Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms of calcium absorption by anterior and posterior segments of the intestinal tract of juvenile lake sturgeon.

Identifieur interne : 000237 ( PubMed/Corpus ); précédent : 000236; suivant : 000238

Mechanisms of calcium absorption by anterior and posterior segments of the intestinal tract of juvenile lake sturgeon.

Auteurs : Janet Genz ; Benjamin Carriere ; W Gary Anderson

Source :

RBID : pubmed:23831300

English descriptors

Abstract

Rapid growth in juvenile fish increases calcium demand, and the intestine may play a role in calcium homeostasis at this life stage, in addition to branchial and renal transport. This study examined calcium flux in the gastrointestinal tract (GIT) of freshwater juvenile lake sturgeon acclimated to 0.14, 0.34, and 2.26mmol L(-1) environmental calcium. Net Ca(2+) flux did not differ due to environmental [Ca(2+)] in either the anterior or posterior intestine. Blocking the apical epithelial calcium channel (ECaC) with ruthenium red (RR, 8.5μmol L(-1)) significantly decreased Ca(2+) influx in the anterior intestine, but exposure to the plasma membrane Ca(2+)-ATP-ase (PMCA) inhibitor trifluoperazine (TFP, 10mmol L(-1)) had no effect at any environmental [Ca(2+)], nor did inhibition of the Na(+)-Ca(2+) exchanger (NCX) with KB-R7943 (10μmol L(-1)). Neither RR nor TFP affected Ca(2+) uptake by the posterior intestine in any of the treatment groups, but KB-R7943 reduced net calcium flux in the posterior intestine at all environmental [Ca(2+)]. Thus, basolateral Ca(2+) influx in the posterior GIT of lake sturgeon relies more heavily on NCX than PMCA. Furthermore, the differing pharmacological effects in the anterior and posterior intestine suggest that the dominant transporters responsible for calcium uptake vary over the length of the GIT in lake sturgeon.

DOI: 10.1016/j.cbpa.2013.06.033
PubMed: 23831300

Links to Exploration step

pubmed:23831300

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanisms of calcium absorption by anterior and posterior segments of the intestinal tract of juvenile lake sturgeon.</title>
<author>
<name sortKey="Genz, Janet" sort="Genz, Janet" uniqKey="Genz J" first="Janet" last="Genz">Janet Genz</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of West Georgia, Carrollton, GA 30118, USA. jgenz@westga.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carriere, Benjamin" sort="Carriere, Benjamin" uniqKey="Carriere B" first="Benjamin" last="Carriere">Benjamin Carriere</name>
</author>
<author>
<name sortKey="Anderson, W Gary" sort="Anderson, W Gary" uniqKey="Anderson W" first="W Gary" last="Anderson">W Gary Anderson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23831300</idno>
<idno type="pmid">23831300</idno>
<idno type="doi">10.1016/j.cbpa.2013.06.033</idno>
<idno type="wicri:Area/PubMed/Corpus">000237</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000237</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanisms of calcium absorption by anterior and posterior segments of the intestinal tract of juvenile lake sturgeon.</title>
<author>
<name sortKey="Genz, Janet" sort="Genz, Janet" uniqKey="Genz J" first="Janet" last="Genz">Janet Genz</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of West Georgia, Carrollton, GA 30118, USA. jgenz@westga.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carriere, Benjamin" sort="Carriere, Benjamin" uniqKey="Carriere B" first="Benjamin" last="Carriere">Benjamin Carriere</name>
</author>
<author>
<name sortKey="Anderson, W Gary" sort="Anderson, W Gary" uniqKey="Anderson W" first="W Gary" last="Anderson">W Gary Anderson</name>
</author>
</analytic>
<series>
<title level="j">Comparative biochemistry and physiology. Part A, Molecular & integrative physiology</title>
<idno type="eISSN">1531-4332</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Calcium (metabolism)</term>
<term>Calcium Channel Blockers (pharmacology)</term>
<term>Fishes (metabolism)</term>
<term>In Vitro Techniques</term>
<term>Intestinal Absorption</term>
<term>Intestines (drug effects)</term>
<term>Intestines (metabolism)</term>
<term>Osmolar Concentration</term>
<term>Ruthenium Red (pharmacology)</term>
<term>Trifluoperazine (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Calcium Channel Blockers</term>
<term>Ruthenium Red</term>
<term>Trifluoperazine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Intestines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fishes</term>
<term>Intestines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>In Vitro Techniques</term>
<term>Intestinal Absorption</term>
<term>Osmolar Concentration</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rapid growth in juvenile fish increases calcium demand, and the intestine may play a role in calcium homeostasis at this life stage, in addition to branchial and renal transport. This study examined calcium flux in the gastrointestinal tract (GIT) of freshwater juvenile lake sturgeon acclimated to 0.14, 0.34, and 2.26mmol L(-1) environmental calcium. Net Ca(2+) flux did not differ due to environmental [Ca(2+)] in either the anterior or posterior intestine. Blocking the apical epithelial calcium channel (ECaC) with ruthenium red (RR, 8.5μmol L(-1)) significantly decreased Ca(2+) influx in the anterior intestine, but exposure to the plasma membrane Ca(2+)-ATP-ase (PMCA) inhibitor trifluoperazine (TFP, 10mmol L(-1)) had no effect at any environmental [Ca(2+)], nor did inhibition of the Na(+)-Ca(2+) exchanger (NCX) with KB-R7943 (10μmol L(-1)). Neither RR nor TFP affected Ca(2+) uptake by the posterior intestine in any of the treatment groups, but KB-R7943 reduced net calcium flux in the posterior intestine at all environmental [Ca(2+)]. Thus, basolateral Ca(2+) influx in the posterior GIT of lake sturgeon relies more heavily on NCX than PMCA. Furthermore, the differing pharmacological effects in the anterior and posterior intestine suggest that the dominant transporters responsible for calcium uptake vary over the length of the GIT in lake sturgeon.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23831300</PMID>
<DateCreated>
<Year>2013</Year>
<Month>08</Month>
<Day>16</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-4332</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>166</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Comparative biochemistry and physiology. Part A, Molecular & integrative physiology</Title>
<ISOAbbreviation>Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanisms of calcium absorption by anterior and posterior segments of the intestinal tract of juvenile lake sturgeon.</ArticleTitle>
<Pagination>
<MedlinePgn>293-301</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cbpa.2013.06.033</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1095-6433(13)00172-4</ELocationID>
<Abstract>
<AbstractText>Rapid growth in juvenile fish increases calcium demand, and the intestine may play a role in calcium homeostasis at this life stage, in addition to branchial and renal transport. This study examined calcium flux in the gastrointestinal tract (GIT) of freshwater juvenile lake sturgeon acclimated to 0.14, 0.34, and 2.26mmol L(-1) environmental calcium. Net Ca(2+) flux did not differ due to environmental [Ca(2+)] in either the anterior or posterior intestine. Blocking the apical epithelial calcium channel (ECaC) with ruthenium red (RR, 8.5μmol L(-1)) significantly decreased Ca(2+) influx in the anterior intestine, but exposure to the plasma membrane Ca(2+)-ATP-ase (PMCA) inhibitor trifluoperazine (TFP, 10mmol L(-1)) had no effect at any environmental [Ca(2+)], nor did inhibition of the Na(+)-Ca(2+) exchanger (NCX) with KB-R7943 (10μmol L(-1)). Neither RR nor TFP affected Ca(2+) uptake by the posterior intestine in any of the treatment groups, but KB-R7943 reduced net calcium flux in the posterior intestine at all environmental [Ca(2+)]. Thus, basolateral Ca(2+) influx in the posterior GIT of lake sturgeon relies more heavily on NCX than PMCA. Furthermore, the differing pharmacological effects in the anterior and posterior intestine suggest that the dominant transporters responsible for calcium uptake vary over the length of the GIT in lake sturgeon.</AbstractText>
<CopyrightInformation>© 2013 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Genz</LastName>
<ForeName>Janet</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of West Georgia, Carrollton, GA 30118, USA. jgenz@westga.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carriere</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anderson</LastName>
<ForeName>W Gary</ForeName>
<Initials>WG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Comp Biochem Physiol A Mol Integr Physiol</MedlineTA>
<NlmUniqueID>9806096</NlmUniqueID>
<ISSNLinking>1095-6433</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002121">Calcium Channel Blockers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11103-72-3</RegistryNumber>
<NameOfSubstance UI="D012430">Ruthenium Red</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>214IZI85K3</RegistryNumber>
<NameOfSubstance UI="D014268">Trifluoperazine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002121" MajorTopicYN="N">Calcium Channel Blockers</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007408" MajorTopicYN="Y">Intestinal Absorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007422" MajorTopicYN="N">Intestines</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009994" MajorTopicYN="N">Osmolar Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012430" MajorTopicYN="N">Ruthenium Red</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014268" MajorTopicYN="N">Trifluoperazine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acipenser fulvescens</Keyword>
<Keyword MajorTopicYN="N">ECaC</Keyword>
<Keyword MajorTopicYN="N">Freshwater</Keyword>
<Keyword MajorTopicYN="N">GIT</Keyword>
<Keyword MajorTopicYN="N">I(SC)</Keyword>
<Keyword MajorTopicYN="N">NCX</Keyword>
<Keyword MajorTopicYN="N">Na(+)–Ca(2+) exchanger</Keyword>
<Keyword MajorTopicYN="N">PMCA</Keyword>
<Keyword MajorTopicYN="N">RR</Keyword>
<Keyword MajorTopicYN="N">TFP</Keyword>
<Keyword MajorTopicYN="N">epithelial calcium channel</Keyword>
<Keyword MajorTopicYN="N">gastrointestinal tract</Keyword>
<Keyword MajorTopicYN="N">plasma membrane Ca(2+)-ATP-ase</Keyword>
<Keyword MajorTopicYN="N">ruthenium red</Keyword>
<Keyword MajorTopicYN="N">short-circuit current</Keyword>
<Keyword MajorTopicYN="N">trifluoperazine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23831300</ArticleId>
<ArticleId IdType="pii">S1095-6433(13)00172-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.cbpa.2013.06.033</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000237 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000237 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23831300
   |texte=   Mechanisms of calcium absorption by anterior and posterior segments of the intestinal tract of juvenile lake sturgeon.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23831300" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024