted, this issue)</mixed-citation>
</ref>
<ref id="CR28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harding</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Benfield</surname>
<given-names>EF</given-names>
</name>
<name>
<surname>Bolstad</surname>
<given-names>PV</given-names>
</name>
<name>
<surname>Helfman</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>EBD</given-names>
</name>
</person-group>
<article-title>Stream biodiversity: the ghost of land use past</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1998</year>
<volume>95</volume>
<fpage>14843</fpage>
<lpage>14847</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.95.25.14843</pub-id>
<pub-id pub-id-type="pmid">9843977</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<mixed-citation publication-type="other">Hesse E, Paris P (1924) Cours d’eau de la Côte-d’Or—Dossiers piscicoles—1. Bassins de l’Ouche et de la Vouge. Texte et Carte au 1/100 000, Imprimerie Allier Père et Fils, Grenoble</mixed-citation>
</ref>
<ref id="CR30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hirst</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>O’Farrell</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>HB</given-names>
</name>
</person-group>
<article-title>Comparison of a coupled ocean–atmosphere model with and without oceanic eddy-induced advection. 1. Ocean spin-up and control integrations</article-title>
<source>J Clim</source>
<year>2000</year>
<volume>13</volume>
<fpage>139</fpage>
<lpage>163</lpage>
<pub-id pub-id-type="doi">10.1175/1520-0442(2000)013<0139:COACOA>2.0.CO;2</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hosmer</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Lemeshow</surname>
<given-names>S</given-names>
</name>
</person-group>
<source>Applied logistic regression</source>
<year>2000</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Wiley</publisher-name>
</element-citation>
</ref>
<ref id="CR32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huet</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Profiles and biology of western European streams as related to fish management</article-title>
<source>Trans Am Fish Soc</source>
<year>1959</year>
<volume>88</volume>
<fpage>155</fpage>
<lpage>163</lpage>
<pub-id pub-id-type="doi">10.1577/1548-8659(1959)88[155:PABOWE]2.0.CO;2</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kirchhofer</surname>
<given-names>A</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Kirchhofer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hefti</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Fish conservation in Switzerland: three case-studies</article-title>
<source>Conservation of endangered freshwater fish in Europe</source>
<year>1996</year>
<publisher-loc>Basel</publisher-loc>
<publisher-name>Birkhauser</publisher-name>
<fpage>135</fpage>
<lpage>145</lpage>
</element-citation>
</ref>
<ref id="CR34">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kottelat</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Freyhof</surname>
<given-names>J</given-names>
</name>
</person-group>
<source>Handbook of European freshwater fishes</source>
<year>2007</year>
<publisher-loc>Cornol</publisher-loc>
<publisher-name>Publications Kottelat</publisher-name>
</element-citation>
</ref>
<ref id="CR35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Labay</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Sissel</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hendrickson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>FD</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Assessing historical fish community composition using surveys, historical collection data, and species distribution models</article-title>
<source>PLoS One</source>
<year>2011</year>
<volume>6</volume>
<fpage>e25145</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0025145</pub-id>
<pub-id pub-id-type="pmid">21966438</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lahoz-Montfort</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Guillera-Arroita</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wintle</surname>
<given-names>BA</given-names>
</name>
</person-group>
<article-title>Imperfect detection impacts the performance of species distribution models</article-title>
<source>Glob Ecol Biogeogr</source>
<year>2014</year>
<volume>23</volume>
<fpage>504</fpage>
<lpage>515</lpage>
<pub-id pub-id-type="doi">10.1111/geb.12138</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lasalle</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Rochard</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Impact of twenty-first century climate change on diadromous fish spread over Europe, North Africa and the Middle East</article-title>
<source>Glob Change Biol</source>
<year>2009</year>
<volume>15</volume>
<fpage>1072</fpage>
<lpage>1089</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2486.2008.01794.x</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leger</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Carte piscicole du département de l’Ain avec une notice explicative</article-title>
<source>Travaux du Laboratoire d’Hydrobiologie et de Pisciculture de l’Université de Grenoble</source>
<year>1927</year>
<volume>19</volume>
<fpage>149</fpage>
<lpage>155</lpage>
</element-citation>
</ref>
<ref id="CR39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Logez</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bady</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Pont</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Modelling the habitat requirement of riverine fish species at the European scale: sensitivity to temperature and precipitation and associated uncertainty</article-title>
<source>Ecol Freshw Fish</source>
<year>2012</year>
<volume>21</volume>
<fpage>266</fpage>
<lpage>282</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-0633.2011.00545.x</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maceda-Veiga</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Monleon-Getino</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Caiola</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Casals</surname>
<given-names>F</given-names>
</name>
<name>
<surname>de Sostoa</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Changes in fish assemblages in catchments in north-eastern Spain: biodiversity, conservation status and introduced species</article-title>
<source>Fresh Biol</source>
<year>2010</year>
<volume>55</volume>
<fpage>1734</fpage>
<lpage>1746</lpage>
</element-citation>
</ref>
<ref id="CR41">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Matthews</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<source>Patterns in freshwater fish ecology</source>
<year>1998</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Chapman & Hall</publisher-name>
</element-citation>
</ref>
<ref id="CR42">
<mixed-citation publication-type="other">Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Working Paper 55, Tyndall Centre for Climate Change Research, Norwich</mixed-citation>
</ref>
<ref id="CR43">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Muhar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kainz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kaufmann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schwarz</surname>
<given-names>M</given-names>
</name>
</person-group>
<source>Ausweisung flußtypspezi-fisch erhaltener Fließgewässerabschnitte in Österreich</source>
<year>1996</year>
<publisher-loc>Wasserwirtschaftskataster</publisher-loc>
<publisher-name>Bundesministerium für Land- und Forstwirtschaft</publisher-name>
</element-citation>
</ref>
<ref id="CR44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noble</surname>
<given-names>RAA</given-names>
</name>
<name>
<surname>Cowx</surname>
<given-names>IG</given-names>
</name>
<name>
<surname>Goffaux</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kestemont</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Assessing the health of European rivers using functional ecological guilds of fish communities: standardising species classification and approaches to metric selection</article-title>
<source>Fish Manag Ecol</source>
<year>2007</year>
<volume>14</volume>
<fpage>381</fpage>
<lpage>392</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2400.2007.00575.x</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oberdorff</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Pont</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hugueny</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chessel</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment</article-title>
<source>Freshw Biol</source>
<year>2001</year>
<volume>46</volume>
<fpage>399</fpage>
<lpage>415</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2427.2001.00669.x</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ormerod</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Current issues with fish and fisheries: editor’s overview and introduction</article-title>
<source>J Appl Ecol</source>
<year>2003</year>
<volume>40</volume>
<fpage>204</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2664.2003.00824.x</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parmesan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Yohe</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>A globally coherent fingerprint of climate change impacts across natural systems</article-title>
<source>Nature</source>
<year>2003</year>
<volume>421</volume>
<fpage>37</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="doi">10.1038/nature01286</pub-id>
<pub-id pub-id-type="pmid">12511946</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pauly</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Anecdotes and the shifting baseline syndrome of fisheries</article-title>
<source>TREE</source>
<year>1995</year>
<volume>10</volume>
<fpage>430</fpage>
<lpage>431</lpage>
<pub-id pub-id-type="pmid">21237093</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Petts</surname>
<given-names>GE</given-names>
</name>
</person-group>
<source>Impounded rivers. Perspectives for ecological management</source>
<year>1984</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Wiley</publisher-name>
</element-citation>
</ref>
<ref id="CR50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pont</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hugueny</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Beier</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Goffaux</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Melcher</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Noble</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Roset</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Schmutz</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages</article-title>
<source>J Appl Ecol</source>
<year>2006</year>
<volume>43</volume>
<fpage>70</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2664.2005.01126.x</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pont</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hugueny</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Oberdorff</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Modelling habitat requirement of European fishes: do species have similar responses to local and regional environmental constraints?</article-title>
<source>Can J Fish Aquat Sci</source>
<year>2005</year>
<volume>62</volume>
<fpage>163</fpage>
<lpage>173</lpage>
<pub-id pub-id-type="doi">10.1139/f04-183</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pont</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Piégay</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Farinetti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Allain</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Landon</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Liébault</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dumont</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Richard-Mazet</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Conceptual framework and interdisciplinary approach for the sustainable management of gravel-bed rivers: the case of the Drôme River basin (S.E. France)</article-title>
<source>Aquat Ecol</source>
<year>2009</year>
<volume>71</volume>
<fpage>356</fpage>
<lpage>370</lpage>
</element-citation>
</ref>
<ref id="CR53">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Pounds</surname>
<given-names>NJG</given-names>
</name>
</person-group>
<source>An historical geography of Europe</source>
<year>1985</year>
<publisher-loc>Cambridge</publisher-loc>
<publisher-name>Cambridge University Press</publisher-name>
</element-citation>
</ref>
<ref id="CR54">
<mixed-citation publication-type="other">Rinne J, Hughes R, Calamusso B (2005) Historical changes in large river fish assemblages of the Americas. Changes in fish community structures in large USA rivers. American Fisheries Society, Phoenix</mixed-citation>
</ref>
<ref id="CR55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schiemer</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Fish as indicators for the assessment of the ecological integrity of large rivers</article-title>
<source>Hydrobiologia</source>
<year>2000</year>
<volume>422</volume>
<issue>423</issue>
<fpage>271</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="doi">10.1023/A:1017086703551</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schurer</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Hegerl</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Me</surname>
<given-names>Mann</given-names>
</name>
<name>
<surname>Tett</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Phipps</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Separating forced from chaotic climate variability over the past millennium</article-title>
<source>J Clim</source>
<year>2013</year>
<volume>26</volume>
<fpage>6954</fpage>
<lpage>6973</lpage>
<pub-id pub-id-type="doi">10.1175/JCLI-D-12-00826.1</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Swets</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Measuring the accuracy of diagnostic systems</article-title>
<source>Science</source>
<year>1988</year>
<volume>240</volume>
<fpage>1285</fpage>
<lpage>1293</lpage>
<pub-id pub-id-type="doi">10.1126/science.3287615</pub-id>
<pub-id pub-id-type="pmid">3287615</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stoddard</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Larsen</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Hawkins</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Norris</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Setting expectations for the ecological condition of streams: the concept of reference condition</article-title>
<source>Ecol Appl</source>
<year>2006</year>
<volume>16</volume>
<fpage>1267</fpage>
<lpage>1276</lpage>
<pub-id pub-id-type="doi">10.1890/1051-0761(2006)016[1267:SEFTEC]2.0.CO;2</pub-id>
<pub-id pub-id-type="pmid">16937796</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tingley</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Beissinger</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Detecting range shifts from historical species occurrences: new perspectives on old data</article-title>
<source>TREE</source>
<year>2009</year>
<volume>24</volume>
<fpage>625</fpage>
<lpage>633</lpage>
<pub-id pub-id-type="pmid">19683829</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Walter</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Merritts</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Natural streams and the legacy of water-powered mills</article-title>
<source>Science</source>
<year>2008</year>
<volume>319</volume>
<fpage>299</fpage>
<lpage>304</lpage>
<pub-id pub-id-type="doi">10.1126/science.1151716</pub-id>
<pub-id pub-id-type="pmid">18202284</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webb</surname>
<given-names>BW</given-names>
</name>
</person-group>
<article-title>Trends in water stream and river temperature</article-title>
<source>Hydrol Process</source>
<year>1996</year>
<volume>10</volume>
<fpage>205</fpage>
<lpage>226</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1099-1085(199602)10:2<205::AID-HYP358>3.0.CO;2-1</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winter</surname>
<given-names>HV</given-names>
</name>
<name>
<surname>Lapinska</surname>
<given-names>M</given-names>
</name>
<name>
<surname>de Leeuw</surname>
<given-names>JJ</given-names>
</name>
</person-group>
<article-title>The river Vecht fish community after rehabilitation measures: a comparison to the historical situation by using the river Biebrza as a geographical reference</article-title>
<source>River Res Appl</source>
<year>2009</year>
<volume>25</volume>
<fpage>16</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="doi">10.1002/rra.1081</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<mixed-citation publication-type="other">Wolter C, Bischoff A, Wysujack K (2005) The use of historical data to characterize fish-faunistic reference conditions for large lowland rivers in northern Germany. In: Buijse AD, Klijn F, Leuven RSEW, Middelkoop H, Schiemer F, Thorp JH, Wolfert HP (eds) Rehabilitating large regulated rivers. Arch Hydrobiol Suppl Large Riv 15:37–51</mixed-citation>
</ref>
<ref id="CR64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Worthington</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kemp</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Osborne</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Howes</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Easton</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Former distribution and decline of the burbot (
<italic>Lota lota</italic>
) in the UK</article-title>
<source>Aquat Cons</source>
<year>2010</year>
<volume>20</volume>
<fpage>371</fpage>
<lpage>377</lpage>
<pub-id pub-id-type="doi">10.1002/aqc.1113</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xenopoulos</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Lodge</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Alcamo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Marker</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schulze</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Van Vuuren</surname>
<given-names>DP</given-names>
</name>
</person-group>
<article-title>Scenarios of freshwater fish extinctions from climate change and water withdrawal</article-title>
<source>Glob Change Biol</source>
<year>2005</year>
<volume>11</volume>
<fpage>1557</fpage>
<lpage>1564</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2486.2005.001008.x</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Eau/explor/LotaV3/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000039 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000039 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Eau
   |area=    LotaV3
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4525805
   |texte=   Historical change in fish species distribution: shifting reference conditions and global warming effects
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26257502" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LotaV3 

Wicri

This area was generated with Dilib version V0.6.39.
Data generation: Fri May 20 09:58:26 2022. Site generation: Fri May 20 10:24:07 2022