Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA.

Identifieur interne : 000633 ( PubMed/Checkpoint ); précédent : 000632; suivant : 000634

Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA.

Auteurs : J. Stabile [États-Unis] ; J R Waldman ; F. Parauka ; I. Wirgin

Source :

RBID : pubmed:8889537

English descriptors

Abstract

Efforts have been proposed worldwide to restore sturgeon populations through the use of hatcheries to supplement natural reproduction and to reintroduce sturgeon where they have become extinct. We examined the population structure and inferred the extent of homing in the anadromous Gulf of Mexico (Gulf) sturgeon (Acipenser oxyrinchus desotoi). Restriction fragment length polymorphism and control region sequence analyses of mitochondrial DNA (mtDNA) were used to identify haplotypes of Gulf sturgeon specimens obtained from eight drainages spanning the subspecies' entire distribution from Louisiana to Florida. Significant differences in haplotype frequencies indicated substantial geographic structuring of populations. A minimum of four regional or river-specific populations were identified (from west to east): (1) Pearl River, LA and Pascagoula River, MS, (2) Escambia and Yellow rivers, FI, (3) Choctawbatchee River, FL and (4) Apalachicola Ochlockonee, and Suwannee rivers, FL. Estimates of maternally mediated gene flow between any pair of the four regional or river-specific stocks ranged between 0.15 to 1.2. Tandem repeats in the mtDNA control region of Gulf sturgeon were not perfectly conserved. This result, together with an absence of heteroplasmy and length variation in Gulf sturgeon mtDNA, indicates that the molecular mechanisms of mtDNA control region sequence evolution differ among acipenserids.

PubMed: 8889537


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:8889537

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA.</title>
<author>
<name sortKey="Stabile, J" sort="Stabile, J" uniqKey="Stabile J" first="J" last="Stabile">J. Stabile</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Environmental Medicine, New York University Medical Center, Tuxedo 10987, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Environmental Medicine, New York University Medical Center, Tuxedo 10987</wicri:regionArea>
<wicri:noRegion>Tuxedo 10987</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Waldman, J R" sort="Waldman, J R" uniqKey="Waldman J" first="J R" last="Waldman">J R Waldman</name>
</author>
<author>
<name sortKey="Parauka, F" sort="Parauka, F" uniqKey="Parauka F" first="F" last="Parauka">F. Parauka</name>
</author>
<author>
<name sortKey="Wirgin, I" sort="Wirgin, I" uniqKey="Wirgin I" first="I" last="Wirgin">I. Wirgin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1996">1996</date>
<idno type="RBID">pubmed:8889537</idno>
<idno type="pmid">8889537</idno>
<idno type="wicri:Area/PubMed/Corpus">000681</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000681</idno>
<idno type="wicri:Area/PubMed/Curation">000681</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000681</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000681</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000681</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA.</title>
<author>
<name sortKey="Stabile, J" sort="Stabile, J" uniqKey="Stabile J" first="J" last="Stabile">J. Stabile</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Environmental Medicine, New York University Medical Center, Tuxedo 10987, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Environmental Medicine, New York University Medical Center, Tuxedo 10987</wicri:regionArea>
<wicri:noRegion>Tuxedo 10987</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Waldman, J R" sort="Waldman, J R" uniqKey="Waldman J" first="J R" last="Waldman">J R Waldman</name>
</author>
<author>
<name sortKey="Parauka, F" sort="Parauka, F" uniqKey="Parauka F" first="F" last="Parauka">F. Parauka</name>
</author>
<author>
<name sortKey="Wirgin, I" sort="Wirgin, I" uniqKey="Wirgin I" first="I" last="Wirgin">I. Wirgin</name>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="ISSN">0016-6731</idno>
<imprint>
<date when="1996" type="published">1996</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>DNA, Mitochondrial</term>
<term>Fishes (classification)</term>
<term>Fishes (genetics)</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA, Mitochondrial</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Fishes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fishes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Sequence Analysis, DNA</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Efforts have been proposed worldwide to restore sturgeon populations through the use of hatcheries to supplement natural reproduction and to reintroduce sturgeon where they have become extinct. We examined the population structure and inferred the extent of homing in the anadromous Gulf of Mexico (Gulf) sturgeon (Acipenser oxyrinchus desotoi). Restriction fragment length polymorphism and control region sequence analyses of mitochondrial DNA (mtDNA) were used to identify haplotypes of Gulf sturgeon specimens obtained from eight drainages spanning the subspecies' entire distribution from Louisiana to Florida. Significant differences in haplotype frequencies indicated substantial geographic structuring of populations. A minimum of four regional or river-specific populations were identified (from west to east): (1) Pearl River, LA and Pascagoula River, MS, (2) Escambia and Yellow rivers, FI, (3) Choctawbatchee River, FL and (4) Apalachicola Ochlockonee, and Suwannee rivers, FL. Estimates of maternally mediated gene flow between any pair of the four regional or river-specific stocks ranged between 0.15 to 1.2. Tandem repeats in the mtDNA control region of Gulf sturgeon were not perfectly conserved. This result, together with an absence of heteroplasmy and length variation in Gulf sturgeon mtDNA, indicates that the molecular mechanisms of mtDNA control region sequence evolution differ among acipenserids.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8889537</PMID>
<DateCreated>
<Year>1997</Year>
<Month>02</Month>
<Day>11</Day>
</DateCreated>
<DateCompleted>
<Year>1997</Year>
<Month>02</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0016-6731</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>144</Volume>
<Issue>2</Issue>
<PubDate>
<Year>1996</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA.</ArticleTitle>
<Pagination>
<MedlinePgn>767-75</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Efforts have been proposed worldwide to restore sturgeon populations through the use of hatcheries to supplement natural reproduction and to reintroduce sturgeon where they have become extinct. We examined the population structure and inferred the extent of homing in the anadromous Gulf of Mexico (Gulf) sturgeon (Acipenser oxyrinchus desotoi). Restriction fragment length polymorphism and control region sequence analyses of mitochondrial DNA (mtDNA) were used to identify haplotypes of Gulf sturgeon specimens obtained from eight drainages spanning the subspecies' entire distribution from Louisiana to Florida. Significant differences in haplotype frequencies indicated substantial geographic structuring of populations. A minimum of four regional or river-specific populations were identified (from west to east): (1) Pearl River, LA and Pascagoula River, MS, (2) Escambia and Yellow rivers, FI, (3) Choctawbatchee River, FL and (4) Apalachicola Ochlockonee, and Suwannee rivers, FL. Estimates of maternally mediated gene flow between any pair of the four regional or river-specific stocks ranged between 0.15 to 1.2. Tandem repeats in the mtDNA control region of Gulf sturgeon were not perfectly conserved. This result, together with an absence of heteroplasmy and length variation in Gulf sturgeon mtDNA, indicates that the molecular mechanisms of mtDNA control region sequence evolution differ among acipenserids.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stabile</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Environmental Medicine, New York University Medical Center, Tuxedo 10987, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Waldman</LastName>
<ForeName>J R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Parauka</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wirgin</LastName>
<ForeName>I</ForeName>
<Initials>I</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>X54348</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>260</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004272">DNA, Mitochondrial</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1975 Nov 5;98(3):503-17</RefSource>
<PMID Version="1">1195397</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683-7</RefSource>
<PMID Version="1">291033</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 1984 Feb;137(1):266-7</RefSource>
<PMID Version="1">6329026</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014-8</RefSource>
<PMID Version="1">6096873</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 1988 Sep;5(5):568-83</RefSource>
<PMID Version="1">3193878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1989 Aug;86(16):6196-200</RefSource>
<PMID Version="1">2762322</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Hered. 1995 Jan-Feb;86(1):22-7</RefSource>
<PMID Version="1">7890928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1990 Jan;124(1):157-63</RefSource>
<PMID Version="1">1968410</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Genet. 1990 Oct;28(9-10):459-75</RefSource>
<PMID Version="1">1982207</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Hered. 1992 Mar-Apr;83(2):157-8</RefSource>
<PMID Version="1">1349617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1992 Jun;131(2):479-91</RefSource>
<PMID Version="1">1644282</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 1992 Sep;132(1):221-8</RefSource>
<PMID Version="1">1398055</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Methods Enzymol. 1993;218:72-9</RefSource>
<PMID Version="1">8510557</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Evol. 1989 Sep;6(5):539-45</RefSource>
<PMID Version="1">2677600</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004272" MajorTopicYN="Y">DNA, Mitochondrial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="Y">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="Y">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC1207567</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1996</Year>
<Month>10</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1996</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1996</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8889537</ArticleId>
<ArticleId IdType="pmc">PMC1207567</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Parauka, F" sort="Parauka, F" uniqKey="Parauka F" first="F" last="Parauka">F. Parauka</name>
<name sortKey="Waldman, J R" sort="Waldman, J R" uniqKey="Waldman J" first="J R" last="Waldman">J R Waldman</name>
<name sortKey="Wirgin, I" sort="Wirgin, I" uniqKey="Wirgin I" first="I" last="Wirgin">I. Wirgin</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Stabile, J" sort="Stabile, J" uniqKey="Stabile J" first="J" last="Stabile">J. Stabile</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000633 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000633 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:8889537
   |texte=   Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:8889537" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024