Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish.

Identifieur interne : 000372 ( PubMed/Corpus ); précédent : 000371; suivant : 000373

Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish.

Auteurs : Takanori Shono ; Daisuke Kurokawa ; Tsutomu Miyake ; Masataka Okabe

Source :

RBID : pubmed:21858216

English descriptors

Abstract

Glial cells missing 2 (gcm2) encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid), gills, and H(+)-ATPase-rich cells (HRCs), a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na(+)-Cl(-) co-transporter-rich cells (NCCCs), another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes) and fugu (Fugu niphobles), the extant primitive ray-finned fishes Polypterus (Polypterus senegalus) and sturgeon (a hybrid of Huso huso × Acipenser ruhenus), and the amphibian Xenopus (Xenopus laevis). Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2 contributes to a diversity of ionocytes in zebrafish during evolution.

DOI: 10.1371/journal.pone.0023746
PubMed: 21858216

Links to Exploration step

pubmed:21858216

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish.</title>
<author>
<name sortKey="Shono, Takanori" sort="Shono, Takanori" uniqKey="Shono T" first="Takanori" last="Shono">Takanori Shono</name>
<affiliation>
<nlm:affiliation>Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kurokawa, Daisuke" sort="Kurokawa, Daisuke" uniqKey="Kurokawa D" first="Daisuke" last="Kurokawa">Daisuke Kurokawa</name>
</author>
<author>
<name sortKey="Miyake, Tsutomu" sort="Miyake, Tsutomu" uniqKey="Miyake T" first="Tsutomu" last="Miyake">Tsutomu Miyake</name>
</author>
<author>
<name sortKey="Okabe, Masataka" sort="Okabe, Masataka" uniqKey="Okabe M" first="Masataka" last="Okabe">Masataka Okabe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21858216</idno>
<idno type="pmid">21858216</idno>
<idno type="doi">10.1371/journal.pone.0023746</idno>
<idno type="wicri:Area/PubMed/Corpus">000372</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000372</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish.</title>
<author>
<name sortKey="Shono, Takanori" sort="Shono, Takanori" uniqKey="Shono T" first="Takanori" last="Shono">Takanori Shono</name>
<affiliation>
<nlm:affiliation>Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kurokawa, Daisuke" sort="Kurokawa, Daisuke" uniqKey="Kurokawa D" first="Daisuke" last="Kurokawa">Daisuke Kurokawa</name>
</author>
<author>
<name sortKey="Miyake, Tsutomu" sort="Miyake, Tsutomu" uniqKey="Miyake T" first="Tsutomu" last="Miyake">Tsutomu Miyake</name>
</author>
<author>
<name sortKey="Okabe, Masataka" sort="Okabe, Masataka" uniqKey="Okabe M" first="Masataka" last="Okabe">Masataka Okabe</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Base Sequence</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Embryo, Nonmammalian (cytology)</term>
<term>Embryo, Nonmammalian (metabolism)</term>
<term>Embryo, Nonmammalian (ultrastructure)</term>
<term>Enhancer Elements, Genetic (genetics)</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gills (cytology)</term>
<term>Gills (embryology)</term>
<term>Gills (metabolism)</term>
<term>Green Fluorescent Proteins (genetics)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>Immunohistochemistry</term>
<term>In Situ Hybridization</term>
<term>Microscopy, Confocal</term>
<term>Microscopy, Electron, Scanning</term>
<term>Molecular Sequence Data</term>
<term>Oryzias (embryology)</term>
<term>Oryzias (genetics)</term>
<term>Skin (cytology)</term>
<term>Skin (embryology)</term>
<term>Skin (metabolism)</term>
<term>Takifugu (embryology)</term>
<term>Takifugu (genetics)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Vacuolar Proton-Translocating ATPases (genetics)</term>
<term>Vacuolar Proton-Translocating ATPases (metabolism)</term>
<term>Xenopus laevis (embryology)</term>
<term>Xenopus laevis (genetics)</term>
<term>Zebrafish (embryology)</term>
<term>Zebrafish (genetics)</term>
<term>Zebrafish Proteins (genetics)</term>
<term>Zebrafish Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Green Fluorescent Proteins</term>
<term>Transcription Factors</term>
<term>Vacuolar Proton-Translocating ATPases</term>
<term>Zebrafish Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Green Fluorescent Proteins</term>
<term>Transcription Factors</term>
<term>Vacuolar Proton-Translocating ATPases</term>
<term>Zebrafish Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Embryo, Nonmammalian</term>
<term>Gills</term>
<term>Skin</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Gills</term>
<term>Oryzias</term>
<term>Skin</term>
<term>Takifugu</term>
<term>Xenopus laevis</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Enhancer Elements, Genetic</term>
<term>Oryzias</term>
<term>Takifugu</term>
<term>Xenopus laevis</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Embryo, Nonmammalian</term>
<term>Gills</term>
<term>Skin</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Embryo, Nonmammalian</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Base Sequence</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Immunohistochemistry</term>
<term>In Situ Hybridization</term>
<term>Microscopy, Confocal</term>
<term>Microscopy, Electron, Scanning</term>
<term>Molecular Sequence Data</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glial cells missing 2 (gcm2) encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid), gills, and H(+)-ATPase-rich cells (HRCs), a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na(+)-Cl(-) co-transporter-rich cells (NCCCs), another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes) and fugu (Fugu niphobles), the extant primitive ray-finned fishes Polypterus (Polypterus senegalus) and sturgeon (a hybrid of Huso huso × Acipenser ruhenus), and the amphibian Xenopus (Xenopus laevis). Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2 contributes to a diversity of ionocytes in zebrafish during evolution.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21858216</PMID>
<DateCreated>
<Year>2011</Year>
<Month>08</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>02</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish.</ArticleTitle>
<Pagination>
<MedlinePgn>e23746</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0023746</ELocationID>
<Abstract>
<AbstractText>Glial cells missing 2 (gcm2) encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid), gills, and H(+)-ATPase-rich cells (HRCs), a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na(+)-Cl(-) co-transporter-rich cells (NCCCs), another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes) and fugu (Fugu niphobles), the extant primitive ray-finned fishes Polypterus (Polypterus senegalus) and sturgeon (a hybrid of Huso huso × Acipenser ruhenus), and the amphibian Xenopus (Xenopus laevis). Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2 contributes to a diversity of ionocytes in zebrafish during evolution.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shono</LastName>
<ForeName>Takanori</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kurokawa</LastName>
<ForeName>Daisuke</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miyake</LastName>
<ForeName>Tsutomu</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Okabe</LastName>
<ForeName>Masataka</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>08</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029961">Zebrafish Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501172">gcm2 protein, zebrafish</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C520788">V-ATPase subunit A, zebrafish</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D025262">Vacuolar Proton-Translocating ATPases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12364-9</RefSource>
<PMID Version="1">9770492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 1997 Nov 1;191(1):118-30</RefSource>
<PMID Version="1">9356176</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Dyn. 1999 Apr;214(4):303-11</RefSource>
<PMID Version="1">10213386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cytogenet Cell Genet. 1999;84(1-2):43-7</RefSource>
<PMID Version="1">10343099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Morphol. 1964 May;114:465-77</RefSource>
<PMID Version="1">14165136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2004 Dec 15;276(2):508-22</RefSource>
<PMID Version="1">15581882</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17716-9</RefSource>
<PMID Version="1">15591343</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Biol. 2004;2:3</RefSource>
<PMID Version="1">15070407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioessays. 2005 Sep;27(9):937-45</RefSource>
<PMID Version="1">16108068</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Cell Physiol. 2006 Feb;290(2):C371-8</RefSource>
<PMID Version="1">16148031</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2007 Mar;8(3):206-16</RefSource>
<PMID Version="1">17304246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2007;2(3):e302</RefSource>
<PMID Version="1">17375188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Protoc. 2006;1(3):1297-305</RefSource>
<PMID Version="1">17406414</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2007 May 1;305(1):333-46</RefSource>
<PMID Version="1">17382312</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Biol Sci. 2007 Feb 22;274(1609):489-98</RefSource>
<PMID Version="1">17476768</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2007 Jul 15;307(2):258-71</RefSource>
<PMID Version="1">17555741</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2008 Jul 11;134(1):25-36</RefSource>
<PMID Version="1">18614008</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R1192-201</RefSource>
<PMID Version="1">19193938</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2009 May 1;329(1):116-29</RefSource>
<PMID Version="1">19268451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2009 May;296(5):R1650-60</RefSource>
<PMID Version="1">19279294</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2009 Jun;212(Pt 11):1745-52</RefSource>
<PMID Version="1">19448083</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2010 Jan 26;20(2):R48-52</RefSource>
<PMID Version="1">20129035</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2011 Feb;138(4):705-14</RefSource>
<PMID Version="1">21266406</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2000 Apr 7;288(5463):146-9</RefSource>
<PMID Version="1">10753120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Histochem Cytochem. 2000 Jul;48(7):915-22</RefSource>
<PMID Version="1">10858268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2000 Jul;25(3):311-4</RefSource>
<PMID Version="1">10888880</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2000 Jul 13;406(6792):199-203</RefSource>
<PMID Version="1">10910362</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mech Dev. 2001 May;103(1-2):141-3</RefSource>
<PMID Version="1">11335122</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genomics. 2001 Apr 1;73(1):56-65</RefSource>
<PMID Version="1">11352566</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2002 Jan;20(1):87-90</RefSource>
<PMID Version="1">11753368</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2002 Aug 15;248(2):369-83</RefSource>
<PMID Version="1">12167411</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Biol. 2002 Oct 1;250(1):1-23</RefSource>
<PMID Version="1">12297093</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mech Dev. 2002 Oct;118(1-2):175-8</RefSource>
<PMID Version="1">12351183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Phylogenet Evol. 2003 Jan;26(1):110-20</RefSource>
<PMID Version="1">12470943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol B Biochem Mol Biol. 2003 Dec;136(4):593-620</RefSource>
<PMID Version="1">14662288</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W217-21</RefSource>
<PMID Version="1">15215384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2004 Jul;7(1):133-44</RefSource>
<PMID Version="1">15239961</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mech Dev. 2004 Oct;121(10):1235-47</RefSource>
<PMID Version="1">15327784</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Evol. 2004 Aug;59(2):190-203</RefSource>
<PMID Version="1">15486693</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1980 Mar;238(3):R171-84</RefSource>
<PMID Version="1">6245590</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1995 Sep 22;82(6):1013-23</RefSource>
<PMID Version="1">7553843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1995 Sep 22;82(6):1025-36</RefSource>
<PMID Version="1">7553844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dis Model Mech. 2011 Mar;4(2):179-92</RefSource>
<PMID Version="1">21183475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 1996 Jan;122(1):131-9</RefSource>
<PMID Version="1">8565824</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 1996 Sep 16;393(2-3):201-4</RefSource>
<PMID Version="1">8814290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14912-6</RefSource>
<PMID Version="1">8962155</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 1999 Jan 15;442(2-3):151-6</RefSource>
<PMID Version="1">9928992</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030801" MajorTopicYN="N">Animals, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004625" MajorTopicYN="N">Embryo, Nonmammalian</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004742" MajorTopicYN="N">Enhancer Elements, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005880" MajorTopicYN="N">Gills</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007150" MajorTopicYN="N">Immunohistochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017403" MajorTopicYN="N">In Situ Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008855" MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009990" MajorTopicYN="N">Oryzias</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012867" MajorTopicYN="N">Skin</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023741" MajorTopicYN="N">Takifugu</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025262" MajorTopicYN="N">Vacuolar Proton-Translocating ATPases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014982" MajorTopicYN="N">Xenopus laevis</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015027" MajorTopicYN="N">Zebrafish</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029961" MajorTopicYN="N">Zebrafish Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3157436</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21858216</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0023746</ArticleId>
<ArticleId IdType="pii">PONE-D-11-03593</ArticleId>
<ArticleId IdType="pmc">PMC3157436</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000372 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000372 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21858216
   |texte=   Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21858216" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024