Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

First evidence of autotriploidization in sterlet (Acipenser ruthenus).

Identifieur interne : 000258 ( PubMed/Corpus ); précédent : 000257; suivant : 000259

First evidence of autotriploidization in sterlet (Acipenser ruthenus).

Auteurs : M. Havelka ; M. Hulák ; M. Rodina ; M. Flajšhans

Source :

RBID : pubmed:23456847

English descriptors

Abstract

Polyploidization has played an important role in vertebrate evolution. Acipenseridae bring clear examples of polyploidy ancestry and, also, polyploidization seems to be an ongoing process in these fishes. In the present study, the genetic origin of six triploid specimens morphologically determined as Acipenser ruthenus from commercial aquaculture was analyzed using a combination of mitochondrial and nuclear markers. A further five successive statistical analyses including median joining of mitochondrial DNA control region sequences, principal coordinate analysis (PCA), factorial correspondence analysis (FCA), STRUCTURE assignation, and NewHybrids status determination for microsatellite data were applied for the clarification of the origin of one extra chromosome set added in these triploids genomes. Although interspecific hybridization had been suggested as a source of these triploids, the statistical analyses showed that the investigated triploids originate from autotriploidization rather than from interspecific hybridization. Therefore, we conclude that a combination of molecular markers with suitable statistical analyses should be used to verify the origin of unusual ploidy level. Evidently, such an approach is critically essential in aquaculture, where interspecific hybridization is very common and usually detected by changes in ploidy levels only.

DOI: 10.1007/s13353-013-0143-3
PubMed: 23456847

Links to Exploration step

pubmed:23456847

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">First evidence of autotriploidization in sterlet (Acipenser ruthenus).</title>
<author>
<name sortKey="Havelka, M" sort="Havelka, M" uniqKey="Havelka M" first="M" last="Havelka">M. Havelka</name>
<affiliation>
<nlm:affiliation>South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic. havelm02@frov.jcu.cz</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hulak, M" sort="Hulak, M" uniqKey="Hulak M" first="M" last="Hulák">M. Hulák</name>
</author>
<author>
<name sortKey="Rodina, M" sort="Rodina, M" uniqKey="Rodina M" first="M" last="Rodina">M. Rodina</name>
</author>
<author>
<name sortKey="Flajshans, M" sort="Flajshans, M" uniqKey="Flajshans M" first="M" last="Flajšhans">M. Flajšhans</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23456847</idno>
<idno type="pmid">23456847</idno>
<idno type="doi">10.1007/s13353-013-0143-3</idno>
<idno type="wicri:Area/PubMed/Corpus">000258</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000258</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">First evidence of autotriploidization in sterlet (Acipenser ruthenus).</title>
<author>
<name sortKey="Havelka, M" sort="Havelka, M" uniqKey="Havelka M" first="M" last="Havelka">M. Havelka</name>
<affiliation>
<nlm:affiliation>South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic. havelm02@frov.jcu.cz</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hulak, M" sort="Hulak, M" uniqKey="Hulak M" first="M" last="Hulák">M. Hulák</name>
</author>
<author>
<name sortKey="Rodina, M" sort="Rodina, M" uniqKey="Rodina M" first="M" last="Rodina">M. Rodina</name>
</author>
<author>
<name sortKey="Flajshans, M" sort="Flajshans, M" uniqKey="Flajshans M" first="M" last="Flajšhans">M. Flajšhans</name>
</author>
</analytic>
<series>
<title level="j">Journal of applied genetics</title>
<idno type="eISSN">2190-3883</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>DNA, Mitochondrial (chemistry)</term>
<term>DNA, Mitochondrial (metabolism)</term>
<term>Fishes (genetics)</term>
<term>Genetic Markers</term>
<term>Nucleic Acid Hybridization</term>
<term>Polyploidy</term>
<term>Principal Component Analysis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Mitochondrial</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Mitochondrial</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fishes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Genetic Markers</term>
<term>Nucleic Acid Hybridization</term>
<term>Polyploidy</term>
<term>Principal Component Analysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Polyploidization has played an important role in vertebrate evolution. Acipenseridae bring clear examples of polyploidy ancestry and, also, polyploidization seems to be an ongoing process in these fishes. In the present study, the genetic origin of six triploid specimens morphologically determined as Acipenser ruthenus from commercial aquaculture was analyzed using a combination of mitochondrial and nuclear markers. A further five successive statistical analyses including median joining of mitochondrial DNA control region sequences, principal coordinate analysis (PCA), factorial correspondence analysis (FCA), STRUCTURE assignation, and NewHybrids status determination for microsatellite data were applied for the clarification of the origin of one extra chromosome set added in these triploids genomes. Although interspecific hybridization had been suggested as a source of these triploids, the statistical analyses showed that the investigated triploids originate from autotriploidization rather than from interspecific hybridization. Therefore, we conclude that a combination of molecular markers with suitable statistical analyses should be used to verify the origin of unusual ploidy level. Evidently, such an approach is critically essential in aquaculture, where interspecific hybridization is very common and usually detected by changes in ploidy levels only.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23456847</PMID>
<DateCreated>
<Year>2013</Year>
<Month>04</Month>
<Day>09</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>04</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2190-3883</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>54</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of applied genetics</Title>
<ISOAbbreviation>J. Appl. Genet.</ISOAbbreviation>
</Journal>
<ArticleTitle>First evidence of autotriploidization in sterlet (Acipenser ruthenus).</ArticleTitle>
<Pagination>
<MedlinePgn>201-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s13353-013-0143-3</ELocationID>
<Abstract>
<AbstractText>Polyploidization has played an important role in vertebrate evolution. Acipenseridae bring clear examples of polyploidy ancestry and, also, polyploidization seems to be an ongoing process in these fishes. In the present study, the genetic origin of six triploid specimens morphologically determined as Acipenser ruthenus from commercial aquaculture was analyzed using a combination of mitochondrial and nuclear markers. A further five successive statistical analyses including median joining of mitochondrial DNA control region sequences, principal coordinate analysis (PCA), factorial correspondence analysis (FCA), STRUCTURE assignation, and NewHybrids status determination for microsatellite data were applied for the clarification of the origin of one extra chromosome set added in these triploids genomes. Although interspecific hybridization had been suggested as a source of these triploids, the statistical analyses showed that the investigated triploids originate from autotriploidization rather than from interspecific hybridization. Therefore, we conclude that a combination of molecular markers with suitable statistical analyses should be used to verify the origin of unusual ploidy level. Evidently, such an approach is critically essential in aquaculture, where interspecific hybridization is very common and usually detected by changes in ploidy levels only.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Havelka</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic. havelm02@frov.jcu.cz</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hulák</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rodina</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Flajšhans</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Appl Genet</MedlineTA>
<NlmUniqueID>9514582</NlmUniqueID>
<ISSNLinking>1234-1983</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004272">DNA, Mitochondrial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004272" MajorTopicYN="N">DNA, Mitochondrial</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="Y">Polyploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>11</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23456847</ArticleId>
<ArticleId IdType="doi">10.1007/s13353-013-0143-3</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000258 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000258 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23456847
   |texte=   First evidence of autotriploidization in sterlet (Acipenser ruthenus).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23456847" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024