Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Function of the heterocercal tail in white sturgeon: flow visualization during steady swimming and vertical maneuvering.

Identifieur interne : 000601 ( PubMed/Checkpoint ); précédent : 000600; suivant : 000602

Function of the heterocercal tail in white sturgeon: flow visualization during steady swimming and vertical maneuvering.

Auteurs : J. Liao [États-Unis] ; G V Lauder

Source :

RBID : pubmed:11060219

English descriptors

Abstract

Basal ray-finned fishes possess a heterocercal tail in which the dorsal lobe containing the extension of the vertebral column is longer than the ventral lobe. Clarifying the function of the heterocercal tail has proved elusive because of the difficulty of measuring the direction of force produced relative to body position in the aquatic medium. We measured the direction of force produced by the heterocercal tail of the white sturgeon (Acipenser transmontanus) by visualizing flow in the wake of the tail using digital particle image velocimetry (DPIV) while simultaneously recording body position and motion using high-speed video. To quantify tail function, we measured the vertical body velocity, the body angle and the path angle of the body from video recordings and the vortex ring axis angle and vortex jet angle from DPIV recordings of the wake downstream from the tail. These variables were measured for sturgeon exhibiting three swimming behaviors at 1.2 L s(-)(1), where L is total body length: rising through the water column, holding vertical position, and sinking through the water column. For vertical body velocity, body angle and path angle values, all behaviors were significantly different from one another. For vortex ring axis angle and vortex jet angle, rising and holding behavior were not significantly different from each other, but both were significantly different from sinking behavior. During steady horizontal swimming, the sturgeon tail generates a lift force relative to the path of motion but no rotational moment because the reaction force passes through the center of mass. For a rising sturgeon, the tail does not produce a lift force but causes the tail to rotate ventrally in relation to the head since the reaction force passes ventral to the center of mass. While sinking, the direction of the fluid jet produced by the tail relative to the path of motion causes a lift force to be created and causes the tail to rotate dorsally in relation to the head since the reaction force passes dorsal to the center of mass. These data provide evidence that sturgeon can actively control the direction of force produced by their tail while maneuvering through the water column because the relationship between vortex jet angle and body angle is not constant.

PubMed: 11060219


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:11060219

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Function of the heterocercal tail in white sturgeon: flow visualization during steady swimming and vertical maneuvering.</title>
<author>
<name sortKey="Liao, J" sort="Liao, J" uniqKey="Liao J" first="J" last="Liao">J. Liao</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. jliao@oeb.harvard.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lauder, G V" sort="Lauder, G V" uniqKey="Lauder G" first="G V" last="Lauder">G V Lauder</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:11060219</idno>
<idno type="pmid">11060219</idno>
<idno type="wicri:Area/PubMed/Corpus">000638</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000638</idno>
<idno type="wicri:Area/PubMed/Curation">000638</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000638</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000638</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000638</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Function of the heterocercal tail in white sturgeon: flow visualization during steady swimming and vertical maneuvering.</title>
<author>
<name sortKey="Liao, J" sort="Liao, J" uniqKey="Liao J" first="J" last="Liao">J. Liao</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. jliao@oeb.harvard.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lauder, G V" sort="Lauder, G V" uniqKey="Lauder G" first="G V" last="Lauder">G V Lauder</name>
</author>
</analytic>
<series>
<title level="j">The Journal of experimental biology</title>
<idno type="ISSN">0022-0949</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biomechanical Phenomena</term>
<term>Fishes (physiology)</term>
<term>Swimming (physiology)</term>
<term>Tail (physiology)</term>
<term>Video Recording</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fishes</term>
<term>Swimming</term>
<term>Tail</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biomechanical Phenomena</term>
<term>Video Recording</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Basal ray-finned fishes possess a heterocercal tail in which the dorsal lobe containing the extension of the vertebral column is longer than the ventral lobe. Clarifying the function of the heterocercal tail has proved elusive because of the difficulty of measuring the direction of force produced relative to body position in the aquatic medium. We measured the direction of force produced by the heterocercal tail of the white sturgeon (Acipenser transmontanus) by visualizing flow in the wake of the tail using digital particle image velocimetry (DPIV) while simultaneously recording body position and motion using high-speed video. To quantify tail function, we measured the vertical body velocity, the body angle and the path angle of the body from video recordings and the vortex ring axis angle and vortex jet angle from DPIV recordings of the wake downstream from the tail. These variables were measured for sturgeon exhibiting three swimming behaviors at 1.2 L s(-)(1), where L is total body length: rising through the water column, holding vertical position, and sinking through the water column. For vertical body velocity, body angle and path angle values, all behaviors were significantly different from one another. For vortex ring axis angle and vortex jet angle, rising and holding behavior were not significantly different from each other, but both were significantly different from sinking behavior. During steady horizontal swimming, the sturgeon tail generates a lift force relative to the path of motion but no rotational moment because the reaction force passes through the center of mass. For a rising sturgeon, the tail does not produce a lift force but causes the tail to rotate ventrally in relation to the head since the reaction force passes ventral to the center of mass. While sinking, the direction of the fluid jet produced by the tail relative to the path of motion causes a lift force to be created and causes the tail to rotate dorsally in relation to the head since the reaction force passes dorsal to the center of mass. These data provide evidence that sturgeon can actively control the direction of force produced by their tail while maneuvering through the water column because the relationship between vortex jet angle and body angle is not constant.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11060219</PMID>
<DateCreated>
<Year>2001</Year>
<Month>01</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2001</Year>
<Month>02</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-0949</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>203</Volume>
<Issue>Pt 23</Issue>
<PubDate>
<Year>2000</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>The Journal of experimental biology</Title>
<ISOAbbreviation>J. Exp. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Function of the heterocercal tail in white sturgeon: flow visualization during steady swimming and vertical maneuvering.</ArticleTitle>
<Pagination>
<MedlinePgn>3585-94</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Basal ray-finned fishes possess a heterocercal tail in which the dorsal lobe containing the extension of the vertebral column is longer than the ventral lobe. Clarifying the function of the heterocercal tail has proved elusive because of the difficulty of measuring the direction of force produced relative to body position in the aquatic medium. We measured the direction of force produced by the heterocercal tail of the white sturgeon (Acipenser transmontanus) by visualizing flow in the wake of the tail using digital particle image velocimetry (DPIV) while simultaneously recording body position and motion using high-speed video. To quantify tail function, we measured the vertical body velocity, the body angle and the path angle of the body from video recordings and the vortex ring axis angle and vortex jet angle from DPIV recordings of the wake downstream from the tail. These variables were measured for sturgeon exhibiting three swimming behaviors at 1.2 L s(-)(1), where L is total body length: rising through the water column, holding vertical position, and sinking through the water column. For vertical body velocity, body angle and path angle values, all behaviors were significantly different from one another. For vortex ring axis angle and vortex jet angle, rising and holding behavior were not significantly different from each other, but both were significantly different from sinking behavior. During steady horizontal swimming, the sturgeon tail generates a lift force relative to the path of motion but no rotational moment because the reaction force passes through the center of mass. For a rising sturgeon, the tail does not produce a lift force but causes the tail to rotate ventrally in relation to the head since the reaction force passes ventral to the center of mass. While sinking, the direction of the fluid jet produced by the tail relative to the path of motion causes a lift force to be created and causes the tail to rotate dorsally in relation to the head since the reaction force passes dorsal to the center of mass. These data provide evidence that sturgeon can actively control the direction of force produced by their tail while maneuvering through the water column because the relationship between vortex jet angle and body angle is not constant.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liao</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. jliao@oeb.harvard.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lauder</LastName>
<ForeName>G V</ForeName>
<Initials>GV</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Biol</MedlineTA>
<NlmUniqueID>0243705</NlmUniqueID>
<ISSNLinking>0022-0949</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013550" MajorTopicYN="N">Swimming</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013623" MajorTopicYN="N">Tail</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014741" MajorTopicYN="N">Video Recording</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11060219</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Lauder, G V" sort="Lauder, G V" uniqKey="Lauder G" first="G V" last="Lauder">G V Lauder</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Liao, J" sort="Liao, J" uniqKey="Liao J" first="J" last="Liao">J. Liao</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000601 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000601 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:11060219
   |texte=   Function of the heterocercal tail in white sturgeon: flow visualization during steady swimming and vertical maneuvering.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:11060219" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024