Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coding of sound direction in the auditory periphery of the lake sturgeon, Acipenser fulvescens.

Identifieur interne : 000330 ( PubMed/Corpus ); précédent : 000329; suivant : 000331

Coding of sound direction in the auditory periphery of the lake sturgeon, Acipenser fulvescens.

Auteurs : Michaela Meyer ; Arthur N. Popper ; Richard R. Fay

Source :

RBID : pubmed:22031776

English descriptors

Abstract

The lake sturgeon, Acipenser fulvescens, belongs to one of the few extant nonteleost ray-finned fishes and diverged from the main vertebrate lineage about 250 million years ago. The aim of this study was to use this species to explore the peripheral neural coding strategies for sound direction and compare these results to modern bony fishes (teleosts). Extracellular recordings were made from afferent neurons innervating the saccule and lagena of the inner ear while the fish was stimulated using a shaker system. Afferents were highly directional and strongly phase locked to the stimulus. Directional response profiles resembled cosine functions, and directional preferences occurred at a wide range of stimulus intensities (spanning at least 60 dB re 1 nm displacement). Seventy-six percent of afferents were directionally selective for stimuli in the vertical plane near 90° (up down) and did not respond to horizontal stimulation. Sixty-two percent of afferents responsive to horizontal stimulation had their best axis in azimuths near 0° (front back). These findings suggest that in the lake sturgeon, in contrast to teleosts, the saccule and lagena may convey more limited information about the direction of a sound source, raising the possibility that this species uses a different mechanism for localizing sound. For azimuth, a mechanism could involve the utricle or perhaps the computation of arrival time differences. For elevation, behavioral strategies such as directing the head to maximize input to the area of best sensitivity may be used. Alternatively, the lake sturgeon may have a more limited ability for sound source localization compared with teleosts.

DOI: 10.1152/jn.00390.2011
PubMed: 22031776

Links to Exploration step

pubmed:22031776

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coding of sound direction in the auditory periphery of the lake sturgeon, Acipenser fulvescens.</title>
<author>
<name sortKey="Meyer, Michaela" sort="Meyer, Michaela" uniqKey="Meyer M" first="Michaela" last="Meyer">Michaela Meyer</name>
<affiliation>
<nlm:affiliation>Department of Biology and Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, USA. meyerghose@gmail.com</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Popper, Arthur N" sort="Popper, Arthur N" uniqKey="Popper A" first="Arthur N" last="Popper">Arthur N. Popper</name>
</author>
<author>
<name sortKey="Fay, Richard R" sort="Fay, Richard R" uniqKey="Fay R" first="Richard R" last="Fay">Richard R. Fay</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22031776</idno>
<idno type="pmid">22031776</idno>
<idno type="doi">10.1152/jn.00390.2011</idno>
<idno type="wicri:Area/PubMed/Corpus">000330</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000330</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coding of sound direction in the auditory periphery of the lake sturgeon, Acipenser fulvescens.</title>
<author>
<name sortKey="Meyer, Michaela" sort="Meyer, Michaela" uniqKey="Meyer M" first="Michaela" last="Meyer">Michaela Meyer</name>
<affiliation>
<nlm:affiliation>Department of Biology and Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, USA. meyerghose@gmail.com</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Popper, Arthur N" sort="Popper, Arthur N" uniqKey="Popper A" first="Arthur N" last="Popper">Arthur N. Popper</name>
</author>
<author>
<name sortKey="Fay, Richard R" sort="Fay, Richard R" uniqKey="Fay R" first="Richard R" last="Fay">Richard R. Fay</name>
</author>
</analytic>
<series>
<title level="j">Journal of neurophysiology</title>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustic Stimulation (methods)</term>
<term>Action Potentials (physiology)</term>
<term>Animals</term>
<term>Auditory Pathways (physiology)</term>
<term>Fishes (physiology)</term>
<term>Hair Cells, Auditory (physiology)</term>
<term>Orientation</term>
<term>Peripheral Nerves (physiology)</term>
<term>Reaction Time</term>
<term>Saccule and Utricle (cytology)</term>
<term>Signal Detection, Psychological (physiology)</term>
<term>Sound Localization (physiology)</term>
<term>Space Perception</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccule and Utricle</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Acoustic Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Action Potentials</term>
<term>Auditory Pathways</term>
<term>Fishes</term>
<term>Hair Cells, Auditory</term>
<term>Peripheral Nerves</term>
<term>Signal Detection, Psychological</term>
<term>Sound Localization</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Orientation</term>
<term>Reaction Time</term>
<term>Space Perception</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The lake sturgeon, Acipenser fulvescens, belongs to one of the few extant nonteleost ray-finned fishes and diverged from the main vertebrate lineage about 250 million years ago. The aim of this study was to use this species to explore the peripheral neural coding strategies for sound direction and compare these results to modern bony fishes (teleosts). Extracellular recordings were made from afferent neurons innervating the saccule and lagena of the inner ear while the fish was stimulated using a shaker system. Afferents were highly directional and strongly phase locked to the stimulus. Directional response profiles resembled cosine functions, and directional preferences occurred at a wide range of stimulus intensities (spanning at least 60 dB re 1 nm displacement). Seventy-six percent of afferents were directionally selective for stimuli in the vertical plane near 90° (up down) and did not respond to horizontal stimulation. Sixty-two percent of afferents responsive to horizontal stimulation had their best axis in azimuths near 0° (front back). These findings suggest that in the lake sturgeon, in contrast to teleosts, the saccule and lagena may convey more limited information about the direction of a sound source, raising the possibility that this species uses a different mechanism for localizing sound. For azimuth, a mechanism could involve the utricle or perhaps the computation of arrival time differences. For elevation, behavioral strategies such as directing the head to maximize input to the area of best sensitivity may be used. Alternatively, the lake sturgeon may have a more limited ability for sound source localization compared with teleosts.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22031776</PMID>
<DateCreated>
<Year>2012</Year>
<Month>01</Month>
<Day>05</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>05</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>107</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of neurophysiology</Title>
<ISOAbbreviation>J. Neurophysiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Coding of sound direction in the auditory periphery of the lake sturgeon, Acipenser fulvescens.</ArticleTitle>
<Pagination>
<MedlinePgn>658-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/jn.00390.2011</ELocationID>
<Abstract>
<AbstractText>The lake sturgeon, Acipenser fulvescens, belongs to one of the few extant nonteleost ray-finned fishes and diverged from the main vertebrate lineage about 250 million years ago. The aim of this study was to use this species to explore the peripheral neural coding strategies for sound direction and compare these results to modern bony fishes (teleosts). Extracellular recordings were made from afferent neurons innervating the saccule and lagena of the inner ear while the fish was stimulated using a shaker system. Afferents were highly directional and strongly phase locked to the stimulus. Directional response profiles resembled cosine functions, and directional preferences occurred at a wide range of stimulus intensities (spanning at least 60 dB re 1 nm displacement). Seventy-six percent of afferents were directionally selective for stimuli in the vertical plane near 90° (up down) and did not respond to horizontal stimulation. Sixty-two percent of afferents responsive to horizontal stimulation had their best axis in azimuths near 0° (front back). These findings suggest that in the lake sturgeon, in contrast to teleosts, the saccule and lagena may convey more limited information about the direction of a sound source, raising the possibility that this species uses a different mechanism for localizing sound. For azimuth, a mechanism could involve the utricle or perhaps the computation of arrival time differences. For elevation, behavioral strategies such as directing the head to maximize input to the area of best sensitivity may be used. Alternatively, the lake sturgeon may have a more limited ability for sound source localization compared with teleosts.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Meyer</LastName>
<ForeName>Michaela</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology and Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, USA. meyerghose@gmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Popper</LastName>
<ForeName>Arthur N</ForeName>
<Initials>AN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fay</LastName>
<ForeName>Richard R</ForeName>
<Initials>RR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 DC004664</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DC006215</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>10</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurophysiol</MedlineTA>
<NlmUniqueID>0375404</NlmUniqueID>
<ISSNLinking>0022-3077</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 2000 Nov;149(1-2):1-10</RefSource>
<PMID Version="1">11033242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Lett. 2011 Feb 23;7(1):139-41</RefSource>
<PMID Version="1">20826468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Sep;188(8):631-41</RefSource>
<PMID Version="1">12355239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Dec;189(12):889-905</RefSource>
<PMID Version="1">14586545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2004 Apr 5;471(3):277-88</RefSource>
<PMID Version="1">14991561</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1969 Jul;32(4):613-36</RefSource>
<PMID Version="1">5810617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 1974 Jun;60(3):881-99</RefSource>
<PMID Version="1">4847288</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1976 Jun 4;192(4243):1020-3</RefSource>
<PMID Version="1">1273585</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1977 Jun;74(6):2407-11</RefSource>
<PMID Version="1">329282</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1978 Sep 1;181(1):117-28</RefSource>
<PMID Version="1">681554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1983 Jan 20;213(3):279-86</RefSource>
<PMID Version="1">6833529</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1984 Aug 31;225(4665):951-4</RefSource>
<PMID Version="1">6474161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Morphol. 1987 Nov;194(2):129-42</RefSource>
<PMID Version="1">3430630</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 1997 Sep;111(1-2):1-21</RefSource>
<PMID Version="1">9307307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 1997 Nov;113(1-2):235-46</RefSource>
<PMID Version="1">9388002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Behav Evol. 1998;51(5):239-62</RefSource>
<PMID Version="1">9587676</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A. 1998 Jun;182(6):805-15</RefSource>
<PMID Version="1">9631556</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 1998 Dec;21(6):1235-8</RefSource>
<PMID Version="1">9883717</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1999 Aug 23;411(2):212-38</RefSource>
<PMID Version="1">10404249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 1951 Jun;38(3):262-73</RefSource>
<PMID Version="1">14856657</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 1964 Aug;22:413-31</RefSource>
<PMID Version="1">14203389</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Nov;190(11):923-38</RefSource>
<PMID Version="1">15316732</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Mol Integr Physiol. 2005 Nov;142(3):286-96</RefSource>
<PMID Version="1">16183310</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2007 Jan;210(Pt 1):75-81</RefSource>
<PMID Version="1">17170150</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2009 May;212(Pt 10):1483-93</RefSource>
<PMID Version="1">19411542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2010 May;213(Pt 9):1567-78</RefSource>
<PMID Version="1">20400642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 2010 May;127(5):3104-13</RefSource>
<PMID Version="1">21117759</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A. 2001 Jul;187(6):453-65</RefSource>
<PMID Version="1">11548992</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000161" MajorTopicYN="N">Acoustic Stimulation</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000200" MajorTopicYN="N">Action Potentials</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001306" MajorTopicYN="N">Auditory Pathways</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006198" MajorTopicYN="N">Hair Cells, Auditory</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009949" MajorTopicYN="N">Orientation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010525" MajorTopicYN="N">Peripheral Nerves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011930" MajorTopicYN="N">Reaction Time</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012444" MajorTopicYN="N">Saccule and Utricle</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017603" MajorTopicYN="N">Signal Detection, Psychological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013017" MajorTopicYN="N">Sound Localization</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013028" MajorTopicYN="N">Space Perception</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3349627</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22031776</ArticleId>
<ArticleId IdType="pii">jn.00390.2011</ArticleId>
<ArticleId IdType="doi">10.1152/jn.00390.2011</ArticleId>
<ArticleId IdType="pmc">PMC3349627</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000330 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000330 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22031776
   |texte=   Coding of sound direction in the auditory periphery of the lake sturgeon, Acipenser fulvescens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22031776" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024