Serveur d'exploration sur la visibilité du Havre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation

Identifieur interne : 000180 ( PascalFrancis/Corpus ); précédent : 000179; suivant : 000181

Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation

Auteurs : Upendra M. Sainju ; Andrew Lenssen ; Thecan Caesar-Thonthat ; Jed Waddell

Source :

RBID : Pascal:06-0443103

Descripteurs français

English descriptors

Abstract

Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the northern Great Plains have resulted in low soil organic carbon (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)], and Conservation Reserve Program (CRP) planting on plant C input, SOC, and particulate organic carbon (POC). A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) from 1998 to 2003 in Havre, MT. Total plant biomass returned to the soil from 1998 to 2003 was greater in CW (15.5 Mg ha-1) than in other rotations. Residue cover, amount, and C content in 2004 were 33 to 86% greater in NT than in CT and greater in CRP than in crop rotations. Residue amount (2.47 Mg ha-1) and C content (0.96 Mg ha-1) were greater in NT with CW than in other treatments, except in CT with CRP and W-F and in NT with CRP and W-W-F. The SOC at the 0- to 5-cm depth was 23% greater in NT (6.4 Mg ha-1) than in CT. The POC was not influenced by tillage and crop rotation, but POC to SOC ratio at the 0- to 20-cm depth was greater in NT with W-L (369 g kg-1 SOC) than in CT with CW, W-F, and W-L. From 1998 to 2003, SOC at the 0-to 20-cm depth decreased by 4% in CT but increased by 3% in NT. Carbon can be sequestered in dryland soils and plant residue in areas previously under CRP using reduced tillage and increased cropping intensity, such as NT with CW, compared with traditional practice, such as CT with W-F system, and the content can be similar to that in CRP planting.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0047-2425
A02 01      @0 JEVQAA
A03   1    @0 J. environ. qual.
A05       @2 35
A06       @2 4
A08 01  1  ENG  @1 Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation
A11 01  1    @1 SAINJU (Upendra M.)
A11 02  1    @1 LENSSEN (Andrew)
A11 03  1    @1 CAESAR-THONTHAT (Thecan)
A11 04  1    @1 WADDELL (Jed)
A14 01      @1 USDA-ARS, 1500 North Central Avenue @2 Sidney, MT 59270 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 1341-1347
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 15480 @5 354000139076220400
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 38 ref.
A47 01  1    @0 06-0443103
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal of environmental quality
A66 01      @0 USA
C01 01    ENG  @0 Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the northern Great Plains have resulted in low soil organic carbon (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)], and Conservation Reserve Program (CRP) planting on plant C input, SOC, and particulate organic carbon (POC). A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) from 1998 to 2003 in Havre, MT. Total plant biomass returned to the soil from 1998 to 2003 was greater in CW (15.5 Mg ha-1) than in other rotations. Residue cover, amount, and C content in 2004 were 33 to 86% greater in NT than in CT and greater in CRP than in crop rotations. Residue amount (2.47 Mg ha-1) and C content (0.96 Mg ha-1) were greater in NT with CW than in other treatments, except in CT with CRP and W-F and in NT with CRP and W-W-F. The SOC at the 0- to 5-cm depth was 23% greater in NT (6.4 Mg ha-1) than in CT. The POC was not influenced by tillage and crop rotation, but POC to SOC ratio at the 0- to 20-cm depth was greater in NT with W-L (369 g kg-1 SOC) than in CT with CW, W-F, and W-L. From 1998 to 2003, SOC at the 0-to 20-cm depth decreased by 4% in CT but increased by 3% in NT. Carbon can be sequestered in dryland soils and plant residue in areas previously under CRP using reduced tillage and increased cropping intensity, such as NT with CW, compared with traditional practice, such as CT with W-F system, and the content can be similar to that in CRP planting.
C02 01  X    @0 001D16
C02 02  2    @0 001E01O04
C02 03  X    @0 002A32
C02 04  X    @0 002A31D07
C02 05  2    @0 226B04
C02 06  X    @0 215
C03 01  X  FRE  @0 Séquestration carbone @5 01
C03 01  X  ENG  @0 Carbon sequestration @5 01
C03 01  X  SPA  @0 Secuestro carbono @5 01
C03 02  X  FRE  @0 Long terme @5 02
C03 02  X  ENG  @0 Long term @5 02
C03 02  X  SPA  @0 Largo plazo @5 02
C03 03  X  FRE  @0 Triticum aestivum @2 NS @5 03
C03 03  X  ENG  @0 Triticum aestivum @2 NS @5 03
C03 03  X  SPA  @0 Triticum aestivum @2 NS @5 03
C03 04  X  FRE  @0 Lens culinaris @2 NS @5 04
C03 04  X  ENG  @0 Lens culinaris @2 NS @5 04
C03 04  X  SPA  @0 Lens culinaris @2 NS @5 04
C03 05  X  FRE  @0 Pisum sativum @2 NS @5 05
C03 05  X  ENG  @0 Pisum sativum @2 NS @5 05
C03 05  X  SPA  @0 Pisum sativum @2 NS @5 05
C03 06  X  FRE  @0 Carbone particulaire @5 06
C03 06  X  ENG  @0 Particulate carbon @5 06
C03 06  X  SPA  @0 Carbono particular @5 06
C03 07  X  FRE  @0 Biomasse @5 07
C03 07  X  ENG  @0 Biomass @5 07
C03 07  X  SPA  @0 Biomasa @5 07
C03 08  X  FRE  @0 Grandes Plaines du Nord @2 564 @5 31
C03 08  X  ENG  @0 Northern Great Plains @2 564 @5 31
C03 08  X  SPA  @0 Grandes Llanuras del Norte @2 564 @5 31
C03 09  X  FRE  @0 Gaz effet serre @5 35
C03 09  X  ENG  @0 Greenhouse gas @5 35
C03 09  X  SPA  @0 Gas efecto invernadero @5 35
C03 10  3  FRE  @0 Réduction pollution @5 36
C03 10  3  ENG  @0 Pollution abatement @5 36
C03 11  X  FRE  @0 Pollution air @5 37
C03 11  X  ENG  @0 Air pollution @5 37
C03 11  X  SPA  @0 Contaminación aire @5 37
C03 12  X  FRE  @0 Lutte antipollution @5 38
C03 12  X  ENG  @0 Pollution control @5 38
C03 12  X  SPA  @0 Lucha anticontaminación @5 38
C07 01  X  FRE  @0 Gramineae @2 NS
C07 01  X  ENG  @0 Gramineae @2 NS
C07 01  X  SPA  @0 Gramineae @2 NS
C07 02  X  FRE  @0 Monocotyledones @2 NS
C07 02  X  ENG  @0 Monocotyledones @2 NS
C07 02  X  SPA  @0 Monocotyledones @2 NS
C07 03  X  FRE  @0 Angiospermae @2 NS
C07 03  X  ENG  @0 Angiospermae @2 NS
C07 03  X  SPA  @0 Angiospermae @2 NS
C07 04  X  FRE  @0 Spermatophyta @2 NS
C07 04  X  ENG  @0 Spermatophyta @2 NS
C07 04  X  SPA  @0 Spermatophyta @2 NS
C07 05  X  FRE  @0 Leguminosae @2 NS
C07 05  X  ENG  @0 Leguminosae @2 NS
C07 05  X  SPA  @0 Leguminosae @2 NS
C07 06  X  FRE  @0 Dicotyledones @2 NS
C07 06  X  ENG  @0 Dicotyledones @2 NS
C07 06  X  SPA  @0 Dicotyledones @2 NS
N21       @1 296
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 Third USDA Symposium on Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry @2 3 @3 Baltimore, MD USA @4 2005-03-21

Format Inist (serveur)

NO : PASCAL 06-0443103 INIST
ET : Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation
AU : SAINJU (Upendra M.); LENSSEN (Andrew); CAESAR-THONTHAT (Thecan); WADDELL (Jed)
AF : USDA-ARS, 1500 North Central Avenue/Sidney, MT 59270/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Journal of environmental quality; ISSN 0047-2425; Coden JEVQAA; Etats-Unis; Da. 2006; Vol. 35; No. 4; Pp. 1341-1347; Bibl. 38 ref.
LA : Anglais
EA : Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the northern Great Plains have resulted in low soil organic carbon (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)], and Conservation Reserve Program (CRP) planting on plant C input, SOC, and particulate organic carbon (POC). A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) from 1998 to 2003 in Havre, MT. Total plant biomass returned to the soil from 1998 to 2003 was greater in CW (15.5 Mg ha-1) than in other rotations. Residue cover, amount, and C content in 2004 were 33 to 86% greater in NT than in CT and greater in CRP than in crop rotations. Residue amount (2.47 Mg ha-1) and C content (0.96 Mg ha-1) were greater in NT with CW than in other treatments, except in CT with CRP and W-F and in NT with CRP and W-W-F. The SOC at the 0- to 5-cm depth was 23% greater in NT (6.4 Mg ha-1) than in CT. The POC was not influenced by tillage and crop rotation, but POC to SOC ratio at the 0- to 20-cm depth was greater in NT with W-L (369 g kg-1 SOC) than in CT with CW, W-F, and W-L. From 1998 to 2003, SOC at the 0-to 20-cm depth decreased by 4% in CT but increased by 3% in NT. Carbon can be sequestered in dryland soils and plant residue in areas previously under CRP using reduced tillage and increased cropping intensity, such as NT with CW, compared with traditional practice, such as CT with W-F system, and the content can be similar to that in CRP planting.
CC : 001D16; 001E01O04; 002A32; 002A31D07; 226B04; 215
FD : Séquestration carbone; Long terme; Triticum aestivum; Lens culinaris; Pisum sativum; Carbone particulaire; Biomasse; Grandes Plaines du Nord; Gaz effet serre; Réduction pollution; Pollution air; Lutte antipollution
FG : Gramineae; Monocotyledones; Angiospermae; Spermatophyta; Leguminosae; Dicotyledones
ED : Carbon sequestration; Long term; Triticum aestivum; Lens culinaris; Pisum sativum; Particulate carbon; Biomass; Northern Great Plains; Greenhouse gas; Pollution abatement; Air pollution; Pollution control
EG : Gramineae; Monocotyledones; Angiospermae; Spermatophyta; Leguminosae; Dicotyledones
SD : Secuestro carbono; Largo plazo; Triticum aestivum; Lens culinaris; Pisum sativum; Carbono particular; Biomasa; Grandes Llanuras del Norte; Gas efecto invernadero; Contaminación aire; Lucha anticontaminación
LO : INIST-15480.354000139076220400
ID : 06-0443103

Links to Exploration step

Pascal:06-0443103

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation</title>
<author>
<name sortKey="Sainju, Upendra M" sort="Sainju, Upendra M" uniqKey="Sainju U" first="Upendra M." last="Sainju">Upendra M. Sainju</name>
<affiliation>
<inist:fA14 i1="01">
<s1>USDA-ARS, 1500 North Central Avenue</s1>
<s2>Sidney, MT 59270</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lenssen, Andrew" sort="Lenssen, Andrew" uniqKey="Lenssen A" first="Andrew" last="Lenssen">Andrew Lenssen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>USDA-ARS, 1500 North Central Avenue</s1>
<s2>Sidney, MT 59270</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Caesar Thonthat, Thecan" sort="Caesar Thonthat, Thecan" uniqKey="Caesar Thonthat T" first="Thecan" last="Caesar-Thonthat">Thecan Caesar-Thonthat</name>
<affiliation>
<inist:fA14 i1="01">
<s1>USDA-ARS, 1500 North Central Avenue</s1>
<s2>Sidney, MT 59270</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Waddell, Jed" sort="Waddell, Jed" uniqKey="Waddell J" first="Jed" last="Waddell">Jed Waddell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>USDA-ARS, 1500 North Central Avenue</s1>
<s2>Sidney, MT 59270</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0443103</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0443103 INIST</idno>
<idno type="RBID">Pascal:06-0443103</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000180</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation</title>
<author>
<name sortKey="Sainju, Upendra M" sort="Sainju, Upendra M" uniqKey="Sainju U" first="Upendra M." last="Sainju">Upendra M. Sainju</name>
<affiliation>
<inist:fA14 i1="01">
<s1>USDA-ARS, 1500 North Central Avenue</s1>
<s2>Sidney, MT 59270</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lenssen, Andrew" sort="Lenssen, Andrew" uniqKey="Lenssen A" first="Andrew" last="Lenssen">Andrew Lenssen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>USDA-ARS, 1500 North Central Avenue</s1>
<s2>Sidney, MT 59270</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Caesar Thonthat, Thecan" sort="Caesar Thonthat, Thecan" uniqKey="Caesar Thonthat T" first="Thecan" last="Caesar-Thonthat">Thecan Caesar-Thonthat</name>
<affiliation>
<inist:fA14 i1="01">
<s1>USDA-ARS, 1500 North Central Avenue</s1>
<s2>Sidney, MT 59270</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Waddell, Jed" sort="Waddell, Jed" uniqKey="Waddell J" first="Jed" last="Waddell">Jed Waddell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>USDA-ARS, 1500 North Central Avenue</s1>
<s2>Sidney, MT 59270</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of environmental quality</title>
<title level="j" type="abbreviated">J. environ. qual.</title>
<idno type="ISSN">0047-2425</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of environmental quality</title>
<title level="j" type="abbreviated">J. environ. qual.</title>
<idno type="ISSN">0047-2425</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air pollution</term>
<term>Biomass</term>
<term>Carbon sequestration</term>
<term>Greenhouse gas</term>
<term>Lens culinaris</term>
<term>Long term</term>
<term>Northern Great Plains</term>
<term>Particulate carbon</term>
<term>Pisum sativum</term>
<term>Pollution abatement</term>
<term>Pollution control</term>
<term>Triticum aestivum</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Séquestration carbone</term>
<term>Long terme</term>
<term>Triticum aestivum</term>
<term>Lens culinaris</term>
<term>Pisum sativum</term>
<term>Carbone particulaire</term>
<term>Biomasse</term>
<term>Grandes Plaines du Nord</term>
<term>Gaz effet serre</term>
<term>Réduction pollution</term>
<term>Pollution air</term>
<term>Lutte antipollution</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the northern Great Plains have resulted in low soil organic carbon (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)], and Conservation Reserve Program (CRP) planting on plant C input, SOC, and particulate organic carbon (POC). A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) from 1998 to 2003 in Havre, MT. Total plant biomass returned to the soil from 1998 to 2003 was greater in CW (15.5 Mg ha
<sup>-1</sup>
) than in other rotations. Residue cover, amount, and C content in 2004 were 33 to 86% greater in NT than in CT and greater in CRP than in crop rotations. Residue amount (2.47 Mg ha
<sup>-1</sup>
) and C content (0.96 Mg ha
<sup>-1</sup>
) were greater in NT with CW than in other treatments, except in CT with CRP and W-F and in NT with CRP and W-W-F. The SOC at the 0- to 5-cm depth was 23% greater in NT (6.4 Mg ha
<sup>-1</sup>
) than in CT. The POC was not influenced by tillage and crop rotation, but POC to SOC ratio at the 0- to 20-cm depth was greater in NT with W-L (369 g kg
<sup>-1</sup>
SOC) than in CT with CW, W-F, and W-L. From 1998 to 2003, SOC at the 0-to 20-cm depth decreased by 4% in CT but increased by 3% in NT. Carbon can be sequestered in dryland soils and plant residue in areas previously under CRP using reduced tillage and increased cropping intensity, such as NT with CW, compared with traditional practice, such as CT with W-F system, and the content can be similar to that in CRP planting.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0047-2425</s0>
</fA01>
<fA02 i1="01">
<s0>JEVQAA</s0>
</fA02>
<fA03 i2="1">
<s0>J. environ. qual.</s0>
</fA03>
<fA05>
<s2>35</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SAINJU (Upendra M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LENSSEN (Andrew)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CAESAR-THONTHAT (Thecan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WADDELL (Jed)</s1>
</fA11>
<fA14 i1="01">
<s1>USDA-ARS, 1500 North Central Avenue</s1>
<s2>Sidney, MT 59270</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1341-1347</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15480</s2>
<s5>354000139076220400</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0443103</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of environmental quality</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the northern Great Plains have resulted in low soil organic carbon (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)], and Conservation Reserve Program (CRP) planting on plant C input, SOC, and particulate organic carbon (POC). A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) from 1998 to 2003 in Havre, MT. Total plant biomass returned to the soil from 1998 to 2003 was greater in CW (15.5 Mg ha
<sup>-1</sup>
) than in other rotations. Residue cover, amount, and C content in 2004 were 33 to 86% greater in NT than in CT and greater in CRP than in crop rotations. Residue amount (2.47 Mg ha
<sup>-1</sup>
) and C content (0.96 Mg ha
<sup>-1</sup>
) were greater in NT with CW than in other treatments, except in CT with CRP and W-F and in NT with CRP and W-W-F. The SOC at the 0- to 5-cm depth was 23% greater in NT (6.4 Mg ha
<sup>-1</sup>
) than in CT. The POC was not influenced by tillage and crop rotation, but POC to SOC ratio at the 0- to 20-cm depth was greater in NT with W-L (369 g kg
<sup>-1</sup>
SOC) than in CT with CW, W-F, and W-L. From 1998 to 2003, SOC at the 0-to 20-cm depth decreased by 4% in CT but increased by 3% in NT. Carbon can be sequestered in dryland soils and plant residue in areas previously under CRP using reduced tillage and increased cropping intensity, such as NT with CW, compared with traditional practice, such as CT with W-F system, and the content can be similar to that in CRP planting.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01O04</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002A32</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>002A31D07</s0>
</fC02>
<fC02 i1="05" i2="2">
<s0>226B04</s0>
</fC02>
<fC02 i1="06" i2="X">
<s0>215</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Séquestration carbone</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Carbon sequestration</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Secuestro carbono</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Long terme</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Long term</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Largo plazo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Triticum aestivum</s0>
<s2>NS</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Triticum aestivum</s0>
<s2>NS</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Triticum aestivum</s0>
<s2>NS</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Lens culinaris</s0>
<s2>NS</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Lens culinaris</s0>
<s2>NS</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Lens culinaris</s0>
<s2>NS</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Pisum sativum</s0>
<s2>NS</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Pisum sativum</s0>
<s2>NS</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Pisum sativum</s0>
<s2>NS</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Carbone particulaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Particulate carbon</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Carbono particular</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Biomasse</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Biomass</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Biomasa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Grandes Plaines du Nord</s0>
<s2>564</s2>
<s5>31</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Northern Great Plains</s0>
<s2>564</s2>
<s5>31</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Grandes Llanuras del Norte</s0>
<s2>564</s2>
<s5>31</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Gaz effet serre</s0>
<s5>35</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Greenhouse gas</s0>
<s5>35</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Gas efecto invernadero</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Réduction pollution</s0>
<s5>36</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Pollution abatement</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>37</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>37</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Lutte antipollution</s0>
<s5>38</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Pollution control</s0>
<s5>38</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Lucha anticontaminación</s0>
<s5>38</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Gramineae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Gramineae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Gramineae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Monocotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Monocotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Monocotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Leguminosae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Leguminosae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Leguminosae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>296</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Third USDA Symposium on Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry</s1>
<s2>3</s2>
<s3>Baltimore, MD USA</s3>
<s4>2005-03-21</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 06-0443103 INIST</NO>
<ET>Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation</ET>
<AU>SAINJU (Upendra M.); LENSSEN (Andrew); CAESAR-THONTHAT (Thecan); WADDELL (Jed)</AU>
<AF>USDA-ARS, 1500 North Central Avenue/Sidney, MT 59270/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Journal of environmental quality; ISSN 0047-2425; Coden JEVQAA; Etats-Unis; Da. 2006; Vol. 35; No. 4; Pp. 1341-1347; Bibl. 38 ref.</SO>
<LA>Anglais</LA>
<EA>Long-term use of conventional tillage and wheat (Triticum aestivum L.)-fallow systems in the northern Great Plains have resulted in low soil organic carbon (SOC) levels. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)], five crop rotations [continuous spring wheat (CW), spring wheat-fallow (W-F), spring wheat-lentil (Lens culinaris Medic.) (W-L), spring wheat-spring wheat-fallow (W-W-F), and spring wheat-pea (Pisum sativum L.)-fallow (W-P-F)], and Conservation Reserve Program (CRP) planting on plant C input, SOC, and particulate organic carbon (POC). A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) from 1998 to 2003 in Havre, MT. Total plant biomass returned to the soil from 1998 to 2003 was greater in CW (15.5 Mg ha
<sup>-1</sup>
) than in other rotations. Residue cover, amount, and C content in 2004 were 33 to 86% greater in NT than in CT and greater in CRP than in crop rotations. Residue amount (2.47 Mg ha
<sup>-1</sup>
) and C content (0.96 Mg ha
<sup>-1</sup>
) were greater in NT with CW than in other treatments, except in CT with CRP and W-F and in NT with CRP and W-W-F. The SOC at the 0- to 5-cm depth was 23% greater in NT (6.4 Mg ha
<sup>-1</sup>
) than in CT. The POC was not influenced by tillage and crop rotation, but POC to SOC ratio at the 0- to 20-cm depth was greater in NT with W-L (369 g kg
<sup>-1</sup>
SOC) than in CT with CW, W-F, and W-L. From 1998 to 2003, SOC at the 0-to 20-cm depth decreased by 4% in CT but increased by 3% in NT. Carbon can be sequestered in dryland soils and plant residue in areas previously under CRP using reduced tillage and increased cropping intensity, such as NT with CW, compared with traditional practice, such as CT with W-F system, and the content can be similar to that in CRP planting.</EA>
<CC>001D16; 001E01O04; 002A32; 002A31D07; 226B04; 215</CC>
<FD>Séquestration carbone; Long terme; Triticum aestivum; Lens culinaris; Pisum sativum; Carbone particulaire; Biomasse; Grandes Plaines du Nord; Gaz effet serre; Réduction pollution; Pollution air; Lutte antipollution</FD>
<FG>Gramineae; Monocotyledones; Angiospermae; Spermatophyta; Leguminosae; Dicotyledones</FG>
<ED>Carbon sequestration; Long term; Triticum aestivum; Lens culinaris; Pisum sativum; Particulate carbon; Biomass; Northern Great Plains; Greenhouse gas; Pollution abatement; Air pollution; Pollution control</ED>
<EG>Gramineae; Monocotyledones; Angiospermae; Spermatophyta; Leguminosae; Dicotyledones</EG>
<SD>Secuestro carbono; Largo plazo; Triticum aestivum; Lens culinaris; Pisum sativum; Carbono particular; Biomasa; Grandes Llanuras del Norte; Gas efecto invernadero; Contaminación aire; Lucha anticontaminación</SD>
<LO>INIST-15480.354000139076220400</LO>
<ID>06-0443103</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/France/explor/LeHavreV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000180 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000180 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/France
   |area=    LeHavreV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0443103
   |texte=   Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 14:37:02 2016. Site generation: Tue Mar 5 08:25:07 2024