Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model.

Identifieur interne : 000744 ( PubMed/Corpus ); précédent : 000743; suivant : 000745

Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model.

Auteurs : N E Buroker ; J R Brown ; T A Gilbert ; P J O'Hara ; A T Beckenbach ; W K Thomas ; M J Smith

Source :

RBID : pubmed:1968410

English descriptors

Abstract

Extensive length polymorphism and heteroplasmy (multiple forms within an individual) of the D-loop region are observed in mitochondrial DNA of the white sturgeon (Acipenser transmontanus). The nucleotide sequence of this region, for both a short and a long form, shows that the differences are due to variable numbers of a perfect 82-bp direct repeat. We propose a model for the replicative origin of length differences, involving a competitive equilibrium between the heavy strand and the D-loop strand. This model suggests that frequent misalignment in the repeat region prior to elongation, facilitated by a stable secondary structure in the displaced strand, can explain both the polymorphism and heteroplasmy in this species.

PubMed: 1968410

Links to Exploration step

pubmed:1968410

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model.</title>
<author>
<name sortKey="Buroker, N E" sort="Buroker, N E" uniqKey="Buroker N" first="N E" last="Buroker">N E Buroker</name>
<affiliation>
<nlm:affiliation>School of Medicine, Department of Pediatrics, University of Washington, Seattle 98195.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brown, J R" sort="Brown, J R" uniqKey="Brown J" first="J R" last="Brown">J R Brown</name>
</author>
<author>
<name sortKey="Gilbert, T A" sort="Gilbert, T A" uniqKey="Gilbert T" first="T A" last="Gilbert">T A Gilbert</name>
</author>
<author>
<name sortKey="O Hara, P J" sort="O Hara, P J" uniqKey="O Hara P" first="P J" last="O'Hara">P J O'Hara</name>
</author>
<author>
<name sortKey="Beckenbach, A T" sort="Beckenbach, A T" uniqKey="Beckenbach A" first="A T" last="Beckenbach">A T Beckenbach</name>
</author>
<author>
<name sortKey="Thomas, W K" sort="Thomas, W K" uniqKey="Thomas W" first="W K" last="Thomas">W K Thomas</name>
</author>
<author>
<name sortKey="Smith, M J" sort="Smith, M J" uniqKey="Smith M" first="M J" last="Smith">M J Smith</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1990">1990</date>
<idno type="RBID">pubmed:1968410</idno>
<idno type="pmid">1968410</idno>
<idno type="wicri:Area/PubMed/Corpus">000744</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000744</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model.</title>
<author>
<name sortKey="Buroker, N E" sort="Buroker, N E" uniqKey="Buroker N" first="N E" last="Buroker">N E Buroker</name>
<affiliation>
<nlm:affiliation>School of Medicine, Department of Pediatrics, University of Washington, Seattle 98195.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brown, J R" sort="Brown, J R" uniqKey="Brown J" first="J R" last="Brown">J R Brown</name>
</author>
<author>
<name sortKey="Gilbert, T A" sort="Gilbert, T A" uniqKey="Gilbert T" first="T A" last="Gilbert">T A Gilbert</name>
</author>
<author>
<name sortKey="O Hara, P J" sort="O Hara, P J" uniqKey="O Hara P" first="P J" last="O'Hara">P J O'Hara</name>
</author>
<author>
<name sortKey="Beckenbach, A T" sort="Beckenbach, A T" uniqKey="Beckenbach A" first="A T" last="Beckenbach">A T Beckenbach</name>
</author>
<author>
<name sortKey="Thomas, W K" sort="Thomas, W K" uniqKey="Thomas W" first="W K" last="Thomas">W K Thomas</name>
</author>
<author>
<name sortKey="Smith, M J" sort="Smith, M J" uniqKey="Smith M" first="M J" last="Smith">M J Smith</name>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="ISSN">0016-6731</idno>
<imprint>
<date when="1990" type="published">1990</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>DNA Replication</term>
<term>DNA, Mitochondrial (genetics)</term>
<term>DNA, Mitochondrial (metabolism)</term>
<term>Fishes (genetics)</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Repetitive Sequences, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Mitochondrial</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Mitochondrial</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fishes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>DNA Replication</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Nucleic Acid Conformation</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Repetitive Sequences, Nucleic Acid</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Extensive length polymorphism and heteroplasmy (multiple forms within an individual) of the D-loop region are observed in mitochondrial DNA of the white sturgeon (Acipenser transmontanus). The nucleotide sequence of this region, for both a short and a long form, shows that the differences are due to variable numbers of a perfect 82-bp direct repeat. We propose a model for the replicative origin of length differences, involving a competitive equilibrium between the heavy strand and the D-loop strand. This model suggests that frequent misalignment in the repeat region prior to elongation, facilitated by a stable secondary structure in the displaced strand, can explain both the polymorphism and heteroplasmy in this species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">1968410</PMID>
<DateCreated>
<Year>1990</Year>
<Month>04</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>1990</Year>
<Month>04</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>10</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0016-6731</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>124</Volume>
<Issue>1</Issue>
<PubDate>
<Year>1990</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model.</ArticleTitle>
<Pagination>
<MedlinePgn>157-63</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Extensive length polymorphism and heteroplasmy (multiple forms within an individual) of the D-loop region are observed in mitochondrial DNA of the white sturgeon (Acipenser transmontanus). The nucleotide sequence of this region, for both a short and a long form, shows that the differences are due to variable numbers of a perfect 82-bp direct repeat. We propose a model for the replicative origin of length differences, involving a competitive equilibrium between the heavy strand and the D-loop strand. This model suggests that frequent misalignment in the repeat region prior to elongation, facilitated by a stable secondary structure in the displaced strand, can explain both the polymorphism and heteroplasmy in this species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Buroker</LastName>
<ForeName>N E</ForeName>
<Initials>NE</Initials>
<AffiliationInfo>
<Affiliation>School of Medicine, Department of Pediatrics, University of Washington, Seattle 98195.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>J R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gilbert</LastName>
<ForeName>T A</ForeName>
<Initials>TA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>O'Hara</LastName>
<ForeName>P J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beckenbach</LastName>
<ForeName>A T</ForeName>
<Initials>AT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thomas</LastName>
<ForeName>W K</ForeName>
<Initials>WK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>M J</ForeName>
<Initials>MJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>X54348</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004272">DNA, Mitochondrial</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1974 Nov;71(11):4447-51</RefSource>
<PMID Version="1">4612520</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Appl Biosci. 1989 Jul;5(3):233-4</RefSource>
<PMID Version="1">2766009</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1977 Jul;11(3):571-83</RefSource>
<PMID Version="1">884736</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967-71</RefSource>
<PMID Version="1">109836</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1980 Jun 15;140(1):15-34</RefSource>
<PMID Version="1">6251232</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1980 Oct;21(3):653-68</RefSource>
<PMID Version="1">6985477</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1981 Jan 10;9(1):133-48</RefSource>
<PMID Version="1">6163133</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1981 Apr 9;290(5806):457-65</RefSource>
<PMID Version="1">7219534</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1981 May 25;256(10):5109-15</RefSource>
<PMID Version="1">6262317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1981 Oct;78(10):6116-20</RefSource>
<PMID Version="1">6273850</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1982 Apr;28(4):693-705</RefSource>
<PMID Version="1">6178513</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1982 Aug;79(15):4686-90</RefSource>
<PMID Version="1">6289312</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1983 Nov;80(22):6942-6</RefSource>
<PMID Version="1">6316335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1985 Aug;110(4):689-707</RefSource>
<PMID Version="1">2993100</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Cell Res. 1985 Oct;160(2):387-95</RefSource>
<PMID Version="1">2995099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 1985;36(1-2):65-78</RefSource>
<PMID Version="1">2415430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Hered. 1986 Jul-Aug;77(4):249-52</RefSource>
<PMID Version="1">3760536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Heredity (Edinb). 1987 Apr;58 ( Pt 2):229-38</RefSource>
<PMID Version="1">3032871</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1988 Dec 23;16(24):11825</RefSource>
<PMID Version="1">3211756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1989 Mar;121(3):551-69</RefSource>
<PMID Version="1">2565855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1989 Jun 12;17(11):4389</RefSource>
<PMID Version="1">2740232</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1976 Oct;73(10):3623-7</RefSource>
<PMID Version="1">1068475</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="Y">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004272" MajorTopicYN="N">DNA, Mitochondrial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="Y">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012091" MajorTopicYN="N">Repetitive Sequences, Nucleic Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC1203902</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1990</Year>
<Month>1</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1990</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1990</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">1968410</ArticleId>
<ArticleId IdType="pmc">PMC1203902</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000744 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000744 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:1968410
   |texte=   Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:1968410" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024