Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity.

Identifieur interne : 000125 ( PubMed/Curation ); précédent : 000124; suivant : 000126

Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity.

Auteurs : Ciaran A. Shaughnessy [États-Unis] ; Dan W. Baker [Canada] ; Colin J. Brauner [Canada] ; John D. Morgan [Canada] ; Jason S. Bystriansky [États-Unis]

Source :

RBID : pubmed:26163582

Abstract

Migratory fishes encounter a variety of environmental conditions, including changes in salinity, temperature, and dissolved gases, and it is important to understand how these fishes are able to acclimate to multiple environmental stressors. The gill is the primary site of both acid-base balance and ion regulation in fishes. Many ion transport mechanisms involved with acid-base compensation are also required for the regulation of plasma Na(+) and Cl(+), the predominant extracellular ions, potentially resulting in a strong interaction between iono- and acid-base regulation. The present study examined the physiological interaction of elevated dissolved CO2 (an acid-base disturbance) on osmoregulation during seawater acclimation (an ionoregulatory disturbance) in juvenile white sturgeon (Acipenser transmontanus). Blood pH (pHe), plasma [HCO3(-)], [Na(+)], [Cl(-)], and osmolality, white muscle water content, and gill Na(+)/K(+)-ATPase (NKA) and Na(+)/K(+)/2Cl(-) cotransporter (NKCC) abundance were examined over a 10-day seawater (SW) acclimation period under normocarbia (NCSW) or during prior and continued exposure to hypercarbia (HCSW), and compared to a normocarbic freshwater (NCFW) control. Hypercarbia induced a severe extracellular acidosis (from pH 7.65 to pH 7.2) in HCSW sturgeon, and these fish had a 2-fold greater rise in plasma osmolarity over NCSW by day 2 of SW exposure. Interestingly, pHe recovery in HCSW was associated more prominently with an elevation in plasma Na(+) prior to osmotic recovery and more prominently with a reduction in plasma Cl(-) following osmotic recovery, indicating a biphasic response as the requirements of osmoregulation transitioned from ion-uptake to ion-excretion throughout SW acclimation. These results imply a prioritization of osmoregulatory recovery over acid-base recovery in this period of combined exposure to acid-base and ionoregulatory disturbances.

DOI: 10.1242/dev.125567
PubMed: 26163582

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26163582

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity.</title>
<author>
<name sortKey="Shaughnessy, Ciaran A" sort="Shaughnessy, Ciaran A" uniqKey="Shaughnessy C" first="Ciaran A" last="Shaughnessy">Ciaran A. Shaughnessy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, DePaul University, Chicago, Illinois, United States cshaugh2@mail.depaul.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, DePaul University, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baker, Dan W" sort="Baker, Dan W" uniqKey="Baker D" first="Dan W" last="Baker">Dan W. Baker</name>
<affiliation wicri:level="1">
<nlm:affiliation>International Centre for Sturgeon Studies, Vancouver Island University, Nanaimo, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>International Centre for Sturgeon Studies, Vancouver Island University, Nanaimo, British Columbia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Brauner, Colin J" sort="Brauner, Colin J" uniqKey="Brauner C" first="Colin J" last="Brauner">Colin J. Brauner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Zoology, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Morgan, John D" sort="Morgan, John D" uniqKey="Morgan J" first="John D" last="Morgan">John D. Morgan</name>
<affiliation wicri:level="1">
<nlm:affiliation>International Centre for Sturgeon Studies, Vancouver Island University, Nanaimo, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>International Centre for Sturgeon Studies, Vancouver Island University, Nanaimo, British Columbia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bystriansky, Jason S" sort="Bystriansky, Jason S" uniqKey="Bystriansky J" first="Jason S" last="Bystriansky">Jason S. Bystriansky</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, DePaul University, Chicago, Illinois, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, DePaul University, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26163582</idno>
<idno type="pmid">26163582</idno>
<idno type="doi">10.1242/dev.125567</idno>
<idno type="wicri:Area/PubMed/Corpus">000125</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000125</idno>
<idno type="wicri:Area/PubMed/Curation">000125</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000125</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity.</title>
<author>
<name sortKey="Shaughnessy, Ciaran A" sort="Shaughnessy, Ciaran A" uniqKey="Shaughnessy C" first="Ciaran A" last="Shaughnessy">Ciaran A. Shaughnessy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, DePaul University, Chicago, Illinois, United States cshaugh2@mail.depaul.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, DePaul University, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baker, Dan W" sort="Baker, Dan W" uniqKey="Baker D" first="Dan W" last="Baker">Dan W. Baker</name>
<affiliation wicri:level="1">
<nlm:affiliation>International Centre for Sturgeon Studies, Vancouver Island University, Nanaimo, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>International Centre for Sturgeon Studies, Vancouver Island University, Nanaimo, British Columbia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Brauner, Colin J" sort="Brauner, Colin J" uniqKey="Brauner C" first="Colin J" last="Brauner">Colin J. Brauner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Zoology, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Morgan, John D" sort="Morgan, John D" uniqKey="Morgan J" first="John D" last="Morgan">John D. Morgan</name>
<affiliation wicri:level="1">
<nlm:affiliation>International Centre for Sturgeon Studies, Vancouver Island University, Nanaimo, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>International Centre for Sturgeon Studies, Vancouver Island University, Nanaimo, British Columbia</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bystriansky, Jason S" sort="Bystriansky, Jason S" uniqKey="Bystriansky J" first="Jason S" last="Bystriansky">Jason S. Bystriansky</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, DePaul University, Chicago, Illinois, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, DePaul University, Chicago, Illinois</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of experimental biology</title>
<idno type="eISSN">1477-9145</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Migratory fishes encounter a variety of environmental conditions, including changes in salinity, temperature, and dissolved gases, and it is important to understand how these fishes are able to acclimate to multiple environmental stressors. The gill is the primary site of both acid-base balance and ion regulation in fishes. Many ion transport mechanisms involved with acid-base compensation are also required for the regulation of plasma Na(+) and Cl(+), the predominant extracellular ions, potentially resulting in a strong interaction between iono- and acid-base regulation. The present study examined the physiological interaction of elevated dissolved CO2 (an acid-base disturbance) on osmoregulation during seawater acclimation (an ionoregulatory disturbance) in juvenile white sturgeon (Acipenser transmontanus). Blood pH (pHe), plasma [HCO3(-)], [Na(+)], [Cl(-)], and osmolality, white muscle water content, and gill Na(+)/K(+)-ATPase (NKA) and Na(+)/K(+)/2Cl(-) cotransporter (NKCC) abundance were examined over a 10-day seawater (SW) acclimation period under normocarbia (NCSW) or during prior and continued exposure to hypercarbia (HCSW), and compared to a normocarbic freshwater (NCFW) control. Hypercarbia induced a severe extracellular acidosis (from pH 7.65 to pH 7.2) in HCSW sturgeon, and these fish had a 2-fold greater rise in plasma osmolarity over NCSW by day 2 of SW exposure. Interestingly, pHe recovery in HCSW was associated more prominently with an elevation in plasma Na(+) prior to osmotic recovery and more prominently with a reduction in plasma Cl(-) following osmotic recovery, indicating a biphasic response as the requirements of osmoregulation transitioned from ion-uptake to ion-excretion throughout SW acclimation. These results imply a prioritization of osmoregulatory recovery over acid-base recovery in this period of combined exposure to acid-base and ionoregulatory disturbances.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">26163582</PMID>
<DateCreated>
<Year>2015</Year>
<Month>07</Month>
<Day>11</Day>
</DateCreated>
<DateRevised>
<Year>2015</Year>
<Month>07</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1477-9145</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of experimental biology</Title>
<ISOAbbreviation>J. Exp. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">dev.125567</ELocationID>
<Abstract>
<AbstractText NlmCategory="UNASSIGNED">Migratory fishes encounter a variety of environmental conditions, including changes in salinity, temperature, and dissolved gases, and it is important to understand how these fishes are able to acclimate to multiple environmental stressors. The gill is the primary site of both acid-base balance and ion regulation in fishes. Many ion transport mechanisms involved with acid-base compensation are also required for the regulation of plasma Na(+) and Cl(+), the predominant extracellular ions, potentially resulting in a strong interaction between iono- and acid-base regulation. The present study examined the physiological interaction of elevated dissolved CO2 (an acid-base disturbance) on osmoregulation during seawater acclimation (an ionoregulatory disturbance) in juvenile white sturgeon (Acipenser transmontanus). Blood pH (pHe), plasma [HCO3(-)], [Na(+)], [Cl(-)], and osmolality, white muscle water content, and gill Na(+)/K(+)-ATPase (NKA) and Na(+)/K(+)/2Cl(-) cotransporter (NKCC) abundance were examined over a 10-day seawater (SW) acclimation period under normocarbia (NCSW) or during prior and continued exposure to hypercarbia (HCSW), and compared to a normocarbic freshwater (NCFW) control. Hypercarbia induced a severe extracellular acidosis (from pH 7.65 to pH 7.2) in HCSW sturgeon, and these fish had a 2-fold greater rise in plasma osmolarity over NCSW by day 2 of SW exposure. Interestingly, pHe recovery in HCSW was associated more prominently with an elevation in plasma Na(+) prior to osmotic recovery and more prominently with a reduction in plasma Cl(-) following osmotic recovery, indicating a biphasic response as the requirements of osmoregulation transitioned from ion-uptake to ion-excretion throughout SW acclimation. These results imply a prioritization of osmoregulatory recovery over acid-base recovery in this period of combined exposure to acid-base and ionoregulatory disturbances.</AbstractText>
<CopyrightInformation>© 2015. Published by The Company of Biologists Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shaughnessy</LastName>
<ForeName>Ciaran A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, DePaul University, Chicago, Illinois, United States cshaugh2@mail.depaul.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Dan W</ForeName>
<Initials>DW</Initials>
<AffiliationInfo>
<Affiliation>International Centre for Sturgeon Studies, Vancouver Island University, Nanaimo, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brauner</LastName>
<ForeName>Colin J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morgan</LastName>
<ForeName>John D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>International Centre for Sturgeon Studies, Vancouver Island University, Nanaimo, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bystriansky</LastName>
<ForeName>Jason S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, DePaul University, Chicago, Illinois, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Biol</MedlineTA>
<NlmUniqueID>0243705</NlmUniqueID>
<ISSNLinking>0022-0949</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26163582</ArticleId>
<ArticleId IdType="pii">dev.125567</ArticleId>
<ArticleId IdType="doi">10.1242/dev.125567</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000125 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000125 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26163582
   |texte=   Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26163582" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024