Serveur d'exploration Lota lota

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0000139 ( Pmc/Corpus ); précédent : 0000138; suivant : 0000140 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species</title>
<author>
<name sortKey="Free, Christopher M" sort="Free, Christopher M" uniqKey="Free C" first="Christopher M." last="Free">Christopher M. Free</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ, 08901, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jensen, Olaf P" sort="Jensen, Olaf P" uniqKey="Jensen O" first="Olaf P." last="Jensen">Olaf P. Jensen</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ, 08901, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mendsaikhan, Bud" sort="Mendsaikhan, Bud" uniqKey="Mendsaikhan B" first="Bud" last="Mendsaikhan">Bud Mendsaikhan</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Institute of Geoecology, Mongolian Academy of Sciences, Baruun Selbe-15, P.O. Box 81, Ulaanbaatar, 15170, Mongolia</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26625154</idno>
<idno type="pmc">4666464</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666464</idno>
<idno type="RBID">PMC:4666464</idno>
<idno type="doi">10.1371/journal.pone.0143960</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000013</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000013</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species</title>
<author>
<name sortKey="Free, Christopher M" sort="Free, Christopher M" uniqKey="Free C" first="Christopher M." last="Free">Christopher M. Free</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ, 08901, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jensen, Olaf P" sort="Jensen, Olaf P" uniqKey="Jensen O" first="Olaf P." last="Jensen">Olaf P. Jensen</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ, 08901, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mendsaikhan, Bud" sort="Mendsaikhan, Bud" uniqKey="Mendsaikhan B" first="Bud" last="Mendsaikhan">Bud Mendsaikhan</name>
<affiliation>
<nlm:aff id="aff002">
<addr-line>Institute of Geoecology, Mongolian Academy of Sciences, Baruun Selbe-15, P.O. Box 81, Ulaanbaatar, 15170, Mongolia</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake’s fish populations, especially that of the endangered endemic Hovsgol grayling (
<italic>Thymallus nigrescens</italic>
). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3–4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (
<italic>Lota lota</italic>
) showed a significant decrease in population abundance from 2009–2013. However, grayling, burbot, and roach (
<italic>Rutilus rutilus</italic>
) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11–15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Agnew, Dj" uniqKey="Agnew D">DJ Agnew</name>
</author>
<author>
<name sortKey="Pearce, J" uniqKey="Pearce J">J Pearce</name>
</author>
<author>
<name sortKey="Pramod, G" uniqKey="Pramod G">G Pramod</name>
</author>
<author>
<name sortKey="Peatman, T" uniqKey="Peatman T">T Peatman</name>
</author>
<author>
<name sortKey="Watson, R" uniqKey="Watson R">R Watson</name>
</author>
<author>
<name sortKey="Beddington, Jr" uniqKey="Beddington J">JR Beddington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Renzetti, Cm" uniqKey="Renzetti C">CM Renzetti</name>
</author>
<author>
<name sortKey="Lee, Rm" uniqKey="Lee R">RM Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="James, An" uniqKey="James A">AN James</name>
</author>
<author>
<name sortKey="Gaston, Kj" uniqKey="Gaston K">KJ Gaston</name>
</author>
<author>
<name sortKey="Balmford, A" uniqKey="Balmford A">A Balmford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gavin, Mc" uniqKey="Gavin M">MC Gavin</name>
</author>
<author>
<name sortKey="Solomon, Jn" uniqKey="Solomon J">JN Solomon</name>
</author>
<author>
<name sortKey="Blank, Sg" uniqKey="Blank S">SG Blank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bergseth, Bj" uniqKey="Bergseth B">BJ Bergseth</name>
</author>
<author>
<name sortKey="Russ, Gr" uniqKey="Russ G">GR Russ</name>
</author>
<author>
<name sortKey="Cinner, Je" uniqKey="Cinner J">JE Cinner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guard, M" uniqKey="Guard M">M Guard</name>
</author>
<author>
<name sortKey="Masaiganah, M" uniqKey="Masaiganah M">M Masaiganah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crawford, Br" uniqKey="Crawford B">BR Crawford</name>
</author>
<author>
<name sortKey="Siahainenia, A" uniqKey="Siahainenia A">A Siahainenia</name>
</author>
<author>
<name sortKey="Rotinsulu, C" uniqKey="Rotinsulu C">C Rotinsulu</name>
</author>
<author>
<name sortKey="Sukmara, A" uniqKey="Sukmara A">A Sukmara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chiappone, M" uniqKey="Chiappone M">M Chiappone</name>
</author>
<author>
<name sortKey="Swanson, Dw" uniqKey="Swanson D">DW Swanson</name>
</author>
<author>
<name sortKey="Miller, Sl" uniqKey="Miller S">SL Miller</name>
</author>
<author>
<name sortKey="Dienes, H" uniqKey="Dienes H">H Dienes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cinner, Je" uniqKey="Cinner J">JE Cinner</name>
</author>
<author>
<name sortKey="Marnane, Mj" uniqKey="Marnane M">MJ Marnane</name>
</author>
<author>
<name sortKey="Mcclanahan, Tr" uniqKey="Mcclanahan T">TR McClanahan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cinner, Je" uniqKey="Cinner J">JE Cinner</name>
</author>
<author>
<name sortKey="Marnane, Mj" uniqKey="Marnane M">MJ Marnane</name>
</author>
<author>
<name sortKey="Mcclanahan, Tr" uniqKey="Mcclanahan T">TR McClanahan</name>
</author>
<author>
<name sortKey="Almany, Gr" uniqKey="Almany G">GR Almany</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcclanahan, Tr" uniqKey="Mcclanahan T">TR McClanahan</name>
</author>
<author>
<name sortKey="Marnane, Mj" uniqKey="Marnane M">MJ Marnane</name>
</author>
<author>
<name sortKey="Cinner, Je" uniqKey="Cinner J">JE Cinner</name>
</author>
<author>
<name sortKey="Kiene, We" uniqKey="Kiene W">WE Kiene</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcclanahan, Tr" uniqKey="Mcclanahan T">TR McClanahan</name>
</author>
<author>
<name sortKey="Graham, N" uniqKey="Graham N">N Graham</name>
</author>
<author>
<name sortKey="Wilson, Sk" uniqKey="Wilson S">SK Wilson</name>
</author>
<author>
<name sortKey="Letourneur, Y" uniqKey="Letourneur Y">Y Letourneur</name>
</author>
<author>
<name sortKey="Fisher, R" uniqKey="Fisher R">R Fisher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bleher, B" uniqKey="Bleher B">B Bleher</name>
</author>
<author>
<name sortKey="Uster, D" uniqKey="Uster D">D Uster</name>
</author>
<author>
<name sortKey="Bergsdorf, T" uniqKey="Bergsdorf T">T Bergsdorf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williamson, Dh" uniqKey="Williamson D">DH Williamson</name>
</author>
<author>
<name sortKey="Ceccarelli, Dm" uniqKey="Ceccarelli D">DM Ceccarelli</name>
</author>
<author>
<name sortKey="Evans, Rd" uniqKey="Evans R">RD Evans</name>
</author>
<author>
<name sortKey="Hill, Jk" uniqKey="Hill J">JK Hill</name>
</author>
<author>
<name sortKey="Russ, Gr" uniqKey="Russ G">GR Russ</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jachmann, H" uniqKey="Jachmann H">H Jachmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ocock, J" uniqKey="Ocock J">J Ocock</name>
</author>
<author>
<name sortKey="Baasanjav, G" uniqKey="Baasanjav G">G Baasanjav</name>
</author>
<author>
<name sortKey="Baillie, Jem" uniqKey="Baillie J">JEM Baillie</name>
</author>
<author>
<name sortKey="Erdenebat, M" uniqKey="Erdenebat M">M Erdenebat</name>
</author>
<author>
<name sortKey="Kottelat, M" uniqKey="Kottelat M">M Kottelat</name>
</author>
<author>
<name sortKey="Mendsaikhan, B" uniqKey="Mendsaikhan B">B Mendsaikhan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ocock, J" uniqKey="Ocock J">J Ocock</name>
</author>
<author>
<name sortKey="Baasanjav, G" uniqKey="Baasanjav G">G Baasanjav</name>
</author>
<author>
<name sortKey="Baillie, Jem" uniqKey="Baillie J">JEM Baillie</name>
</author>
<author>
<name sortKey="Erdenebat, M" uniqKey="Erdenebat M">M Erdenebat</name>
</author>
<author>
<name sortKey="Kottelat, M" uniqKey="Kottelat M">M Kottelat</name>
</author>
<author>
<name sortKey="Mendsaikhan, B" uniqKey="Mendsaikhan B">B Mendsaikhan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goulden, Ce" uniqKey="Goulden C">CE Goulden</name>
</author>
<author>
<name sortKey="Sitnikova, T" uniqKey="Sitnikova T">T Sitnikova</name>
</author>
<author>
<name sortKey="Gelhaus, J" uniqKey="Gelhaus J">J Gelhaus</name>
</author>
<author>
<name sortKey="Boldgiv, B" uniqKey="Boldgiv B">B Boldgiv</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahrenstorff, Td" uniqKey="Ahrenstorff T">TD Ahrenstorff</name>
</author>
<author>
<name sortKey="Jensen, Op" uniqKey="Jensen O">OP Jensen</name>
</author>
<author>
<name sortKey="Weidel, Bc" uniqKey="Weidel B">BC Weidel</name>
</author>
<author>
<name sortKey="Mendsaikhan, B" uniqKey="Mendsaikhan B">B Mendsaikhan</name>
</author>
<author>
<name sortKey="Hrabik, Tr" uniqKey="Hrabik T">TR Hrabik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sideleva, Vg" uniqKey="Sideleva V">VG Sideleva</name>
</author>
<author>
<name sortKey="Goulden, Ce" uniqKey="Goulden C">CE Goulden</name>
</author>
<author>
<name sortKey="Sitnikova, T" uniqKey="Sitnikova T">T Sitnikova</name>
</author>
<author>
<name sortKey="Gelhaus, J" uniqKey="Gelhaus J">J Gelhaus</name>
</author>
<author>
<name sortKey="Boldgiv, B" uniqKey="Boldgiv B">B Boldgiv</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Free, Cm" uniqKey="Free C">CM Free</name>
</author>
<author>
<name sortKey="Jensen, Op" uniqKey="Jensen O">OP Jensen</name>
</author>
<author>
<name sortKey="Mason, Sa" uniqKey="Mason S">SA Mason</name>
</author>
<author>
<name sortKey="Eriksen, M" uniqKey="Eriksen M">M Eriksen</name>
</author>
<author>
<name sortKey="Williamson, Nj" uniqKey="Williamson N">NJ Williamson</name>
</author>
<author>
<name sortKey="Boldgiv, B" uniqKey="Boldgiv B">B Boldgiv</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Atkinson, R" uniqKey="Atkinson R">R Atkinson</name>
</author>
<author>
<name sortKey="Flint, J" uniqKey="Flint J">J Flint</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcclenachan, L" uniqKey="Mcclenachan L">L McClenachan</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hilborn, R" uniqKey="Hilborn R">R Hilborn</name>
</author>
<author>
<name sortKey="Walters, Cj" uniqKey="Walters C">CJ Walters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kenchington, Tj" uniqKey="Kenchington T">TJ Kenchington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, S" uniqKey="Zhou S">S Zhou</name>
</author>
<author>
<name sortKey="Yin, S" uniqKey="Yin S">S Yin</name>
</author>
<author>
<name sortKey="Thorson, Jt" uniqKey="Thorson J">JT Thorson</name>
</author>
<author>
<name sortKey="Smith, Adm" uniqKey="Smith A">ADM Smith</name>
</author>
<author>
<name sortKey="Fuller, M" uniqKey="Fuller M">M Fuller</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donohue, Mj" uniqKey="Donohue M">MJ Donohue</name>
</author>
<author>
<name sortKey="Boland, Rc" uniqKey="Boland R">RC Boland</name>
</author>
<author>
<name sortKey="Sramek, Cm" uniqKey="Sramek C">CM Sramek</name>
</author>
<author>
<name sortKey="Antonelis, Ga" uniqKey="Antonelis G">GA Antonelis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauer, Lj" uniqKey="Bauer L">LJ Bauer</name>
</author>
<author>
<name sortKey="Kendall, Ms" uniqKey="Kendall M">MS Kendall</name>
</author>
<author>
<name sortKey="Jeffrey, Cf" uniqKey="Jeffrey C">CF Jeffrey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Solomon, J" uniqKey="Solomon J">J Solomon</name>
</author>
<author>
<name sortKey="Jacobson, Sk" uniqKey="Jacobson S">SK Jacobson</name>
</author>
<author>
<name sortKey="Wald, Kd" uniqKey="Wald K">KD Wald</name>
</author>
<author>
<name sortKey="Gavin, M" uniqKey="Gavin M">M Gavin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomas, As" uniqKey="Thomas A">AS Thomas</name>
</author>
<author>
<name sortKey="Gavin, Mc" uniqKey="Gavin M">MC Gavin</name>
</author>
<author>
<name sortKey="Milfont, Tl" uniqKey="Milfont T">TL Milfont</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mann, Bq" uniqKey="Mann B">BQ Mann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolter, F" uniqKey="Wolter F">F Wolter</name>
</author>
<author>
<name sortKey="Preisendorfer, P" uniqKey="Preisendorfer P">P Preisendörfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jupiter, Sd" uniqKey="Jupiter S">SD Jupiter</name>
</author>
<author>
<name sortKey="Egli, Dp" uniqKey="Egli D">DP Egli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fisher, Rj" uniqKey="Fisher R">RJ Fisher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warner, Sl" uniqKey="Warner S">SL Warner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Jd" uniqKey="Miller J">JD Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blank, Sg" uniqKey="Blank S">SG Blank</name>
</author>
<author>
<name sortKey="Gavin, Mc" uniqKey="Gavin M">MC Gavin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="St John, Fav" uniqKey="St John F">FAV St John</name>
</author>
<author>
<name sortKey="Edwards Jones, G" uniqKey="Edwards Jones G">G Edwards-Jones</name>
</author>
<author>
<name sortKey="Gibbons, Jm" uniqKey="Gibbons J">JM Gibbons</name>
</author>
<author>
<name sortKey="Jones, Jpg" uniqKey="Jones J">JPG Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nuno, A" uniqKey="Nuno A">A Nuno</name>
</author>
<author>
<name sortKey="St John, Fa" uniqKey="St John F">FA St John</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keane, A" uniqKey="Keane A">A Keane</name>
</author>
<author>
<name sortKey="Jones, Jp" uniqKey="Jones J">JP Jones</name>
</author>
<author>
<name sortKey="Edwards Jones, G" uniqKey="Edwards Jones G">G Edwards-Jones</name>
</author>
<author>
<name sortKey="Milner Gulland, Ej" uniqKey="Milner Gulland E">EJ Milner-Gulland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jensen, Op" uniqKey="Jensen O">OP Jensen</name>
</author>
<author>
<name sortKey="Gilroy, Dj" uniqKey="Gilroy D">DJ Gilroy</name>
</author>
<author>
<name sortKey="Hogan, Z" uniqKey="Hogan Z">Z Hogan</name>
</author>
<author>
<name sortKey="Allen, Bc" uniqKey="Allen B">BC Allen</name>
</author>
<author>
<name sortKey="Hrabik, Tr" uniqKey="Hrabik T">TR Hrabik</name>
</author>
<author>
<name sortKey="Weidel, Bc" uniqKey="Weidel B">BC Weidel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Northcote, Tg" uniqKey="Northcote T">TG Northcote</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roberts, Bc" uniqKey="Roberts B">BC Roberts</name>
</author>
<author>
<name sortKey="White, Rg" uniqKey="White R">RG White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dagvadorj, D" uniqKey="Dagvadorj D">D Dagvadorj</name>
</author>
<author>
<name sortKey="Natsagdorj, L" uniqKey="Natsagdorj L">L Natsagdorj</name>
</author>
<author>
<name sortKey="Dorjpurev, J" uniqKey="Dorjpurev J">J Dorjpurev</name>
</author>
<author>
<name sortKey="Namkhainyam, B" uniqKey="Namkhainyam B">B Namkhainyam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stocker, Tf" uniqKey="Stocker T">TF Stocker</name>
</author>
<author>
<name sortKey="Qin, D" uniqKey="Qin D">D Qin</name>
</author>
<author>
<name sortKey="Plattner, Gk" uniqKey="Plattner G">GK Plattner</name>
</author>
<author>
<name sortKey="Tignor, M" uniqKey="Tignor M">M Tignor</name>
</author>
<author>
<name sortKey="Allen, Sk" uniqKey="Allen S">SK Allen</name>
</author>
<author>
<name sortKey="Boschung, J" uniqKey="Boschung J">J Boschung</name>
</author>
<author>
<name sortKey="Nauels, A" uniqKey="Nauels A">A Nauels</name>
</author>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y Xia</name>
</author>
<author>
<name sortKey="Bex, V" uniqKey="Bex V">V Bex</name>
</author>
<author>
<name sortKey="Midgley, Pm" uniqKey="Midgley P">PM Midgley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Young, T" uniqKey="Young T">T Young</name>
</author>
<author>
<name sortKey="Jensen, Op" uniqKey="Jensen O">OP Jensen</name>
</author>
<author>
<name sortKey="Weidel, Bc" uniqKey="Weidel B">BC Weidel</name>
</author>
<author>
<name sortKey="Chandra, S" uniqKey="Chandra S">S Chandra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Batima, P" uniqKey="Batima P">P Batima</name>
</author>
<author>
<name sortKey="Natsagdorj, L" uniqKey="Natsagdorj L">L Natsagdorj</name>
</author>
<author>
<name sortKey="Batnasan, N" uniqKey="Batnasan N">N Batnasan</name>
</author>
<author>
<name sortKey="Leary, N" uniqKey="Leary N">N Leary</name>
</author>
<author>
<name sortKey="Conde, C" uniqKey="Conde C">C Conde</name>
</author>
<author>
<name sortKey="Kulkarni, J" uniqKey="Kulkarni J">J Kulkarni</name>
</author>
<author>
<name sortKey="Nyong, A" uniqKey="Nyong A">A Nyong</name>
</author>
<author>
<name sortKey="Pulhin, J" uniqKey="Pulhin J">J Pulhin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruun, O" uniqKey="Bruun O">O Bruun</name>
</author>
<author>
<name sortKey="Odgaard, O" uniqKey="Odgaard O">O Odgaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Myagmarsuren, D" uniqKey="Myagmarsuren D">D Myagmarsuren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Then, Ay" uniqKey="Then A">AY Then</name>
</author>
<author>
<name sortKey="Hoenig, Jm" uniqKey="Hoenig J">JM Hoenig</name>
</author>
<author>
<name sortKey="Hall, Ng" uniqKey="Hall N">NG Hall</name>
</author>
<author>
<name sortKey="Hewitt, Da" uniqKey="Hewitt D">DA Hewitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gunderson, D" uniqKey="Gunderson D">D Gunderson</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26625154</article-id>
<article-id pub-id-type="pmc">4666464</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0143960</article-id>
<article-id pub-id-type="publisher-id">PONE-D-15-38035</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A Mixed-Method Approach for Quantifying Illegal Fishing and Its Impact on an Endangered Fish Species</article-title>
<alt-title alt-title-type="running-head">Quantifying Illegal Fishing and Its Impacts</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Free</surname>
<given-names>Christopher M.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref rid="cor001" ref-type="corresp">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jensen</surname>
<given-names>Olaf P.</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mendsaikhan</surname>
<given-names>Bud</given-names>
</name>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ, 08901, United States of America</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>Institute of Geoecology, Mongolian Academy of Sciences, Baruun Selbe-15, P.O. Box 81, Ulaanbaatar, 15170, Mongolia</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Travis</surname>
<given-names>Alexander J.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Cornell University College of Veterinary Medicine, UNITED STATES</addr-line>
</aff>
<author-notes>
<fn fn-type="conflict" id="coi001">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con" id="contrib001">
<p>Conceived and designed the experiments: BM CMF OPJ. Performed the experiments: BM CMF OPJ. Analyzed the data: CMF OPJ. Wrote the paper: CMF OPJ. Conducted and translated interviews: BM.</p>
</fn>
<corresp id="cor001">* E-mail:
<email>cfree@marine.rutgers.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>1</day>
<month>12</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>10</volume>
<issue>12</issue>
<elocation-id>e0143960</elocation-id>
<history>
<date date-type="received">
<day>28</day>
<month>8</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>11</day>
<month>11</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-year>2015</copyright-year>
<copyright-holder>Free et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="pone.0143960.pdf"></self-uri>
<abstract>
<p>Illegal harvest is recognized as a widespread problem in natural resource management. The use of multiple methods for quantifying illegal harvest has been widely recommended yet infrequently applied. We used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park, Mongolia and its impact on the lake’s fish populations, especially that of the endangered endemic Hovsgol grayling (
<italic>Thymallus nigrescens</italic>
). Surveys for derelict fishing gear indicate that gillnet fishing is widespread and increasing and that fishers generally use 3–4 cm mesh gillnet. Interviews with resident herders and park rangers suggest that many residents fish for subsistence during the spring grayling spawning migration and that some residents fish commercially year-round. Interviewed herders and rangers generally agree that fish population sizes are decreasing but are divided on the causes and solutions. Biological monitoring indicates that the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling. Of the five species sampled in the monitoring program, only burbot (
<italic>Lota lota</italic>
) showed a significant decrease in population abundance from 2009–2013. However, grayling, burbot, and roach (
<italic>Rutilus rutilus</italic>
) all showed significant declines in average body size, suggesting a negative fishing impact. Data-poor stock assessment methods suggest that the fishing effort equivalent to each resident family fishing 50-m of gillnet 11–15 nights per year would be sufficient to overexploit the grayling population. Results from the derelict fishing gear survey and interviews suggest that this level of effort is not implausible. Overall, we demonstrate the ability for a mixed-method approach to effectively describe an illegal fishery and suggest that these methods be used to assess illegal fishing and its impacts in other protected areas.</p>
</abstract>
<funding-group>
<funding-statement>This study was supported by the National Science Foundation (NSF), Office of International Science and Engineering (OISE), International Research Experiences for Students (IRES),
<ext-link ext-link-type="uri" xlink:href="https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=12831">https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=12831</ext-link>
, NSF-IRES OISE 1064843—OPJ; United States Agency for International Development (USAID), Partnerships for Enhanced Engagement in Research (PEER),
<ext-link ext-link-type="uri" xlink:href="http://sites.nationalacademies.org/pga/peer/index.htm">http://sites.nationalacademies.org/pga/peer/index.htm</ext-link>
, USAID-PEER Project 98—BM; American Center for Mongolian Studies (ACMS),
<ext-link ext-link-type="uri" xlink:href="http://mongoliacenter.org/field">http://mongoliacenter.org/field</ext-link>
, Field Research Fellowship—CMF; Grayling Research Trust (GRT),
<ext-link ext-link-type="uri" xlink:href="http://www.graylingresearch.org/grant">http://www.graylingresearch.org/grant</ext-link>
, Research Grant—CMF; National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS),
<ext-link ext-link-type="uri" xlink:href="http://seagrant.noaa.gov/FundingFellowships/NMFSSGFellowship.aspx">http://seagrant.noaa.gov/FundingFellowships/NMFSSGFellowship.aspx</ext-link>
, NMFS-Sea Grant Population Dynamics Fellowship – CMF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="5"></fig-count>
<table-count count="1"></table-count>
<page-count count="17"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>All relevant data are within the paper and its Supporting Information files.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>All relevant data are within the paper and its Supporting Information files.</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec001">
<title>Introduction</title>
<p>Illegal, unreported, and unregulated (IUU) fishing undermine efforts to sustainably manage fish stocks and threaten fish populations worldwide [
<xref rid="pone.0143960.ref001" ref-type="bibr">1</xref>
]. Managers must know as much as possible about the extent, character (e.g., gear types, target/bycatch species, timing, location), and motivations of illegal fishing to effectively develop and implement regulations. However, quantifying illegal fishing is inherently difficult: it is generally covert and significant incentives exist for informants to withhold information [
<xref rid="pone.0143960.ref002" ref-type="bibr">2</xref>
]. Furthermore, budget and human resource constraints often restrict efforts to monitor illegal resource use, especially in developing countries [
<xref rid="pone.0143960.ref003" ref-type="bibr">3</xref>
]. There is a need to develop inexpensive yet informative methods for quantifying illegal fishing and its impacts.</p>
<p>Indirect observation, the use of signs of illegal activity as an indicator of non-compliance, has been commonly used to characterize illegal resource use in terrestrial systems [
<xref rid="pone.0143960.ref004" ref-type="bibr">4</xref>
], but has been infrequently used in marine systems [
<xref rid="pone.0143960.ref005" ref-type="bibr">5</xref>
], and to our knowledge, has never been used in freshwater systems. In marine systems, dynamite blast craters [
<xref rid="pone.0143960.ref006" ref-type="bibr">6</xref>
,
<xref rid="pone.0143960.ref007" ref-type="bibr">7</xref>
] and derelict fishing gear [
<xref rid="pone.0143960.ref008" ref-type="bibr">8</xref>
] have been used as indicators of illegal fishing, but have generally failed to quantitatively measure non-compliance [
<xref rid="pone.0143960.ref005" ref-type="bibr">5</xref>
]. Most successful quantifications of illegal fishing compare the amount of derelict fishing gear inside and outside reserve boundaries [
<xref rid="pone.0143960.ref009" ref-type="bibr">9</xref>
<xref rid="pone.0143960.ref012" ref-type="bibr">12</xref>
], but such comparisons are of little use in places without reserves or where the areas outside reserves are undesirable to fishers. The full capacity for indirect observation to reveal rich and quantitative information about illegal fishing remains unexplored.</p>
<p>Indirect observation offers several advantages over other approaches for assessing illegal fishing. It does not require large amounts of labor, specialized equipment, or training and can be recorded during routine enforcement patrols or biological surveys [
<xref rid="pone.0143960.ref013" ref-type="bibr">13</xref>
]. Repeated surveys can reveal spatial and temporal patterns of non-compliance [
<xref rid="pone.0143960.ref008" ref-type="bibr">8</xref>
<xref rid="pone.0143960.ref010" ref-type="bibr">10</xref>
,
<xref rid="pone.0143960.ref014" ref-type="bibr">14</xref>
] that can be compared to changes in fish communities to examine the effects of illegal fishing [
<xref rid="pone.0143960.ref015" ref-type="bibr">15</xref>
]. Although indirect observation generally cannot identify specific violators or motivations for non-compliance, they can contribute to a comprehensive understanding of non-compliance when combined with other methods, such as direct questioning [
<xref rid="pone.0143960.ref009" ref-type="bibr">9</xref>
<xref rid="pone.0143960.ref010" ref-type="bibr">10</xref>
].</p>
<p>In this study, we used a mixed-method approach to evaluate the extent, character, and motivations of illegal gillnet fishing in Lake Hovsgol National Park (LHNP), Mongolia and its impact on the lake’s fish populations, especially that of the endangered endemic Hovsgol grayling (
<italic>Thymallus nigrescens</italic>
). Despite the closure of the park to gillnet fishing in 1992, illegal fishing is known to persist [
<xref rid="pone.0143960.ref016" ref-type="bibr">16</xref>
<xref rid="pone.0143960.ref017" ref-type="bibr">17</xref>
]. We used four complementary methods to describe this fishery and evaluate its impacts: (1) surveys for derelict fishing gear, an indirect indicator of fishing activity, to evaluate how much illegal fishing is occurring, where illegal fishing is occurring, and what gear is being used; (2) interviews with herders living within the park and park rangers to validate and contextualize the results of the surveys for derelict fishing gear; (3) biological monitoring to identify fish species vulnerable to gillnet fishing and evaluate changes in population abundance potentially caused by fishing; and (4) data-poor stock assessment methods to estimate the effort required to overexploit the Hovsgol grayling population.</p>
<p>Overall, we demonstrate the ability for a mixed-method approach to describe an illegal gillnet fishery and suggest that these methods could be used to effectively and inexpensively assess illegal fishing and its impacts in other protected areas.</p>
</sec>
<sec sec-type="materials|methods" id="sec002">
<title>Methods</title>
<sec id="sec003">
<title>Study site</title>
<p>Lake Hovsgol (51°05’50”N, 100°30’E) is located in the mountains of northern Mongolia at the southern edge of the Siberian taiga forest. It is the 19
<sup>th</sup>
largest lake in the world by volume (480 km
<sup>3</sup>
) and has a maximum depth of 262 m and surface area of 2,760 km
<sup>2</sup>
[
<xref rid="pone.0143960.ref018" ref-type="bibr">18</xref>
]. The lake was established as a National Park in 1992 and is mostly undeveloped. The majority of the resident population lives in two towns on the lakeshore: Hatgal (pop. 2,980) and Hankh (pop. 2,460; [
<xref rid="pone.0143960.ref019" ref-type="bibr">19</xref>
]). Tourist camps line the southwestern shore and herding families live intermittently along the lakeshore (
<bold>
<xref rid="pone.0143960.g001" ref-type="fig">Fig 1</xref>
</bold>
). Most of the park’s ~35,000 annual visitors enter and remain in the southern portion of the park [
<xref rid="pone.0143960.ref020" ref-type="bibr">20</xref>
].</p>
<fig id="pone.0143960.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0143960.g001</object-id>
<label>Fig 1</label>
<caption>
<title>Location of shoreline surveys for derelict fishing gear, fish population monitoring sites, and interviews with park rangers and resident herders in Lake Hovsgol National Park (LHNP), Mongolia.</title>
<p>Grey and black bars indicate the density (# km
<sup>-1</sup>
) of derelict gillnet items observed in the 2013 (n = 10) and 2014 (n = 7) surveys, respectively (note different y-axis scale for Site 10). Black site numbers indicate the seven sites where fish population monitoring surveys were conducted in 2009 and 2011–13. Solid black lines indicate the park boundary and 17 ranger districts. Five rangers from five districts (dark grey; Hankh town limits represent one district) were interviewed. Herders were interviewed at Sites 3 (n = 3), 4 (n = 3), and 6 (n = 4). Small white triangles indicate tourist camps, large black circles indicate town centers, dotted black lines indicate primitive roads, and solid gray lines indicate rivers and seasonal steams.</p>
</caption>
<graphic xlink:href="pone.0143960.g001"></graphic>
</fig>
<p>Lake Hovsgol has ten fish species, the most abundant of which, the Hovsgol grayling (
<italic>Thymallus nigrescens</italic>
), is endemic to the lake and is listed as endangered on the Mongolian Red List due to climate change and illegal fishing [
<xref rid="pone.0143960.ref016" ref-type="bibr">16</xref>
]. Hovsgol grayling are more common in littoral areas than pelagic areas and are most abundant along the western shore [
<xref rid="pone.0143960.ref021" ref-type="bibr">21</xref>
]. A portion of the grayling population spawns in tributary streams in late spring while another portion spawns in the littoral in late summer [
<xref rid="pone.0143960.ref022" ref-type="bibr">22</xref>
]. The prevalence, fidelity, and success of these spawning strategies are unknown.</p>
<p>The sparse literature on Mongolian fisheries suggests that commercial fishing for Hovsgol grayling, lenok (
<italic>Brachymystax lenok</italic>
), roach (
<italic>Rutilus rutilus</italic>
), perch (
<italic>Perca fluviatilis</italic>
), and burbot (
<italic>Lota lota</italic>
) removed as much as 200–400 tons annually before the park was established ([
<xref rid="pone.0143960.ref023" ref-type="bibr">23</xref>
];
<bold>
<xref rid="pone.0143960.s001" ref-type="supplementary-material">S1 Table</xref>
</bold>
). Despite the ban on gillnet fishing, active gillnets are often observed and grayling and lenok are frequently sold in Hatgal and along the southwestern shore road. Recreational hook-and-line fishing is legal within the park and is regulated through permits and season and bag limits. Subsistence fishing during the spring spawning migration, though officially illegal, is generally tolerated.</p>
</sec>
<sec id="sec004">
<title>Surveys for derelict fishing gear</title>
<p>We surveyed and collected derelict fishing gear at ten sites on the Lake Hovsgol shoreline in July 2013 and resurveyed six of these sites in July 2014 (
<bold>
<xref rid="pone.0143960.g001" ref-type="fig">Fig 1</xref>
</bold>
). Although fishing gear found in the 2013 surveys could represent several years of accumulation and even pre-date the ban on gillnet fishing, gear found in the 2014 resurveys must represent accumulation over the preceding year, since all gear was removed from these sites during the 2013 surveys. Sites were selected as part of a long-term fish monitoring study [
<xref rid="pone.0143960.ref021" ref-type="bibr">21</xref>
]; though non-random, they provide excellent spatial coverage and access to points and bays on all sides of the lake. In 2013, we censused 54.9 km of shoreline (10 sites, 13 transects, 0.4–8.5 km each, ~13% of total shoreline) for all anthropogenic debris, including derelict fishing gear, between the water and wrack lines [
<xref rid="pone.0143960.ref024" ref-type="bibr">24</xref>
]. In 2014, we recensused 31.9 km of the original transects (7 sites/transects, 1.3–8.3 km each) for derelict fishing gear only. Because transect widths were variable, we report linear (km
<sup>-1</sup>
) rather than areal (km
<sup>-2</sup>
) debris density. Derelict fishing gear was classified into the following gillnet categories: whole net, net fragment, float line, lead line, foam float, or bottle float (
<bold>
<xref rid="pone.0143960.s006" ref-type="supplementary-material">S1 Fig</xref>
</bold>
); and hook-and-line categories: rod, monofilament, lure, or bobber. Bottles, string/rope, and stakes without mesh, floats, weights, or lines were not considered fishing gear. We weighed each item and measured the mesh size (knot to knot distance) of every whole gillnet or gillnet fragment.</p>
</sec>
<sec id="sec005">
<title>Interviews with herders and rangers</title>
<p>The Rutgers University Internal Review Board (IRB) approved our interview protocol (Protocol E14-675) and all respondents gave informed verbal consent (written consent is problematic in former Soviet regions) as approved by the IRB.</p>
<p>We used a semi-structured questionnaire to interview ten herding families from three sites (
<bold>
<xref rid="pone.0143960.g001" ref-type="fig">Fig 1</xref>
</bold>
) about their fishing habits, fishing activity they observe, and status and conservation of fish in the lake (
<bold>
<xref rid="pone.0143960.s013" ref-type="supplementary-material">S1 Appendix</xref>
</bold>
). The first household at each site was selected opportunistically and additional households were recommended by this family based on proximity and availability. This “snowball sampling” method is commonly used to find respondents in isolated or hard-to-access groups [
<xref rid="pone.0143960.ref025" ref-type="bibr">25</xref>
]. There was no indication that recommendations were biased towards fishing or non-fishing households. We interviewed seven male and three female heads of household. Family and herd sizes ranged from 3–7 people and 4–630 animals, respectively.</p>
<p>We used a different semi-structured questionnaire to interview five park rangers, including the head ranger, from 5 of 17 ranger districts (
<bold>
<xref rid="pone.0143960.g001" ref-type="fig">Fig 1</xref>
</bold>
) about the frequency and character of illegal fishing, actions taken against illegal fishers, and status and conservation of fish in the lake (
<bold>
<xref rid="pone.0143960.s014" ref-type="supplementary-material">S2 Appendix</xref>
</bold>
). The interviewed rangers were male and had worked as rangers for 3–15 years. They were responsible for districts that varied in area (22–398 ha) and number of families (32–1,264 families).</p>
</sec>
<sec id="sec006">
<title>Biological sampling, gillnet catch efficiency, and population trends</title>
<p>We used fish monitoring data to estimate catch rates for gillnet mesh sizes used by fishers and to evaluate changes in fish population abundance and body size.</p>
<p>The Rutgers University Animal Care and Facilities Committee approved our fish sampling protocol (Protocol 11–005). Permission to conduct field research (Permit 6/445) was granted by the Mongolian Ministry of Environment and Green Development (MEGD). In July 2009 and 2011–13, we set two monofilament horizontal gillnets at seven of the ten surveyed sites (
<bold>
<xref rid="pone.0143960.g001" ref-type="fig">Fig 1</xref>
</bold>
). Both gillnets were 2 m deep and 20 m long with 4 m panels of 2.54, 3.81, 5.08, 6.35, and 7.62 cm bar mesh. They were set at least 100 m apart, perpendicular to shore, using a stationary bottom set in water < 10 m deep, and were fished overnight (8.5–10.5 hr) at each location. Captured fish were identified and measured to the nearest millimeter in total length. Weights for fish without weight measurements were estimated using length-weight parameters derived from our data (
<bold>
<xref rid="pone.0143960.s007" ref-type="supplementary-material">S2 Fig</xref>
</bold>
).</p>
<p>Vulnerability of fish to gillnets can vary depending on species, body size, and mesh size. We calculated catch-per-unit-of-effort (CPUE) for each gillnet panel in terms of count and biomass (#/kg 10 m
<sup>-1</sup>
night
<sup>-1</sup>
) to determine species-specific and overall catch rates for each mesh size. We also calculated the species-specific CPUE of each gillnet set in terms of count and biomass (#/kg night
<sup>-1</sup>
) and used linear mixed effects models to examine changes in species-specific abundance from 2009–13 while accounting for sampling site as a random effect on the model intercepts. Decreases in body size can be a useful indicator of fishing impacts when changes in abundance cannot be accurately assessed [
<xref rid="pone.0143960.ref026" ref-type="bibr">26</xref>
]. Therefore, we also used linear mixed effects models to examine changes in species-specific body size (length/weight) from 2009–13. P-values were generated through likelihood ratio tests of the full models and null ‘intercept only’ models. All analyses were performed in R version 3.2.0 [
<xref rid="pone.0143960.ref027" ref-type="bibr">27</xref>
] and mixed effects models were fit using the
<italic>lme4</italic>
package [
<xref rid="pone.0143960.ref028" ref-type="bibr">28</xref>
].</p>
</sec>
<sec id="sec007">
<title>Potential population level impacts on Hovsgol grayling</title>
<p>We used methods commonly used in data-poor fisheries management to estimate the maximum sustainable yield (MSY) for Hovsgol grayling and evaluate the likelihood that illegal gillnet fishing could approach or exceed this threshold. Fishing at a rate greater than that which results in MSY is a common definition of overfishing [
<xref rid="pone.0143960.ref029" ref-type="bibr">29</xref>
].</p>
<p>Meta-analyses have shown that fish life history traits can be used to estimate natural mortality rates [
<xref rid="pone.0143960.ref030" ref-type="bibr">30</xref>
], which can in turn be used to estimate F
<sub>MSY</sub>
[
<xref rid="pone.0143960.ref031" ref-type="bibr">31</xref>
], the fishing mortality rate resulting in MSY. We estimated the Hovsgol grayling natural mortality rate (
<italic>M</italic>
) using three separate life history invariant approaches (
<bold>
<xref rid="pone.0143960.t001" ref-type="table">Table 1</xref>
</bold>
) and applied the Zhou et al. [
<xref rid="pone.0143960.ref031" ref-type="bibr">31</xref>
] method to estimate F
<sub>MSY</sub>
as
<italic>0</italic>
.
<italic>87*M</italic>
. We used a length-converted catch curve analysis [
<xref rid="pone.0143960.ref032" ref-type="bibr">32</xref>
] to calculate total mortality (total mortality = fishing mortality + natural mortality) to place an upper limit on possible natural mortality rates and estimate current fishing mortality rates. More details on the mortality estimation methods are provided in
<bold>
<xref rid="pone.0143960.s015" ref-type="supplementary-material">S3 Appendix</xref>
</bold>
.</p>
<table-wrap id="pone.0143960.t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0143960.t001</object-id>
<label>Table 1</label>
<caption>
<title>Natural mortality rates estimated by life history invariant methods and estimates of the effort required to exceed the sustainable harvest associated with each mortality rate.</title>
</caption>
<alternatives>
<graphic id="pone.0143960.t001g" xlink:href="pone.0143960.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
<col align="left" valign="middle" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1"> </th>
<th align="left" rowspan="1" colspan="1"> </th>
<th align="left" rowspan="1" colspan="1"> </th>
<th align="left" rowspan="1" colspan="1"> </th>
<th align="left" rowspan="1" colspan="1"> </th>
<th align="left" rowspan="1" colspan="1"> </th>
<th align="left" rowspan="1" colspan="1"># nights</th>
<th align="left" rowspan="1" colspan="1"># fishers</th>
<th align="left" rowspan="1" colspan="1">% families</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">Method</th>
<th align="left" rowspan="1" colspan="1">Formula
<xref rid="t001fn001" ref-type="table-fn">
<sup>1</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">M</th>
<th align="left" rowspan="1" colspan="1">F
<xref rid="t001fn002" ref-type="table-fn">
<sup>2</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">F
<sub>MSY</sub>
<xref rid="t001fn003" ref-type="table-fn">
<sup>3</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">MSY (kg)
<xref rid="t001fn004" ref-type="table-fn">
<sup>4</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">required
<xref rid="t001fn005" ref-type="table-fn">
<sup>5</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">required
<xref rid="t001fn006" ref-type="table-fn">
<sup>6</sup>
</xref>
</th>
<th align="left" rowspan="1" colspan="1">participating
<xref rid="t001fn007" ref-type="table-fn">
<sup>7</sup>
</xref>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Hoenig
<sub>nls</sub>
from Then et al. [
<xref rid="pone.0143960.ref056" ref-type="bibr">56</xref>
]</td>
<td align="left" rowspan="1" colspan="1">4.899 * t
<sub>max</sub>
<sup>-0.916</sup>
</td>
<td align="right" rowspan="1" colspan="1">0.37</td>
<td align="right" rowspan="1" colspan="1">0.06</td>
<td align="right" rowspan="1" colspan="1">0.32</td>
<td align="right" rowspan="1" colspan="1">330,869</td>
<td align="right" rowspan="1" colspan="1">22,058</td>
<td align="right" rowspan="1" colspan="1">220.6</td>
<td align="right" rowspan="1" colspan="1">14.6%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Pauly
<sub>nls-T</sub>
from Then et al. [
<xref rid="pone.0143960.ref056" ref-type="bibr">56</xref>
]</td>
<td align="left" rowspan="1" colspan="1">4.118 * K
<sup>0.73</sup>
* Linf
<sup>-0.33</sup>
</td>
<td align="right" rowspan="1" colspan="1">0.27</td>
<td align="right" rowspan="1" colspan="1">0.15</td>
<td align="right" rowspan="1" colspan="1">0.24</td>
<td align="right" rowspan="1" colspan="1">255,285</td>
<td align="right" rowspan="1" colspan="1">17,019</td>
<td align="right" rowspan="1" colspan="1">170.2</td>
<td align="right" rowspan="1" colspan="1">11.3%</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Gunderson [
<xref rid="pone.0143960.ref057" ref-type="bibr">57</xref>
]</td>
<td align="left" rowspan="1" colspan="1">1.79 * GSI</td>
<td align="right" rowspan="1" colspan="1">0.30</td>
<td align="right" rowspan="1" colspan="1">0.12</td>
<td align="right" rowspan="1" colspan="1">0.26</td>
<td align="right" rowspan="1" colspan="1">279,557</td>
<td align="right" rowspan="1" colspan="1">18,637</td>
<td align="right" rowspan="1" colspan="1">186.4</td>
<td align="right" rowspan="1" colspan="1">12.3%</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="t001fn001">
<p>
<sup>1</sup>
See
<bold>
<xref rid="pone.0143960.s011" ref-type="supplementary-material">S6 Fig</xref>
</bold>
for life history traits used in analysis.</p>
</fn>
<fn id="t001fn002">
<p>
<sup>2</sup>
<italic>F = Z–M</italic>
, where Z is 0.42 from the length-converted catch curve analysis (
<bold>
<xref rid="pone.0143960.s012" ref-type="supplementary-material">S7 Fig</xref>
</bold>
).</p>
</fn>
<fn id="t001fn003">
<p>
<sup>3</sup>
<italic>F</italic>
<sub>
<italic>MSY</italic>
</sub>
<italic>= 0</italic>
.
<italic>87 * M</italic>
, from Zhou et al. [
<xref rid="pone.0143960.ref031" ref-type="bibr">31</xref>
].</p>
</fn>
<fn id="t001fn004">
<p>
<sup>4</sup>
<italic>MSY = (1- exp(-F</italic>
<sub>
<italic>MSY</italic>
</sub>
<italic>)) * BIOMASS</italic>
, where Hovsgol grayling biomass is 1,214,400 kg based on Ahrenstorff et al. [
<xref rid="pone.0143960.ref021" ref-type="bibr">21</xref>
].</p>
</fn>
<fn id="t001fn005">
<p>
<sup>5</sup>
Number of nights required to reach MSY assuming fishers use 50-m of optimal mesh gillnet each night (15 kg grayling night
<sup>-1</sup>
).</p>
</fn>
<fn id="t001fn006">
<p>
<sup>6</sup>
Number of fishers required to reach MSY assuming each fisher uses 50-m of optimal mesh gillnet 100 nights per year.</p>
</fn>
<fn id="t001fn007">
<p>
<sup>7</sup>
Percentage of families participating in the fishery assuming a resident population of 5,440 and average family size of 3.6 people per household (1,511 families; NSOM [
<xref rid="pone.0143960.ref019" ref-type="bibr">19</xref>
]).</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>We then calculated MSY for each F
<sub>MSY</sub>
estimate using the Ahrenstorff et al. [
<xref rid="pone.0143960.ref021" ref-type="bibr">21</xref>
] hydroacoustic biomass estimate for Hovsgol grayling (4.4 ± 0.9 kg ha
<sup>-1</sup>
) and estimated the number of nights of gillnet fishing required to reach each MSY assuming fishers use 50-m gillnets with 2.54-cm mesh, the optimal mesh size for targeting grayling (~15 kg grayling night
<sup>-1</sup>
; see
<italic>
<xref rid="sec012" ref-type="sec">Gillnet catch efficiency</xref>
</italic>
results). Finally, we estimated the number of fishers required to achieve each MSY assuming fishers use 50-m of gillnet 100 nights year
<sup>-1</sup>
. These assumptions seem reasonable given the number of nets used by observed and self-reported fishers and reports that fishing continues throughout the winter (see
<italic>
<xref rid="sec005" ref-type="sec">Interviews with herders and rangers</xref>
</italic>
results).</p>
</sec>
</sec>
<sec sec-type="results" id="sec008">
<title>Results</title>
<sec id="sec009">
<title>Surveys for derelict fishing gear</title>
<p>A total of 220 (5.78 kg) and 281 (3.82 kg) pieces of derelict fishing gear were collected in the 2013 and 2014 surveys, respectively. Fishing gear comprised 25% of the total weight of plastic debris observed during the 2013 surveys [
<xref rid="pone.0143960.ref024" ref-type="bibr">24</xref>
]. Derelict gillnet material, the majority of fishing gear found in both years (
<bold>
<xref rid="pone.0143960.g002" ref-type="fig">Fig 2</xref>
</bold>
), was found in all but two 2013 transects and all 2014 transects (
<bold>
<xref rid="pone.0143960.g001" ref-type="fig">Fig 1</xref>
</bold>
). Foam floats were the most abundant gillnet debris items by count, likely due to their ability to separate from nets and disperse widely; gillnet fragments were the most abundant gillnet debris items by weight, likely due to their large size and heavy lead lines. Gillnet fragments ranged from 2–8 cm in mesh size with 3–4 cm mesh being the most common by both count and weight (
<bold>
<xref rid="pone.0143960.g002" ref-type="fig">Fig 2</xref>
</bold>
). All six active gillnets observed had 3.0 cm mesh. The density of derelict gillnet material varied among transects, but in both years, Site 7, the most remote and difficult to access site, had the lowest density of gillnet material and Site 10 (Har Us), the primary location of the spring spawning migration fishery, had the highest density of gillnet material. The density of derelict gillnet material in resurveyed sites was higher in 2014 than 2013 at all but Site 7 suggesting that illegal fishing may be increasing (
<bold>
<xref rid="pone.0143960.g001" ref-type="fig">Fig 1</xref>
</bold>
).</p>
<fig id="pone.0143960.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0143960.g002</object-id>
<label>Fig 2</label>
<caption>
<title>Average density of derelict fishing gear by category (GN = gillnet material) and derelict gillnet fragments by mesh size in count and weight.</title>
<p>Bars indicate average densities among the 2013 (dark grey, n
<sub>sites</sub>
= 10, n
<sub>transects</sub>
= 14) and 2014 shoreline transects (light grey, n
<sub>sites</sub>
/n
<sub>transects</sub>
= 7) weighted by transect length. Panels
<bold>A</bold>
and
<bold>B</bold>
indicate density in count (# km
<sup>-1</sup>
) and Panels
<bold>C</bold>
and
<bold>D</bold>
indicate density in weight (g km
<sup>-1</sup>
). Note variable y-axis scales.</p>
</caption>
<graphic xlink:href="pone.0143960.g002"></graphic>
</fig>
</sec>
<sec id="sec010">
<title>Interviews with herders</title>
<p>All of the interviewed herding families (n = 10) reported fishing and observing others fishing (
<bold>
<xref rid="pone.0143960.s004" ref-type="supplementary-material">S4 Table</xref>
</bold>
). Families on the eastern shore reported fishing with gillnets repeatedly throughout the year and during the spring grayling spawning migration. They also reported observing commercial gillnet fishers from Hatgal during the winter and during the spring spawning migration, and they reported finding enforcement ineffective. In contrast, families on the northwestern shore reported fishing with rods or by hand only once per spring spawning migration. They reported no commercial fishing activity and found enforcement effective. All of the families reported that Russian visitors fish recreationally year-round but especially in winter with ice fishing rods and gillnets (
<bold>
<xref rid="pone.0143960.s004" ref-type="supplementary-material">S4 Table</xref>
</bold>
).</p>
<p>All of the families reported fishing primarily for Hovsgol grayling and primarily for household consumption; only one family from the eastern shore reported selling fish (
<bold>
<xref rid="pone.0143960.s004" ref-type="supplementary-material">S4 Table</xref>
</bold>
). Families reported fishing primarily during the spawning migration because (1) grayling soup is healthy after the long winter; (2) fish are more abundant and easier to catch than any other time; (3) herders are too busy to fish, or they live away from the lake, the rest of the year; (4) cooking grayling soup interferes with milk production, their principal food source; and (5) eating grayling allows them to delay the slaughtering of herd animals until they have had time to fatten.</p>
<p>Nearly all of the interviewed herders stated that fish population sizes have decreased dramatically (
<bold>
<xref rid="pone.0143960.s004" ref-type="supplementary-material">S4 Table</xref>
</bold>
). Many recalled that migrating fish were once so numerous that the rivers appeared to “be only fish and no water.” Most of the herders also asserted that fish body sizes have decreased and that large lenok and burbot have become especially rare (
<bold>
<xref rid="pone.0143960.s004" ref-type="supplementary-material">S4 Table</xref>
</bold>
). The herders stated that “local people should protect the lake and fish” but offered few concrete ideas for achieving this objective (
<bold>
<xref rid="pone.0143960.s004" ref-type="supplementary-material">S4 Table</xref>
</bold>
).</p>
</sec>
<sec id="sec011">
<title>Interviews with rangers</title>
<p>The rangers reported that recreational, commercial, and subsistence fishing all occur in LHNP (
<bold>
<xref rid="pone.0143960.s005" ref-type="supplementary-material">S5 Table</xref>
</bold>
). The rangers agreed that the majority of recreational fishers are non-local Mongolians or foreigners who fish with rods primarily in summer but also through the ice in winter. The rangers reported that recreational fishers are generally permitted and compliant with the law. All but one ranger reported that local Mongolians use gillnets to target Hovsgol grayling and lenok for subsistence or commercial purposes (
<bold>
<xref rid="pone.0143960.s005" ref-type="supplementary-material">S5 Table</xref>
</bold>
). The rangers reported that subsistence fishers fish almost exclusively at river mouths during the spring spawning migration and that commercial fishers come predominantly from Hatgal due to that town’s proximity to the developed southwestern shore and the city of Mörön. The rangers asserted that the town of Hankh is too remote and undeveloped for commercial fishing to be viable. The rangers reported that commercial gillnet fishing occurs year-round and that fishing when the lake is freezing, thawing, or entirely frozen may even be preferred (
<bold>
<xref rid="pone.0143960.s005" ref-type="supplementary-material">S5 Table</xref>
</bold>
).</p>
<p>The rangers were divided on the status of fish in the lake: three rangers reported that fish population sizes are decreasing and two rangers reported that they are increasing (
<bold>
<xref rid="pone.0143960.s005" ref-type="supplementary-material">S5 Table</xref>
</bold>
). The rangers who reported fish population sizes to be decreasing reported that lenok have become especially rare. The majority of rangers reported that fish body sizes have not changed (
<bold>
<xref rid="pone.0143960.s005" ref-type="supplementary-material">S5 Table</xref>
</bold>
). The rangers were also divided on the best approach to conservation. The head ranger asserted that the native Great Cormorant (
<italic>Phalacrocorax carbo</italic>
) population is the primary threat to fish and that their population must be controlled. Another ranger suggested that grayling die naturally after the spring spawning migration (an assertion that is not supported by the scientific literature) and that these migrations must therefore be prevented. The remaining rangers emphasized the importance of improved enforcement during the spawning migration (
<bold>
<xref rid="pone.0143960.s005" ref-type="supplementary-material">S5 Table</xref>
</bold>
).</p>
<p>The rangers offered a detailed description of fishing at Har Us mineral spring (Site 10), the primary location of the spring grayling spawning migration fishery. Mineral springs are culturally important to Mongolians and visiting this spring in May-June is a longstanding social tradition. Rangers are instructed not to enforce the gillnet ban on fishers at Har Us during this time. The rangers reported that over 570 people visited the spring in 2013 and set a total of 60–100 nets per day with an average catch of 50–70 grayling per net. They estimated that 3,600 grayling were caught per day during peak migration (Jun 7–12) and 1,000–1,500 grayling per day from May 30-Jun 6 and Jun 13–24. Based on this report, we estimate that the Har Us fishery removes ~33,000 fish annually.</p>
</sec>
<sec id="sec012">
<title>Gillnet catch efficiency and population trends</title>
<p>The 2.54-cm mesh in our survey gillnets maximized total nightly catch by numbers because it maximized the catch of the abundant Hovsgol grayling (
<bold>
<xref rid="pone.0143960.s008" ref-type="supplementary-material">S3 Fig</xref>
</bold>
). The 3.81- and 5.08-cm mesh sizes showed similar catch rates and maximized total nightly catch by biomass because they maximized the catch of larger-bodied lenok and burbot (
<bold>
<xref rid="pone.0143960.g003" ref-type="fig">Fig 3</xref>
</bold>
); however, the median nightly catch biomass of the 2.54-cm mesh was comparable to those of the 3.08- and 5.81-cm mesh and the 2.54-cm mesh captured fish during every gillnet set, while the larger mesh sizes were often observed empty.</p>
<fig id="pone.0143960.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0143960.g003</object-id>
<label>Fig 3</label>
<caption>
<title>Catch-per-unit-of-effort (CPUE; kg 10 m
<sup>-1</sup>
night
<sup>-1</sup>
) by mesh size for the five most abundant species in gillnet catches and the sum of their weight.</title>
<p>Data from the two 5-panel sequential mesh gillnets used at seven sites in 2009 and 2011–2013 (14 sets yr
<sup>-1</sup>
, 56 sets total). Boxplots indicate median (heavy black line), interquartile range (IQR; box), 1.5 times the IQR (whiskers), and extreme values (open circles). Note variable y-axis scales.</p>
</caption>
<graphic xlink:href="pone.0143960.g003"></graphic>
</fig>
<p>Analysis of the biological monitoring data identified significant reductions in body size for three species over the sampling period (2009–13), but a significant change in CPUE for only one species. Linear mixed effects regression on species-specific CPUE indicates that only burbot population abundance decreased significantly from 2009–13 (
<bold>
<xref rid="pone.0143960.g004" ref-type="fig">Fig 4</xref>
;
<xref rid="pone.0143960.s009" ref-type="supplementary-material">S4 Fig</xref>
</bold>
). Linear mixed effects regression on body size indicates that grayling, roach, and burbot body size decreased significantly from 2009–13 (
<bold>
<xref rid="pone.0143960.g005" ref-type="fig">Fig 5</xref>
;
<xref rid="pone.0143960.s010" ref-type="supplementary-material">S5 Fig</xref>
</bold>
). The abundance and body size of other species remained constant.</p>
<fig id="pone.0143960.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0143960.g004</object-id>
<label>Fig 4</label>
<caption>
<title>Trends in the abundance of the five most abundant fish species in gillnet catches from 2009–2013.</title>
<p>Points indicate the CPUE (kg net
<sup>-1</sup>
night
<sup>-1</sup>
) of each 5-panel sequential mesh gillnet set (2 nets site
<sup>-1</sup>
x 7 sites yr
<sup>-1</sup>
= 14 sets yr
<sup>-1</sup>
). Dark lines indicate linear mixed effects regressions fit to the catch data, gray shading indicates the confidence interval for each regression, and dashed lines indicate the prediction interval for the data. P-values are indicated in the upper right corner of each panel. Points are jittered around year for display. Note variable y-axis scales.</p>
</caption>
<graphic xlink:href="pone.0143960.g004"></graphic>
</fig>
<fig id="pone.0143960.g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0143960.g005</object-id>
<label>Fig 5</label>
<caption>
<title>Trends in the body size of the five most abundant fish species in gillnet catches from 2009–2013.</title>
<p>Points indicate the weight (kg) of every fish caught in gillnet sets that year (2 nets site
<sup>-1</sup>
x 7 sites yr
<sup>-1</sup>
= 14 sets yr
<sup>-1</sup>
). Dark lines indicate linear mixed effects regressions fit to the catch data, gray shading indicates the confidence interval for each regression, and dashed lines indicate the prediction interval for the data. P-values are indicated in the upper right corner of each panel. Points are jittered around year for display. Note variable y-axis scales.</p>
</caption>
<graphic xlink:href="pone.0143960.g005"></graphic>
</fig>
</sec>
<sec id="sec013">
<title>Potential population level impacts on Hovsgol grayling</title>
<p>Estimates of Hovsgol grayling natural mortality (
<italic>M</italic>
) ranged 0.25–0.37 (
<bold>
<xref rid="pone.0143960.t001" ref-type="table">Table 1</xref>
</bold>
). A total mortality estimate of 0.42 (
<bold>
<xref rid="pone.0143960.s012" ref-type="supplementary-material">S7 Fig</xref>
</bold>
) implies fishing moralities of 0.06–0.15, all of which are less than their associated F
<sub>MSY</sub>
estimates (
<bold>
<xref rid="pone.0143960.t001" ref-type="table">Table 1</xref>
</bold>
). The F
<sub>MSY</sub>
estimates imply MSY values of ~255–331 metric tons yr
<sup>-1</sup>
, which could be achieved in ~17,000–22,000 nights of fishing with 50-m optimal mesh gillnets (
<bold>
<xref rid="pone.0143960.t001" ref-type="table">Table 1</xref>
</bold>
). Although these estimates seem large for a low-density resident population, they could be achieved by 170–220 fishers using 50-m of optimal mesh gillnet 100 nights year
<sup>-1</sup>
(roughly twice per week). With an estimated permanent population of 5,440 in LHNP and average family size of 3.6 people [
<xref rid="pone.0143960.ref019" ref-type="bibr">19</xref>
], this effort could be attained if 11.3–14.6% of families participated in the fishery (
<bold>
<xref rid="pone.0143960.t001" ref-type="table">Table 1</xref>
</bold>
). Alternatively, this effort could be attained if every family living in the park fished with 50-m of optimal mesh gillnet 11.3–14.6 nights per year.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="sec014">
<title>Discussion</title>
<p>Knowledge of illegal fishing in Lake Hovsgol National Park (LHNP) has been anecdotal and limited in its usefulness to managers, but with a mixed-method approach, we have empirically described the extent, character, and motivations of illegal fishing and its potential impact on the lake’s fish populations.</p>
<p>Our mixed-method approach reveals a fuller understanding of illegal fishing in LHNP than using a single method alone. Each method validates, contextualizes, and builds upon the others to construct a consistent story for a complex fishery:
<bold>(1) surveys for derelict fishing gear</bold>
quantitatively describe the extent, location, and methods of fishing: gillnet fishing is widespread and increasing and fishers generally use 3–4 cm mesh gillnet;
<bold>(2) interviews with herders and park rangers</bold>
contextualize these results by qualitatively describing the motivations of fishers, character of fishing, and status of fish in the lake: many residents gillnet fish for subsistence during the spring grayling spawning migration, some residents gillnet fish commercially year-round, and fish population sizes are decreasing;
<bold>(3) biological monitoring</bold>
documents the vulnerability of fish to gillnets as well as population-level trends in fish abundance and body size: the gillnet mesh sizes used by fishers efficiently target Hovsgol grayling and grayling, burbot, and roach exhibit negative population-level trends; and
<bold>(4) data-poor stock assessment analyses</bold>
demonstrate that plausible levels of fishing effort by Lake Hovsgol residents using gillnets have the capacity to result in overexploitation of the Hovsgol grayling population. Though seemingly intuitive, the use of multiple methods to quantify and characterize illegal resource use has been rare and should be more widely used by conservation scientists and resource managers [
<xref rid="pone.0143960.ref004" ref-type="bibr">4</xref>
,
<xref rid="pone.0143960.ref005" ref-type="bibr">5</xref>
].</p>
<p>Our surveys for derelict fishing gear are an improvement to previous studies because we use repeated surveys to measure re-accumulation rates and biological monitoring data to evaluate the vulnerability of fish to the gear observed in surveys. The majority of studies have focused on comparing the density of derelict gear inside and outside marine reserves for quantifying non-compliance and fail to measure or report accumulation rates (e.g., [
<xref rid="pone.0143960.ref009" ref-type="bibr">9</xref>
<xref rid="pone.0143960.ref011" ref-type="bibr">11</xref>
]). A few studies have measured the accumulation rates of derelict gear among habitat types to inform cleanup efforts but have not used the results to understand non-compliance (e.g., [
<xref rid="pone.0143960.ref008" ref-type="bibr">8</xref>
,
<xref rid="pone.0143960.ref033" ref-type="bibr">33</xref>
,
<xref rid="pone.0143960.ref034" ref-type="bibr">34</xref>
]). Only Williamson et al. [
<xref rid="pone.0143960.ref014" ref-type="bibr">14</xref>
] and the present study have linked these objectives and used both the density and re-accumulation rate of derelict fishing gear to evaluate temporal and spatial trends in non-compliance. By measuring re-accumulation, we show not only that the observed gillnet was used recently and does not pre-date the ban on gillnet fishing, but also that gillnet fishing is becoming increasingly common. Neither Williamson et al. [
<xref rid="pone.0143960.ref014" ref-type="bibr">14</xref>
] or our study properly control for the influence of habitat characteristics (e.g., shore/bottom cover or wind/wave exposure) on accumulation and future studies must consider these covariates when identifying hotspots of illegal fishing.</p>
<p>Although our interview method likely underestimates the rate of non-compliance [
<xref rid="pone.0143960.ref035" ref-type="bibr">35</xref>
,
<xref rid="pone.0143960.ref036" ref-type="bibr">36</xref>
], it provides a relative description of the frequency of illegal fishing and important information about the motivations for non-compliance, which cannot be gained using other respondent-based approaches [
<xref rid="pone.0143960.ref004" ref-type="bibr">4</xref>
]. The biases and limitations of direct questioning (DQ) can be reduced when researchers have long-standing relationships with the community [
<xref rid="pone.0143960.ref037" ref-type="bibr">37</xref>
,
<xref rid="pone.0143960.ref038" ref-type="bibr">38</xref>
] or by interviewing multiple stakeholders [
<xref rid="pone.0143960.ref037" ref-type="bibr">37</xref>
,
<xref rid="pone.0143960.ref039" ref-type="bibr">39</xref>
]. In our study, this likely contributes to the discrepancy in personal fishing habits reported by herders on the eastern and western shores. Whereas eastern shore herders, with whom we have long partnerships, reported frequent gillnet use, western shore herders reported fishing by hook and line or by hand only. Although this may reflect real geographic differences, it may also reflect social desirability bias [
<xref rid="pone.0143960.ref040" ref-type="bibr">40</xref>
], as western shore herders might be less comfortable revealing sensitive information to us. In our study, this bias is partially corrected by interviewing multiple stakeholders and by inquiring about observed illegal behavior [
<xref rid="pone.0143960.ref037" ref-type="bibr">37</xref>
,
<xref rid="pone.0143960.ref039" ref-type="bibr">39</xref>
]. For example, herders were more likely than park rangers to characterize enforcement as ineffective and park rangers were more likely than herders to describe illegal fishing. Similarly, although some respondents were likely to underreport personal fishing, they may not be as likely to underreport observed fishing by others.</p>
<p>Because of these biases, recent papers promote the randomized response (RRT; [
<xref rid="pone.0143960.ref041" ref-type="bibr">41</xref>
]) and item count techniques (ICT; [
<xref rid="pone.0143960.ref042" ref-type="bibr">42</xref>
]) over DQ for quantifying non-compliance [
<xref rid="pone.0143960.ref036" ref-type="bibr">36</xref>
,
<xref rid="pone.0143960.ref043" ref-type="bibr">43</xref>
<xref rid="pone.0143960.ref045" ref-type="bibr">45</xref>
], but we argue that DQ more easily and fully reveals the motivations for non-compliance [
<xref rid="pone.0143960.ref004" ref-type="bibr">4</xref>
], which is essential information for successful management [
<xref rid="pone.0143960.ref046" ref-type="bibr">46</xref>
]. RRT and ICT incentivize honest responses about illegal behavior by protecting anonymity and generally generate more accurate estimates of the proportion of the sample population engaging in illegal behavior [
<xref rid="pone.0143960.ref035" ref-type="bibr">35</xref>
,
<xref rid="pone.0143960.ref036" ref-type="bibr">36</xref>
]; however, these approaches require large sample sizes and prevent researchers from implicitly discerning motivations for non-compliance by linking behaviors with covariates or from explicitly inquiring about the motivations for non-compliance [
<xref rid="pone.0143960.ref045" ref-type="bibr">45</xref>
]. DQ, on the other hand, allows researchers to inquire about the motivations for non-compliance, importance of natural resources to culture or livelihood, and desire for changes to management rules. Managers must consider the socioeconomic functions of resource use and DQ should remain in the conservation science toolbox.</p>
<p>Although the population-level impacts observed in our biological monitoring data cannot necessarily be attributed to illegal fishing, they indicate the importance of improving fisheries management in LHNP, especially given the feasibility for gillnet fishers to overexploit the Hovsgol grayling population, as indicated by the data-poor stock assessment analysis. These calculations represent a simplification of population dynamics made necessary by the lack of time series of fishery removals or estimates of biological parameters needed for more complex data-poor assessment methods [
<xref rid="pone.0143960.ref047" ref-type="bibr">47</xref>
]. However, our indirect estimates of
<italic>M</italic>
for Hovsgol grayling are similar to direct estimates of
<italic>M</italic>
for Arctic grayling (
<italic>T</italic>
.
<italic>arcticus</italic>
), a close relative (0.29 average;
<bold>
<xref rid="pone.0143960.s003" ref-type="supplementary-material">S3 Table</xref>
</bold>
). Furthermore, all of our MSY estimates indicate that overexploitation is possible even with only a small percentage of the population participating in the fishery using gillnets, an inexpensive and widely available fishing gear. The threat of overexploitation is not unrealistic given that grayling, as a taxonomic group, can be susceptible to anthropogenic influences as has been seen with the extirpation of many North American Arctic grayling populations in Montana and Wyoming [
<xref rid="pone.0143960.ref048" ref-type="bibr">48</xref>
]. Salmonids are vulnerable to exploitation and other disruptions during their spring spawning migrations [
<xref rid="pone.0143960.ref049" ref-type="bibr">49</xref>
] and managers must carefully consider the value and impact of the spring spawning migration fishery.</p>
<p>The results of our mixed-method approach indicate that illegal fishing is a problem in Lake Hovsgol but that fish also serve an important socioeconomic function. An effective management system will need to incorporate the needs of local people as well as address the synergistic pressures of climate change, water pollution, increasing tourism, and invasive species on LHNP’s fish populations. In the last 40 years, regional air temperatures have increased 2.1°C [
<xref rid="pone.0143960.ref050" ref-type="bibr">50</xref>
], a rate of warming more than three times faster than the global average [
<xref rid="pone.0143960.ref051" ref-type="bibr">51</xref>
], which has prompted the drying of many of Lake Hovsgol’s previously reliable streams and loss of grayling spawning habitat [
<xref rid="pone.0143960.ref016" ref-type="bibr">16</xref>
,
<xref rid="pone.0143960.ref017" ref-type="bibr">17</xref>
]. Increasing tourism may result in increased fishing pressure, habitat destruction, water pollution, and invasive species introductions without proper management. Lake Hovsgol is already heavily polluted with household trash and will only become more polluted with additional strains on its inadequate waste management system [
<xref rid="pone.0143960.ref024" ref-type="bibr">24</xref>
]. Although no invasive species have established to date, the successful introduction of a new fish or aquatic plant species could alter this otherwise intact ecosystem [
<xref rid="pone.0143960.ref052" ref-type="bibr">52</xref>
].</p>
<p>Fishing, historically uncommon in Mongolia’s pastoralist culture, may be gaining prevalence as a new source of food, income, or recreation, especially as climate change makes herding more difficult [
<xref rid="pone.0143960.ref053" ref-type="bibr">53</xref>
] and urban Mongolians acquire more globalized tastes in food and leisure [
<xref rid="pone.0143960.ref054" ref-type="bibr">54</xref>
]. At the same time, Mongolia aims to protect 30% of the country by 2030, more than doubling the area currently under protection [
<xref rid="pone.0143960.ref055" ref-type="bibr">55</xref>
]. These trends forecast continued conflicts between economic and conservation objectives and the way in which these conflicts are resolved or ignored in the iconic LHNP could shape future protected area management in the country.</p>
</sec>
<sec sec-type="supplementary-material" id="sec015">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0143960.s001">
<label>S1 Table</label>
<caption>
<title>Large-bodied fish species in Lake Hovsgol, Mongolia and their historic catch*, market price
<sup></sup>
, and fine per illegally caught fish
<sup></sup>
.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0143960.s001.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s002">
<label>S2 Table</label>
<caption>
<title>Life history invariant methods selected for estimating Hovsgol grayling natural mortality rate.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0143960.s002.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s003">
<label>S3 Table</label>
<caption>
<title>Arctic grayling (
<italic>Thymallus arcticus</italic>
) natural mortality rates reported in the literature.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0143960.s003.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s004">
<label>S4 Table</label>
<caption>
<title>Responses of ten herding families interviewed about their personal fishing habits, fishing activity they observe, and status and conservation of fish in the lake.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0143960.s004.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s005">
<label>S5 Table</label>
<caption>
<title>Responses of five park rangers interviewed about the frequency and character of illegal fishing, actions taken against illegal fishers, and status and conservation of fish in the lake.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0143960.s005.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s006">
<label>S1 Fig</label>
<caption>
<title>Diagram of a typical Mongolian horizontal gillnet and its components.</title>
<p>(PNG)</p>
</caption>
<media xlink:href="pone.0143960.s006.png">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s007">
<label>S2 Fig</label>
<caption>
<title>Length-weight relationships for the five most abundant fish species in gillnet catches in Lake Hovsgol.</title>
<p>Note variable y-axis scales.</p>
<p>(PNG)</p>
</caption>
<media xlink:href="pone.0143960.s007.png">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s008">
<label>S3 Fig</label>
<caption>
<title>Catch-per-unit-of-effort (CPUE; # 10 m
<sup>-1</sup>
night
<sup>-1</sup>
) by mesh size for the five most abundant species in gillnet catches and the sum of their catch.</title>
<p>Data from the two 5-panel sequential mesh gillnets used at seven sites in 2009 and 2011–2013 (14 sets yr
<sup>-1</sup>
x 4 yr = 56 sets total). Boxplots indicate median (heavy black line), interquartile range (IQR; box), 1.5 times the IQR (whiskers), and extreme values (open circles). Note variable y-axis scales.</p>
<p>(PNG)</p>
</caption>
<media xlink:href="pone.0143960.s008.png">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s009">
<label>S4 Fig</label>
<caption>
<title>Trends in the abundance of the five most abundant fish species in gillnet catches from 2009–2013.</title>
<p>Points indicate the CPUE (# net
<sup>-1</sup>
night
<sup>-1</sup>
) of each 5-panel sequential mesh gillnet set (2 nets site
<sup>-1</sup>
x 7 sites yr
<sup>-1</sup>
= 14 sets yr
<sup>-1</sup>
). Dark lines indicate linear mixed effects regressions fit to the catch data, gray shading indicates the confidence interval for each regression, and dashed lines indicate the prediction interval for the data. Points are jittered around year for display. P-values are indicated in the upper right corner of each panel. Note variable y-axis scales.</p>
<p>(PNG)</p>
</caption>
<media xlink:href="pone.0143960.s009.png">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s010">
<label>S5 Fig</label>
<caption>
<title>Trends in the body size of the five most abundant fish species in gillnet catches from 2009–2013.</title>
<p>Points indicate the total length (mm) of every fish caught in gillnet sets that year (2 nets site
<sup>-1</sup>
x 7 sites yr
<sup>-1</sup>
= 14 sets yr
<sup>-1</sup>
). Dark lines indicate linear mixed effects regressions fit to the catch data, gray shading indicates the confidence interval for each regression, and dashed lines indicate the prediction interval for the data. P-values are indicated in the upper right corner of each panel. Points are jittered around year for display. Note variable y-axis scales.</p>
<p>(PNG)</p>
</caption>
<media xlink:href="pone.0143960.s010.png">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s011">
<label>S6 Fig</label>
<caption>
<title>Estimates of the life history characteristics used to calculate natural mortality (
<italic>M</italic>
) for Hovsgol grayling.</title>
<p>See
<bold>
<xref rid="pone.0143960.t001" ref-type="table">Table 1</xref>
</bold>
for
<italic>M</italic>
estimation methods and results. In
<bold>(A),</bold>
<italic>L</italic>
<sub>
<italic>inf</italic>
</sub>
,
<italic>K</italic>
, and
<italic>t</italic>
<sub>
<italic>max</italic>
</sub>
were estimated from aged otoliths and a von Bertalanffy growth model (black line) fit through the observed age-size relationship and origin (Tsogotsaikhan et al. in review). In
<bold>(B),</bold>
<italic>GSI</italic>
was estimated as the mean gonadosomatic index (GSI) for all observed grayling (Jensen, unpublished data). In
<bold>(B),</bold>
the black line indicates a linear regression fit and the grey shading indicates the confidence interval for the regression. Life history characteristics are marked and labeled in both panels.</p>
<p>(PNG)</p>
</caption>
<media xlink:href="pone.0143960.s011.png">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s012">
<label>S7 Fig</label>
<caption>
<title>The (A) length and (B) length-converted age structure of the Hovsgol grayling population.</title>
<p>The length strucutre was observed in the Ahrenstorff et al. (2012) hydroacoustic surveys. In
<bold>(B)</bold>
, the solid black line indicates a linear regression fit to the log-transformed trailing arm of the age structure. The dashed black lines indicate the confidence interval for the regression. Z is equal to the negative slope of the regression.</p>
<p>(PNG)</p>
</caption>
<media xlink:href="pone.0143960.s012.png">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s013">
<label>S1 Appendix</label>
<caption>
<title>Herder interview questionnaire.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0143960.s013.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s014">
<label>S2 Appendix</label>
<caption>
<title>Park ranger interview questionnaire.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0143960.s014.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s015">
<label>S3 Appendix</label>
<caption>
<title>Total and natural mortality estimation.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0143960.s015.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pone.0143960.s016">
<label>S4 Appendix</label>
<caption>
<title>Supplemental references.</title>
<p>(DOCX)</p>
</caption>
<media xlink:href="pone.0143960.s016.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We are grateful for the devoted work of our many field assistants. We also thank Steven Alexander, Talia Young, and the members of the Jensen lab for their helpful feedback on the manuscript. The Taimen Conservation Fund, Mongol Ecology Center, Sweetwater Travel, and Hovsgol Travel provided field support and assistance. This work was supported by a NSF-IRES grant (OISE 1064843) to OPJ, a USAID-PEER grant (Project 98) to BM, and American Center for Mongolian Studies and Grayling Research Trust grants to CMF. CMF is funded by a NMFS-Sea Grant Population Dynamics Fellowship.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0143960.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Agnew</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Pearce</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Pramod</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Peatman</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Watson</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Beddington</surname>
<given-names>JR</given-names>
</name>
,
<etal>et al</etal>
<article-title>Estimating the worldwide extent of illegal fishing</article-title>
.
<source>PLoS One</source>
.
<year>2009</year>
;
<volume>4</volume>
(
<issue>2</issue>
):
<fpage>e4570</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0004570">10.1371/journal.pone.0004570</ext-link>
</comment>
<pub-id pub-id-type="pmid">19240812</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0143960.ref002">
<label>2</label>
<mixed-citation publication-type="book">
<name>
<surname>Renzetti</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>RM</given-names>
</name>
.
<chapter-title>Researching sensitive topics</chapter-title>
<publisher-loc>Newbury Park, CA</publisher-loc>
:
<publisher-name>Sage Publications</publisher-name>
;
<year>1993</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>James</surname>
<given-names>AN</given-names>
</name>
,
<name>
<surname>Gaston</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Balmford</surname>
<given-names>A</given-names>
</name>
.
<article-title>Balancing the Earth’s accounts</article-title>
.
<source>Nature</source>
.
<year>1999</year>
;
<volume>401</volume>
(
<issue>6751</issue>
):
<fpage>323</fpage>
<lpage>324</lpage>
.
<pub-id pub-id-type="pmid">16862091</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0143960.ref004">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gavin</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Solomon</surname>
<given-names>JN</given-names>
</name>
,
<name>
<surname>Blank</surname>
<given-names>SG</given-names>
</name>
.
<article-title>Measuring and monitoring illegal use of natural resources</article-title>
.
<source>Conserv Biol</source>
.
<year>2010</year>
;
<volume>24</volume>
(
<issue>1</issue>
):
<fpage>89</fpage>
<lpage>100</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1523-1739.2009.01387.x">10.1111/j.1523-1739.2009.01387.x</ext-link>
</comment>
<pub-id pub-id-type="pmid">20015259</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0143960.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bergseth</surname>
<given-names>BJ</given-names>
</name>
,
<name>
<surname>Russ</surname>
<given-names>GR</given-names>
</name>
,
<name>
<surname>Cinner</surname>
<given-names>JE</given-names>
</name>
.
<article-title>Measuring and monitoring compliance in no-take marine reserves</article-title>
.
<source>Fish Fish</source>
.
<year>2013</year>
;
<volume>16</volume>
(
<issue>2</issue>
)
<fpage>240</fpage>
<lpage>258</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Guard</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Masaiganah</surname>
<given-names>M</given-names>
</name>
.
<article-title>Dynamite fishing in southern Tanzania, geographical variation, intensity of use and possible solutions</article-title>
.
<source>Mar Pollut Bull</source>
.
<year>1997</year>
;
<volume>34</volume>
(
<issue>10</issue>
):
<fpage>758</fpage>
<lpage>762</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Crawford</surname>
<given-names>BR</given-names>
</name>
,
<name>
<surname>Siahainenia</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Rotinsulu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Sukmara</surname>
<given-names>A</given-names>
</name>
.
<article-title>Compliance and enforcement of community-based coastal resource management regulations in North Sulawesi, Indonesia</article-title>
.
<source>Coast Manage</source>
.
<year>2004</year>
;
<volume>32</volume>
(
<issue>1</issue>
):
<fpage>39</fpage>
<lpage>50</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref008">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chiappone</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Swanson</surname>
<given-names>DW</given-names>
</name>
,
<name>
<surname>Miller</surname>
<given-names>SL</given-names>
</name>
,
<name>
<surname>Dienes</surname>
<given-names>H</given-names>
</name>
.
<article-title>Spatial distribution of lost fishing gear on fished and protected offshore reefs in the Florida Keys National Marine Sanctuary</article-title>
.
<source>Caribb J Sci</source>
.
<year>2004</year>
;
<volume>40</volume>
(
<issue>3</issue>
):
<fpage>312</fpage>
<lpage>326</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref009">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cinner</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Marnane</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>McClanahan</surname>
<given-names>TR</given-names>
</name>
.
<article-title>Conservation and community benefits from traditional coral reef management at Ahus Island, Papua New Guinea</article-title>
.
<source>Conserv Biol</source>
.
<year>2005</year>
;
<volume>19</volume>
(
<issue>6</issue>
):
<fpage>1714</fpage>
<lpage>1723</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cinner</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Marnane</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>McClanahan</surname>
<given-names>TR</given-names>
</name>
,
<name>
<surname>Almany</surname>
<given-names>GR</given-names>
</name>
.
<article-title>Periodic closures as adaptive coral reef management in the Indo-Pacific</article-title>
.
<source>Ecol Soc</source>
.
<year>2006</year>
;
<volume>11</volume>
(
<issue>1</issue>
):
<fpage>31</fpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref011">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>McClanahan</surname>
<given-names>TR</given-names>
</name>
,
<name>
<surname>Marnane</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Cinner</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Kiene</surname>
<given-names>WE</given-names>
</name>
.
<article-title>A comparison of marine protected areas and alternative approaches to coral-reef management</article-title>
.
<source>Curr Biol</source>
.
<year>2006</year>
;
<volume>16</volume>
(
<issue>14</issue>
):
<fpage>1408</fpage>
<lpage>1413</lpage>
.
<pub-id pub-id-type="pmid">16860739</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0143960.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>McClanahan</surname>
<given-names>TR</given-names>
</name>
,
<name>
<surname>Graham</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Wilson</surname>
<given-names>SK</given-names>
</name>
,
<name>
<surname>Letourneur</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Fisher</surname>
<given-names>R</given-names>
</name>
.
<article-title>Effects of fisheries closure size, age, and history of compliance on coral reef fish communities in the western Indian Ocean</article-title>
.
<source>Mar Ecol Prog Ser</source>
.
<year>2009</year>
;
<volume>396</volume>
:
<fpage>99</fpage>
<lpage>109</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref013">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bleher</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Uster</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Bergsdorf</surname>
<given-names>T</given-names>
</name>
.
<article-title>Assessment of threat status and management effectiveness in Kakamega Forest, Kenya</article-title>
.
<source>Biodivers Conserv</source>
.
<year>2006</year>
;
<volume>15</volume>
(
<issue>4</issue>
):
<fpage>1159</fpage>
<lpage>1177</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Williamson</surname>
<given-names>DH</given-names>
</name>
,
<name>
<surname>Ceccarelli</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Evans</surname>
<given-names>RD</given-names>
</name>
,
<name>
<surname>Hill</surname>
<given-names>JK</given-names>
</name>
,
<name>
<surname>Russ</surname>
<given-names>GR</given-names>
</name>
.
<article-title>Derelict fishing line provides a useful proxy for estimating levels of non-compliance with no-take marine reserves</article-title>
.
<source>PLoS One</source>
.
<year>2014</year>
;
<volume>9</volume>
(
<issue>12</issue>
):
<fpage>e114395</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0114395">10.1371/journal.pone.0114395</ext-link>
</comment>
<pub-id pub-id-type="pmid">25545154</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0143960.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jachmann</surname>
<given-names>H</given-names>
</name>
.
<article-title>Monitoring law-enforcement performance in nine protected areas in Ghana</article-title>
.
<source>Biol Conserv</source>
.
<year>2008</year>
;
<volume>141</volume>
(
<issue>1</issue>
):
<fpage>89</fpage>
<lpage>99</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref016">
<label>16</label>
<mixed-citation publication-type="book">
<name>
<surname>Ocock</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Baasanjav</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Baillie</surname>
<given-names>JEM</given-names>
</name>
,
<name>
<surname>Erdenebat</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kottelat</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Mendsaikhan</surname>
<given-names>B</given-names>
</name>
,
<etal>et al</etal>
<source>Mongolian Red List of Fishes</source>
.
<publisher-loc>London, UK</publisher-loc>
:
<publisher-name>Zoological Society of London</publisher-name>
;
<year>2006a</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref017">
<label>17</label>
<mixed-citation publication-type="book">
<name>
<surname>Ocock</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Baasanjav</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Baillie</surname>
<given-names>JEM</given-names>
</name>
,
<name>
<surname>Erdenebat</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Kottelat</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Mendsaikhan</surname>
<given-names>B</given-names>
</name>
,
<etal>et al</etal>
<source>Summary Conservation Action Plans for Mongolian Fishes</source>
.
<publisher-loc>London, UK</publisher-loc>
:
<publisher-name>Zoological Society of London</publisher-name>
;
<year>2006b</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref018">
<label>18</label>
<mixed-citation publication-type="book">
<name>
<surname>Goulden</surname>
<given-names>CE</given-names>
</name>
,
<name>
<surname>Sitnikova</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Gelhaus</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Boldgiv</surname>
<given-names>B</given-names>
</name>
.
<chapter-title>The geology, biodiversity, and ecology of Lake Hovsgol (Mongolia)</chapter-title>
<publisher-loc>Leiden, Netherlands</publisher-loc>
:
<publisher-name>Backhuys</publisher-name>
;
<year>2006</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref019">
<label>19</label>
<mixed-citation publication-type="book">
<collab>NSOM</collab>
.
<source>Mongolian Statistical Yearbook 2012</source>
.
<publisher-loc>Ulaanbaatar, Mongolia</publisher-loc>
:
<publisher-name>National Statistical Office of Mongolia (NSOM)</publisher-name>
;
<year>2012</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref020">
<label>20</label>
<mixed-citation publication-type="book">
<collab>MEGD</collab>
.
<source>Lake Hovsgol National Park: General Management Plan Foundation Document</source>
.
<publisher-loc>Ulaanbaatar, Mongolia</publisher-loc>
:
<publisher-name>Ministry of Environment and Green Development (MEGD)</publisher-name>
;
<year>2013</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ahrenstorff</surname>
<given-names>TD</given-names>
</name>
,
<name>
<surname>Jensen</surname>
<given-names>OP</given-names>
</name>
,
<name>
<surname>Weidel</surname>
<given-names>BC</given-names>
</name>
,
<name>
<surname>Mendsaikhan</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Hrabik</surname>
<given-names>TR</given-names>
</name>
.
<article-title>Abundance, spatial distribution, and diet of endangered Hovsgol grayling (
<italic>Thymallus nigrescens</italic>
)</article-title>
.
<source>Environ Biol Fishes</source>
.
<year>2012</year>
;
<volume>94</volume>
(
<issue>2</issue>
):
<fpage>465</fpage>
<lpage>476</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref022">
<label>22</label>
<mixed-citation publication-type="book">
<name>
<surname>Sideleva</surname>
<given-names>VG</given-names>
</name>
.
<chapter-title>Fish fauna of Lake Hovsgol and Selenga River in comparison with ichthyofauna of Lake Baikal</chapter-title>
In:
<name>
<surname>Goulden</surname>
<given-names>CE</given-names>
</name>
,
<name>
<surname>Sitnikova</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Gelhaus</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Boldgiv</surname>
<given-names>B</given-names>
</name>
, editors.
<source>The geology, biodiversity, and ecology of Lake Hovsgol (Mongolia)</source>
.
<publisher-loc>Leiden, Netherlands</publisher-loc>
:
<publisher-name>Backhuys</publisher-name>
;
<year>2006</year>
pp
<fpage>357</fpage>
<lpage>378</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref023">
<label>23</label>
<mixed-citation publication-type="other">Dulmaa A. Fish and fisheries in Mongolia. In: Petr T, editor. Fish and fisheries at higher latitudes: Asia. FAO Fisheries Technical Paper 385. Rome, Italy: FAO; 1999.</mixed-citation>
</ref>
<ref id="pone.0143960.ref024">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Free</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Jensen</surname>
<given-names>OP</given-names>
</name>
,
<name>
<surname>Mason</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Eriksen</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Williamson</surname>
<given-names>NJ</given-names>
</name>
,
<name>
<surname>Boldgiv</surname>
<given-names>B</given-names>
</name>
.
<article-title>High-levels of microplastic pollution in a large, remote, mountain lake</article-title>
.
<source>Mar Pollut Bull</source>
.
<year>2014</year>
;
<volume>85</volume>
(
<issue>1</issue>
):
<fpage>156</fpage>
<lpage>163</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.marpolbul.2014.06.001">10.1016/j.marpolbul.2014.06.001</ext-link>
</comment>
<pub-id pub-id-type="pmid">24973278</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0143960.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Atkinson</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Flint</surname>
<given-names>J</given-names>
</name>
.
<article-title>Accessing hidden and hard-to-reach populations: Snowball research strategies</article-title>
.
<source>Soc Res Update</source>
.
<year>2001</year>
;
<volume>33</volume>
(
<issue>1</issue>
):
<fpage>1</fpage>
<lpage>4</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref026">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>McClenachan</surname>
<given-names>L</given-names>
</name>
.
<article-title>Documenting loss of large trophy fish from the Florida Keys with historical photographs</article-title>
.
<source>Conserv Biol</source>
.
<year>2009</year>
;
<volume>23</volume>
(
<issue>3</issue>
):
<fpage>636</fpage>
<lpage>643</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1523-1739.2008.01152.x">10.1111/j.1523-1739.2008.01152.x</ext-link>
</comment>
<pub-id pub-id-type="pmid">19183214</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0143960.ref027">
<label>27</label>
<mixed-citation publication-type="book">
<collab>R Core Team</collab>
.
<chapter-title>R: A language and environment for statistical computing</chapter-title>
<publisher-name>R Foundation for Statistical Computing</publisher-name>
:
<publisher-loc>Vienna, Austria</publisher-loc>
<year>2015</year>
Available:
<ext-link ext-link-type="uri" xlink:href="http://www.R-project.org/">http://www.R-project.org/</ext-link>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref028">
<label>28</label>
<mixed-citation publication-type="other">Bates D, Maechler M, Bolker B, Walker S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–8. 2015. Available:
<ext-link ext-link-type="uri" xlink:href="http://CRAN.R-project.org/package=lme4">http://CRAN.R-project.org/package=lme4</ext-link>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref029">
<label>29</label>
<mixed-citation publication-type="book">
<name>
<surname>Hilborn</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Walters</surname>
<given-names>CJ</given-names>
</name>
.
<source>Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty</source>
.
<publisher-loc>Dordrecht, Netherlands</publisher-loc>
:
<publisher-name>Springer Science+Business Media</publisher-name>
;
<year>1992</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kenchington</surname>
<given-names>TJ</given-names>
</name>
.
<article-title>Natural mortality estimators for information‐limited fisheries</article-title>
.
<source>Fish Fish</source>
.
<year>2014</year>
;
<volume>15</volume>
(
<issue>4</issue>
):
<fpage>533</fpage>
<lpage>562</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref031">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhou</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Yin</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Thorson</surname>
<given-names>JT</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>ADM</given-names>
</name>
,
<name>
<surname>Fuller</surname>
<given-names>M</given-names>
</name>
.
<article-title>Linking fishing mortality reference points to life history traits: an empirical study</article-title>
.
<source>Can J Fish Aquat Sci</source>
.
<year>2012</year>
;
<volume>69</volume>
:
<fpage>1292</fpage>
<lpage>1301</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref032">
<label>32</label>
<mixed-citation publication-type="other">Pauly D, Morgan GR. Length-based methods in fisheries research. ICLARM Conference Proceedings 13. Manila, Philippines: International Center for Living Aquatic Resources Management; 1987.</mixed-citation>
</ref>
<ref id="pone.0143960.ref033">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Donohue</surname>
<given-names>MJ</given-names>
</name>
,
<name>
<surname>Boland</surname>
<given-names>RC</given-names>
</name>
,
<name>
<surname>Sramek</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Antonelis</surname>
<given-names>GA</given-names>
</name>
.
<article-title>Derelict fishing gear in the Northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems</article-title>
.
<source>Mar Pollut Bull</source>
.
<year>2001</year>
;
<volume>42</volume>
(
<issue>12</issue>
):
<fpage>1301</fpage>
<lpage>1312</lpage>
.
<pub-id pub-id-type="pmid">11827117</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0143960.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bauer</surname>
<given-names>LJ</given-names>
</name>
,
<name>
<surname>Kendall</surname>
<given-names>MS</given-names>
</name>
,
<name>
<surname>Jeffrey</surname>
<given-names>CF</given-names>
</name>
.
<article-title>Incidence of marine debris and its relationships with benthic features in Gray’s Reef National Marine Sanctuary, Southeast USA</article-title>
.
<source>Mar Pollut Bull</source>
.
<year>2008</year>
;
<volume>56</volume>
(
<issue>3</issue>
):
<fpage>402</fpage>
<lpage>413</lpage>
.
<pub-id pub-id-type="pmid">18096190</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0143960.ref035">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Solomon</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Jacobson</surname>
<given-names>SK</given-names>
</name>
,
<name>
<surname>Wald</surname>
<given-names>KD</given-names>
</name>
,
<name>
<surname>Gavin</surname>
<given-names>M</given-names>
</name>
.
<article-title>Estimating illegal resource use at a Ugandan park with the Randomized Response Technique</article-title>
.
<source>Hum Dimens Wildl</source>
.
<year>2007</year>
;
<volume>12</volume>
(
<issue>2</issue>
):
<fpage>75</fpage>
<lpage>88</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref036">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Thomas</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Gavin</surname>
<given-names>MC</given-names>
</name>
,
<name>
<surname>Milfont</surname>
<given-names>TL</given-names>
</name>
.
<article-title>Estimating non-compliance among recreational fishers: Insights into factors affecting the usefulness of the Randomized Response and Item Count Techniques</article-title>
.
<source>Biol Conserv</source>
.
<year>2014</year>
;
<volume>189</volume>
:
<fpage>24</fpage>
<lpage>32</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref037">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mann</surname>
<given-names>BQ</given-names>
</name>
.
<article-title>Quantification of illicit fish harvesting in the Lake St Lucia game reserve, South Africa</article-title>
.
<source>Biol Conserv</source>
.
<year>1995</year>
;
<volume>74</volume>
(
<issue>2</issue>
):
<fpage>107</fpage>
<lpage>113</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref038">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wolter</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Preisendörfer</surname>
<given-names>P</given-names>
</name>
.
<article-title>Asking sensitive questions an evaluation of the randomized response technique versus direct questioning using individual validation data</article-title>
.
<source>Sociol Methods Res</source>
.
<year>2013</year>
;
<volume>42</volume>
(
<issue>3</issue>
):
<fpage>321</fpage>
<lpage>353</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref039">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jupiter</surname>
<given-names>SD</given-names>
</name>
,
<name>
<surname>Egli</surname>
<given-names>DP</given-names>
</name>
.
<article-title>Ecosystem-based management in Fiji: successes and challenges after five years of implementation</article-title>
.
<source>J Mar Biol</source>
.
<year>2010</year>
;
<volume>2011</volume>
:
<fpage>940765</fpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref040">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Fisher</surname>
<given-names>RJ</given-names>
</name>
.
<article-title>Social desirability bias and the validity of indirect questioning</article-title>
.
<source>J Consum Res</source>
.
<year>1993</year>
;
<volume>20</volume>
:
<fpage>303</fpage>
<lpage>315</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref041">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Warner</surname>
<given-names>SL</given-names>
</name>
.
<article-title>Randomized response: a survey technique for eliminating evasive answer bias</article-title>
.
<source>J Am Stat Assoc</source>
.
<year>1965</year>
;
<volume>60</volume>
(
<issue>309</issue>
)
<fpage>63</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="pmid">12261830</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0143960.ref042">
<label>42</label>
<mixed-citation publication-type="book">
<name>
<surname>Miller</surname>
<given-names>JD</given-names>
</name>
.
<chapter-title>A new survey technique for studying deviant behavior</chapter-title>
<publisher-loc>Washington, D.C</publisher-loc>
:
<publisher-name>George Washington University</publisher-name>
;
<year>1984</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref043">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Blank</surname>
<given-names>SG</given-names>
</name>
,
<name>
<surname>Gavin</surname>
<given-names>MC</given-names>
</name>
.
<article-title>The randomized response technique as a tool for estimating non-compliance rates in fisheries: a case study of illegal red abalone (
<italic>Haliotis rufescens</italic>
) fishing in Northern California</article-title>
.
<source>Environ Conserv</source>
.
<year>2009</year>
;
<volume>36</volume>
(
<issue>2</issue>
):
<fpage>112</fpage>
<lpage>119</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref044">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>St John</surname>
<given-names>FAV</given-names>
</name>
,
<name>
<surname>Edwards-Jones</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Gibbons</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>JPG</given-names>
</name>
.
<article-title>Testing novel methods for assessing rule breaking in conservation</article-title>
.
<source>Biol Conserv</source>
.
<year>2010</year>
;
<volume>143</volume>
(
<issue>4</issue>
):
<fpage>1025</fpage>
<lpage>1030</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref045">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nuno</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>St John</surname>
<given-names>FA</given-names>
</name>
.
<article-title>How to ask sensitive questions in conservation: A review of specialized questioning techniques</article-title>
.
<source>Biol Conserv</source>
.
<year>2014</year>
;
<volume>189</volume>
:
<fpage>5</fpage>
<lpage>15</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref046">
<label>46</label>
<mixed-citation publication-type="journal">
<name>
<surname>Keane</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Edwards-Jones</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Milner-Gulland</surname>
<given-names>EJ</given-names>
</name>
.
<article-title>The sleeping policeman: understanding issues of enforcement and compliance in conservation</article-title>
.
<source>Anim Conserv</source>
.
<year>2008</year>
;
<volume>11</volume>
(
<issue>2</issue>
):
<fpage>75</fpage>
<lpage>82</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref047">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Jensen</surname>
<given-names>OP</given-names>
</name>
,
<name>
<surname>Gilroy</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Hogan</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Allen</surname>
<given-names>BC</given-names>
</name>
,
<name>
<surname>Hrabik</surname>
<given-names>TR</given-names>
</name>
,
<name>
<surname>Weidel</surname>
<given-names>BC</given-names>
</name>
,
<etal>et al</etal>
<article-title>Evaluating recreational fisheries for an endangered species: a case study of taimen,
<italic>Hucho taimen</italic>
, in Mongolia</article-title>
.
<source>Can J Fish Aquat Sci</source>
.
<year>2009</year>
;
<volume>66</volume>
(
<issue>10</issue>
):
<fpage>1707</fpage>
<lpage>1718</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref048">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Northcote</surname>
<given-names>TG</given-names>
</name>
.
<article-title>Comparative biology and management of Arctic and European grayling (Salmonidae,
<italic>Thymallus</italic>
)</article-title>
.
<source>Rev Fish Biol Fish</source>
.
<year>1995</year>
;
<volume>5</volume>
(
<issue>2</issue>
):
<fpage>141</fpage>
<lpage>194</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref049">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Roberts</surname>
<given-names>BC</given-names>
</name>
,
<name>
<surname>White</surname>
<given-names>RG</given-names>
</name>
.
<article-title>Effects of angler wading on survival of trout eggs and pre-emergent fry</article-title>
.
<source>N Am J Fish Manage</source>
.
<year>1992</year>
;
<volume>12</volume>
(
<issue>3</issue>
):
<fpage>450</fpage>
<lpage>459</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref050">
<label>50</label>
<mixed-citation publication-type="book">
<name>
<surname>Dagvadorj</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Natsagdorj</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Dorjpurev</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Namkhainyam</surname>
<given-names>B</given-names>
</name>
.
<chapter-title>MARCC: Mongolia assessment report on climate change 2009</chapter-title>
<publisher-loc>Ulaanbaatar, Mongolia</publisher-loc>
:
<publisher-name>Ministry of Nature, Environment, and Tourism</publisher-name>
;
<year>2009</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref051">
<label>51</label>
<mixed-citation publication-type="book">
<collab>IPCC</collab>
.
<chapter-title>Climate Change 2013: The Physical Science Basis</chapter-title>
<source>Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change</source>
. Eds:
<name>
<surname>Stocker</surname>
<given-names>TF</given-names>
</name>
,
<name>
<surname>Qin</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Plattner</surname>
<given-names>GK</given-names>
</name>
,
<name>
<surname>Tignor</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Allen</surname>
<given-names>SK</given-names>
</name>
,
<name>
<surname>Boschung</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Nauels</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Xia</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Bex</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Midgley</surname>
<given-names>PM</given-names>
</name>
.
<publisher-loc>Cambridge, UK</publisher-loc>
:
<publisher-name>Cambridge University Press</publisher-name>
;
<year>2013</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref052">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Young</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Jensen</surname>
<given-names>OP</given-names>
</name>
,
<name>
<surname>Weidel</surname>
<given-names>BC</given-names>
</name>
,
<name>
<surname>Chandra</surname>
<given-names>S</given-names>
</name>
.
<article-title>Natural trophic variability in a large, oligotrophic, near-pristine lake</article-title>
.
<source>J Great Lakes Res</source>
.
<year>2015</year>
;
<volume>41</volume>
(
<issue>2</issue>
):
<fpage>463</fpage>
<lpage>472</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref053">
<label>53</label>
<mixed-citation publication-type="book">
<name>
<surname>Batima</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Natsagdorj</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Batnasan</surname>
<given-names>N</given-names>
</name>
.
<chapter-title>Vulnerability of Mongolia’s pastoralists to climate extremes and changes</chapter-title>
In:
<name>
<surname>Leary</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Conde</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Kulkarni</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Nyong</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Pulhin</surname>
<given-names>J</given-names>
</name>
, editors.
<source>Climate Change and Vulnerability and Adaptation</source>
.
<publisher-loc>London, UK</publisher-loc>
:
<publisher-name>Earthscan</publisher-name>
;
<year>2013</year>
pp.
<fpage>67</fpage>
<lpage>87</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref054">
<label>54</label>
<mixed-citation publication-type="book">
<name>
<surname>Bruun</surname>
<given-names>O</given-names>
</name>
,
<name>
<surname>Odgaard</surname>
<given-names>O</given-names>
</name>
.
<chapter-title>Mongolia in transition: old patterns, new challenges</chapter-title>
<publisher-loc>Abingdon, UK</publisher-loc>
:
<publisher-name>Nordic Institute of Asian Studies</publisher-name>
;
<year>1996</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref055">
<label>55</label>
<mixed-citation publication-type="book">
<name>
<surname>Myagmarsuren</surname>
<given-names>D</given-names>
</name>
.
<source>Special Protected Areas of Mongolia</source>
.
<publisher-loc>Ulaanbaatar, Mongolia</publisher-loc>
:
<publisher-name>Munkhyn Useg Co, Ltd</publisher-name>
;
<year>2008</year>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref056">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Then</surname>
<given-names>AY</given-names>
</name>
,
<name>
<surname>Hoenig</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Hall</surname>
<given-names>NG</given-names>
</name>
,
<name>
<surname>Hewitt</surname>
<given-names>DA</given-names>
</name>
.
<article-title>Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species</article-title>
.
<source>ICES J Mar Sci</source>
.
<year>2014</year>
;
<volume>72</volume>
(
<issue>1</issue>
):
<fpage>82</fpage>
<lpage>92</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0143960.ref057">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gunderson</surname>
<given-names>D</given-names>
</name>
.
<article-title>Trade-off between reproductive effort and adult survival in oviparous and viviparous fishes</article-title>
.
<source>Can J Fish Aquat Sci</source>
.
<year>1997</year>
;
<volume>54</volume>
(
<issue>5</issue>
):
<fpage>990</fpage>
<lpage>998</lpage>
.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Eau/explor/LotaV3/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0000139 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0000139 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Eau
   |area=    LotaV3
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.39.
Data generation: Fri May 20 09:58:26 2022. Site generation: Fri May 20 10:24:07 2022