Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Homology of lungs and gas bladders: insights from arterial vasculature.

Identifieur interne : 000255 ( PubMed/Corpus ); précédent : 000254; suivant : 000256

Homology of lungs and gas bladders: insights from arterial vasculature.

Auteurs : Sarah Longo ; Mark Riccio ; Amy R. Mccune

Source :

RBID : pubmed:23378277

English descriptors

Abstract

Gas bladders of ray-finned fishes serve a variety of vital functions and are thus an important novelty of most living vertebrates. The gas bladder has long been regarded as an evolutionary modification of lungs. Critical evidence for this hypothesized homology is whether pulmonary arteries supply the gas bladder as well as the lungs. Pulmonary arteries, paired branches of the fourth efferent branchial arteries, deliver blood to the lungs in osteichthyans with functional lungs (lungfishes, tetrapods, and the ray-finned polypterid fishes). The fact that pulmonary arteries also supply the respiratory gas bladder of Amia calva (bowfin) has been used to support the homology of lungs and gas bladders, collectively termed air-filled organs (AO). However, the homology of pulmonary arteries in bowfin and lunged osteichthyans has been uncertain, given the apparent lack of pulmonary arteries in critical taxa. To re-evaluate the homology of pulmonary arteries in bowfin and lunged osteichthyans, we studied, using micro-CT technology, the arterial vasculature of Protopterus, Polypterus, Acipenser, Polyodon, Amia, and Lepisosteus, and analyzed these data using a phylogenetic approach. Our data reveal that Acipenser and Polyodon have paired posterior branches of the fourth efferent branchial arteries, which are thus similar in origin to pulmonary arteries. We hypothesize that these arteries are vestigial pulmonary arteries that have been coopted for new functions due to the dorsal shift of the AO and/or the loss of respiration in these taxa. Ancestral state reconstructions support pulmonary arteries as a synapomorphy of the Osteichthyes, provide the first concrete evidence for the retention of pulmonary arteries in Amia, and support thehomology of lungs and gas bladders due to a shared vascular supply. Finally, we use ancestral state reconstructions to show that arterial AO supplies from the celiacomesenteric artery or dorsal aorta appear to be convergent between teleosts and nonteleost actinopterygians.

DOI: 10.1002/jmor.20128
PubMed: 23378277

Links to Exploration step

pubmed:23378277

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Homology of lungs and gas bladders: insights from arterial vasculature.</title>
<author>
<name sortKey="Longo, Sarah" sort="Longo, Sarah" uniqKey="Longo S" first="Sarah" last="Longo">Sarah Longo</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA. sjlongo@ucdavis.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Riccio, Mark" sort="Riccio, Mark" uniqKey="Riccio M" first="Mark" last="Riccio">Mark Riccio</name>
</author>
<author>
<name sortKey="Mccune, Amy R" sort="Mccune, Amy R" uniqKey="Mccune A" first="Amy R" last="Mccune">Amy R. Mccune</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23378277</idno>
<idno type="pmid">23378277</idno>
<idno type="doi">10.1002/jmor.20128</idno>
<idno type="wicri:Area/PubMed/Corpus">000255</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000255</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Homology of lungs and gas bladders: insights from arterial vasculature.</title>
<author>
<name sortKey="Longo, Sarah" sort="Longo, Sarah" uniqKey="Longo S" first="Sarah" last="Longo">Sarah Longo</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA. sjlongo@ucdavis.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Riccio, Mark" sort="Riccio, Mark" uniqKey="Riccio M" first="Mark" last="Riccio">Mark Riccio</name>
</author>
<author>
<name sortKey="Mccune, Amy R" sort="Mccune, Amy R" uniqKey="Mccune A" first="Amy R" last="Mccune">Amy R. Mccune</name>
</author>
</analytic>
<series>
<title level="j">Journal of morphology</title>
<idno type="eISSN">1097-4687</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air Sacs (anatomy & histology)</term>
<term>Air Sacs (blood supply)</term>
<term>Animals</term>
<term>Aorta (anatomy & histology)</term>
<term>Arteries (anatomy & histology)</term>
<term>Biological Evolution</term>
<term>Fishes (anatomy & histology)</term>
<term>Fishes (physiology)</term>
<term>Image Processing, Computer-Assisted</term>
<term>Lung (anatomy & histology)</term>
<term>Lung (blood supply)</term>
<term>Phylogeny</term>
<term>Pulmonary Artery (anatomy & histology)</term>
<term>Respiration</term>
<term>Species Specificity</term>
<term>X-Ray Microtomography</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Air Sacs</term>
<term>Aorta</term>
<term>Arteries</term>
<term>Fishes</term>
<term>Lung</term>
<term>Pulmonary Artery</term>
</keywords>
<keywords scheme="MESH" qualifier="blood supply" xml:lang="en">
<term>Air Sacs</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fishes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Image Processing, Computer-Assisted</term>
<term>Phylogeny</term>
<term>Respiration</term>
<term>Species Specificity</term>
<term>X-Ray Microtomography</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gas bladders of ray-finned fishes serve a variety of vital functions and are thus an important novelty of most living vertebrates. The gas bladder has long been regarded as an evolutionary modification of lungs. Critical evidence for this hypothesized homology is whether pulmonary arteries supply the gas bladder as well as the lungs. Pulmonary arteries, paired branches of the fourth efferent branchial arteries, deliver blood to the lungs in osteichthyans with functional lungs (lungfishes, tetrapods, and the ray-finned polypterid fishes). The fact that pulmonary arteries also supply the respiratory gas bladder of Amia calva (bowfin) has been used to support the homology of lungs and gas bladders, collectively termed air-filled organs (AO). However, the homology of pulmonary arteries in bowfin and lunged osteichthyans has been uncertain, given the apparent lack of pulmonary arteries in critical taxa. To re-evaluate the homology of pulmonary arteries in bowfin and lunged osteichthyans, we studied, using micro-CT technology, the arterial vasculature of Protopterus, Polypterus, Acipenser, Polyodon, Amia, and Lepisosteus, and analyzed these data using a phylogenetic approach. Our data reveal that Acipenser and Polyodon have paired posterior branches of the fourth efferent branchial arteries, which are thus similar in origin to pulmonary arteries. We hypothesize that these arteries are vestigial pulmonary arteries that have been coopted for new functions due to the dorsal shift of the AO and/or the loss of respiration in these taxa. Ancestral state reconstructions support pulmonary arteries as a synapomorphy of the Osteichthyes, provide the first concrete evidence for the retention of pulmonary arteries in Amia, and support thehomology of lungs and gas bladders due to a shared vascular supply. Finally, we use ancestral state reconstructions to show that arterial AO supplies from the celiacomesenteric artery or dorsal aorta appear to be convergent between teleosts and nonteleost actinopterygians.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23378277</PMID>
<DateCreated>
<Year>2013</Year>
<Month>04</Month>
<Day>11</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>04</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-4687</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>274</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of morphology</Title>
<ISOAbbreviation>J. Morphol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Homology of lungs and gas bladders: insights from arterial vasculature.</ArticleTitle>
<Pagination>
<MedlinePgn>687-703</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jmor.20128</ELocationID>
<Abstract>
<AbstractText>Gas bladders of ray-finned fishes serve a variety of vital functions and are thus an important novelty of most living vertebrates. The gas bladder has long been regarded as an evolutionary modification of lungs. Critical evidence for this hypothesized homology is whether pulmonary arteries supply the gas bladder as well as the lungs. Pulmonary arteries, paired branches of the fourth efferent branchial arteries, deliver blood to the lungs in osteichthyans with functional lungs (lungfishes, tetrapods, and the ray-finned polypterid fishes). The fact that pulmonary arteries also supply the respiratory gas bladder of Amia calva (bowfin) has been used to support the homology of lungs and gas bladders, collectively termed air-filled organs (AO). However, the homology of pulmonary arteries in bowfin and lunged osteichthyans has been uncertain, given the apparent lack of pulmonary arteries in critical taxa. To re-evaluate the homology of pulmonary arteries in bowfin and lunged osteichthyans, we studied, using micro-CT technology, the arterial vasculature of Protopterus, Polypterus, Acipenser, Polyodon, Amia, and Lepisosteus, and analyzed these data using a phylogenetic approach. Our data reveal that Acipenser and Polyodon have paired posterior branches of the fourth efferent branchial arteries, which are thus similar in origin to pulmonary arteries. We hypothesize that these arteries are vestigial pulmonary arteries that have been coopted for new functions due to the dorsal shift of the AO and/or the loss of respiration in these taxa. Ancestral state reconstructions support pulmonary arteries as a synapomorphy of the Osteichthyes, provide the first concrete evidence for the retention of pulmonary arteries in Amia, and support thehomology of lungs and gas bladders due to a shared vascular supply. Finally, we use ancestral state reconstructions to show that arterial AO supplies from the celiacomesenteric artery or dorsal aorta appear to be convergent between teleosts and nonteleost actinopterygians.</AbstractText>
<CopyrightInformation>Copyright © 2013 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Longo</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA. sjlongo@ucdavis.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riccio</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McCune</LastName>
<ForeName>Amy R</ForeName>
<Initials>AR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Morphol</MedlineTA>
<NlmUniqueID>0406125</NlmUniqueID>
<ISSNLinking>0022-2887</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000400" MajorTopicYN="N">Air Sacs</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000098" MajorTopicYN="Y">blood supply</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001011" MajorTopicYN="N">Aorta</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001158" MajorTopicYN="N">Arteries</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000098" MajorTopicYN="Y">blood supply</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011651" MajorTopicYN="N">Pulmonary Artery</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012119" MajorTopicYN="N">Respiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055114" MajorTopicYN="N">X-Ray Microtomography</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23378277</ArticleId>
<ArticleId IdType="doi">10.1002/jmor.20128</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000255 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000255 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23378277
   |texte=   Homology of lungs and gas bladders: insights from arterial vasculature.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23378277" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024