Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Physiological and molecular responses of juvenile shortnose sturgeon (Acipenser brevirostrum) to thermal stress.

Identifieur interne : 000010 ( PubMed/Curation ); précédent : 000009; suivant : 000011

Physiological and molecular responses of juvenile shortnose sturgeon (Acipenser brevirostrum) to thermal stress.

Auteurs : Yueyang Zhang [Canada] ; Jennifer R. Loughery [Canada] ; Christopher J. Martyniuk [États-Unis] ; James D. Kieffer [Canada]

Source :

RBID : pubmed:27777016

Abstract

The shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818) is a vulnerable species that is found along the eastern coast of North America. Little is known about temperature tolerance in this species and with a rapidly changing global climate, it becomes increasingly important to define the thermal tolerance of this species to better predict population distribution. Using a modified critical thermal maximum test (CTMax), the objectives of this study were to determine the impact of heating rate (0.1, 0.2 and 0.25°Cmin(-1)) on the thermal tolerance, associated hematological responses, and oxygen consumption in juvenile sturgeon. In addition, transcripts associated with physiological stress and heat shock (i.e., heat shock proteins) were also measured. Heating rate did not alter the CTMax values of shortnose sturgeon. Neither heating rate nor thermal stress affected plasma sodium and chloride levels, nor the expression of transcripts that included catalase, glucocorticoid receptor, heat shock protein70 (hsp70), heat shock protein 90α (hsp90α) and cytochrome P450 1a (cyp1a). However, regardless of heating rate, thermal stress increased both plasma potassium and lactate concentrations. Glucose levels were increased at heating rates of 0.2 and 0.25°Cmin(-1), but not at 0.1°Cmin(-1). Overall, oxygen consumption rates increased with thermal stress, but the response patterns were not affected by heating rate. These data support the hypothesis that shortnose sturgeon can tolerate acute heat stress, as many physiological and molecular parameters measured here were non-responsive to the thermal stress.

DOI: 10.1016/j.cbpa.2016.10.009
PubMed: 27777016

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27777016

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Physiological and molecular responses of juvenile shortnose sturgeon (Acipenser brevirostrum) to thermal stress.</title>
<author>
<name sortKey="Zhang, Yueyang" sort="Zhang, Yueyang" uniqKey="Zhang Y" first="Yueyang" last="Zhang">Yueyang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada; Department of Biological Science, University of Alberta, Edmonton, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada; Department of Biological Science, University of Alberta, Edmonton, AB</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Loughery, Jennifer R" sort="Loughery, Jennifer R" uniqKey="Loughery J" first="Jennifer R" last="Loughery">Jennifer R. Loughery</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Martyniuk, Christopher J" sort="Martyniuk, Christopher J" uniqKey="Martyniuk C" first="Christopher J" last="Martyniuk">Christopher J. Martyniuk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Environmental and Human Toxicology, and Department of Physiological Sciences, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Environmental and Human Toxicology, and Department of Physiological Sciences, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kieffer, James D" sort="Kieffer, James D" uniqKey="Kieffer J" first="James D" last="Kieffer">James D. Kieffer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada. Electronic address: jkieffer@unb.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27777016</idno>
<idno type="pmid">27777016</idno>
<idno type="doi">10.1016/j.cbpa.2016.10.009</idno>
<idno type="wicri:Area/PubMed/Corpus">000010</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000010</idno>
<idno type="wicri:Area/PubMed/Curation">000010</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000010</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Physiological and molecular responses of juvenile shortnose sturgeon (Acipenser brevirostrum) to thermal stress.</title>
<author>
<name sortKey="Zhang, Yueyang" sort="Zhang, Yueyang" uniqKey="Zhang Y" first="Yueyang" last="Zhang">Yueyang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada; Department of Biological Science, University of Alberta, Edmonton, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada; Department of Biological Science, University of Alberta, Edmonton, AB</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Loughery, Jennifer R" sort="Loughery, Jennifer R" uniqKey="Loughery J" first="Jennifer R" last="Loughery">Jennifer R. Loughery</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Martyniuk, Christopher J" sort="Martyniuk, Christopher J" uniqKey="Martyniuk C" first="Christopher J" last="Martyniuk">Christopher J. Martyniuk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Environmental and Human Toxicology, and Department of Physiological Sciences, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Environmental and Human Toxicology, and Department of Physiological Sciences, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kieffer, James D" sort="Kieffer, James D" uniqKey="Kieffer J" first="James D" last="Kieffer">James D. Kieffer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada. Electronic address: jkieffer@unb.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Comparative biochemistry and physiology. Part A, Molecular & integrative physiology</title>
<idno type="eISSN">1531-4332</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818) is a vulnerable species that is found along the eastern coast of North America. Little is known about temperature tolerance in this species and with a rapidly changing global climate, it becomes increasingly important to define the thermal tolerance of this species to better predict population distribution. Using a modified critical thermal maximum test (CTMax), the objectives of this study were to determine the impact of heating rate (0.1, 0.2 and 0.25°Cmin(-1)) on the thermal tolerance, associated hematological responses, and oxygen consumption in juvenile sturgeon. In addition, transcripts associated with physiological stress and heat shock (i.e., heat shock proteins) were also measured. Heating rate did not alter the CTMax values of shortnose sturgeon. Neither heating rate nor thermal stress affected plasma sodium and chloride levels, nor the expression of transcripts that included catalase, glucocorticoid receptor, heat shock protein70 (hsp70), heat shock protein 90α (hsp90α) and cytochrome P450 1a (cyp1a). However, regardless of heating rate, thermal stress increased both plasma potassium and lactate concentrations. Glucose levels were increased at heating rates of 0.2 and 0.25°Cmin(-1), but not at 0.1°Cmin(-1). Overall, oxygen consumption rates increased with thermal stress, but the response patterns were not affected by heating rate. These data support the hypothesis that shortnose sturgeon can tolerate acute heat stress, as many physiological and molecular parameters measured here were non-responsive to the thermal stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">27777016</PMID>
<DateCreated>
<Year>2016</Year>
<Month>10</Month>
<Day>25</Day>
</DateCreated>
<DateRevised>
<Year>2016</Year>
<Month>12</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-4332</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>203</Volume>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Comparative biochemistry and physiology. Part A, Molecular & integrative physiology</Title>
<ISOAbbreviation>Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Physiological and molecular responses of juvenile shortnose sturgeon (Acipenser brevirostrum) to thermal stress.</ArticleTitle>
<Pagination>
<MedlinePgn>314-321</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S1095-6433(16)30234-3</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cbpa.2016.10.009</ELocationID>
<Abstract>
<AbstractText NlmCategory="UNASSIGNED">The shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818) is a vulnerable species that is found along the eastern coast of North America. Little is known about temperature tolerance in this species and with a rapidly changing global climate, it becomes increasingly important to define the thermal tolerance of this species to better predict population distribution. Using a modified critical thermal maximum test (CTMax), the objectives of this study were to determine the impact of heating rate (0.1, 0.2 and 0.25°Cmin(-1)) on the thermal tolerance, associated hematological responses, and oxygen consumption in juvenile sturgeon. In addition, transcripts associated with physiological stress and heat shock (i.e., heat shock proteins) were also measured. Heating rate did not alter the CTMax values of shortnose sturgeon. Neither heating rate nor thermal stress affected plasma sodium and chloride levels, nor the expression of transcripts that included catalase, glucocorticoid receptor, heat shock protein70 (hsp70), heat shock protein 90α (hsp90α) and cytochrome P450 1a (cyp1a). However, regardless of heating rate, thermal stress increased both plasma potassium and lactate concentrations. Glucose levels were increased at heating rates of 0.2 and 0.25°Cmin(-1), but not at 0.1°Cmin(-1). Overall, oxygen consumption rates increased with thermal stress, but the response patterns were not affected by heating rate. These data support the hypothesis that shortnose sturgeon can tolerate acute heat stress, as many physiological and molecular parameters measured here were non-responsive to the thermal stress.</AbstractText>
<CopyrightInformation>Copyright © 2016 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yueyang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada; Department of Biological Science, University of Alberta, Edmonton, AB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Loughery</LastName>
<ForeName>Jennifer R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martyniuk</LastName>
<ForeName>Christopher J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Center for Environmental and Human Toxicology, and Department of Physiological Sciences, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kieffer</LastName>
<ForeName>James D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada. Electronic address: jkieffer@unb.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Comp Biochem Physiol A Mol Integr Physiol</MedlineTA>
<NlmUniqueID>9806096</NlmUniqueID>
<ISSNLinking>1095-6433</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acipenser brevirostrum</Keyword>
<Keyword MajorTopicYN="N">Heat shock protein</Keyword>
<Keyword MajorTopicYN="N">Hematology</Keyword>
<Keyword MajorTopicYN="N">Oxygen consumption</Keyword>
<Keyword MajorTopicYN="N">Shortnose sturgeon</Keyword>
<Keyword MajorTopicYN="N">Thermal tolerance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>10</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27777016</ArticleId>
<ArticleId IdType="pii">S1095-6433(16)30234-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.cbpa.2016.10.009</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000010 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000010 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:27777016
   |texte=   Physiological and molecular responses of juvenile shortnose sturgeon (Acipenser brevirostrum) to thermal stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:27777016" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024