Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distribution of GFAP immunoreactive structures in the rhombencephalon of the sterlet (Acipenser ruthenus) and its evolutionary implication.

Identifieur interne : 000572 ( PubMed/Checkpoint ); précédent : 000571; suivant : 000573

Distribution of GFAP immunoreactive structures in the rhombencephalon of the sterlet (Acipenser ruthenus) and its evolutionary implication.

Auteurs : Mihály Kálmán ; Csilla Ari

Source :

RBID : pubmed:12210122

English descriptors

Abstract

Previous studies have revealed that although the brains of cypriniform teleosts (iberian barb, Barbus comiza; carp, Cyprinus carpio; goldfish, Carassius auratus) are rich in glial fibrillary acidic protein (GFAP), they have, however, areas devoid of GFAP immunoreactivity. The largest ones of these are in the rhombencephalon, e.g., the zones of the sensory and motor neurons in the vagal lobe. Our studies in amniotes suggested that the GFAP immunonegative areas could be characteristic of the more advanced brains (avian and mammalian), whereas no similar areas were found in reptiles. A similar tendency was found in the Chondrichthyes, i.e., GFAP immunonegative areas appeared as brain complexity progressed. The question arose whether the GFAP immunonegative brain areas in the Teleostei were also the result of such a tendency. Within the radiation of ray-finned fishes (Actinopterygii), Chondrostei represent a less advanced level as compared to the Teleostei. Therefore, the distribution of GFAP immunoreactivity was investigated in the rhombencephalon of the sterlet (Acipenser ruthenus) as a representative of Chondrostei, and in the carp. Serial vibratome sections were processed according to the avidin-biotinylated horseradish peroxidase method.Several comparable GFAP immunoreactive structures were found in the two species: the dense periventricular ependymoglial plexus, the midsagittal glial septum, the small glial septa separating the nerve fiber bundles, and the wide glial endfeet lining the meningeal surface. In the vagal lobe in the zones adjacent to the meningeal and ventricular surfaces, the glial structures also proved to be similar. In contrast to the carp, however, no areas were found devoid of GFAP immunoreactivity in the sterlet.The results suggest that this trend of glial evolution, i.e., GFAP immunonegative areas appearing as brain complexity progressed, is a common feature shared by Actinopterygii, Amniota, and Chondrichthyes, despite their separate evolutionary histories. J. Exp. Zool. 293:395-406, 2002.

DOI: 10.1002/jez.10134
PubMed: 12210122


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:12210122

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distribution of GFAP immunoreactive structures in the rhombencephalon of the sterlet (Acipenser ruthenus) and its evolutionary implication.</title>
<author>
<name sortKey="Kalman, Mihaly" sort="Kalman, Mihaly" uniqKey="Kalman M" first="Mihály" last="Kálmán">Mihály Kálmán</name>
<affiliation>
<nlm:affiliation>Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary, H-1094.</nlm:affiliation>
<wicri:noCountry code="subField">H-1094</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ari, Csilla" sort="Ari, Csilla" uniqKey="Ari C" first="Csilla" last="Ari">Csilla Ari</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12210122</idno>
<idno type="pmid">12210122</idno>
<idno type="doi">10.1002/jez.10134</idno>
<idno type="wicri:Area/PubMed/Corpus">000605</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000605</idno>
<idno type="wicri:Area/PubMed/Curation">000605</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000605</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000605</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000605</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Distribution of GFAP immunoreactive structures in the rhombencephalon of the sterlet (Acipenser ruthenus) and its evolutionary implication.</title>
<author>
<name sortKey="Kalman, Mihaly" sort="Kalman, Mihaly" uniqKey="Kalman M" first="Mihály" last="Kálmán">Mihály Kálmán</name>
<affiliation>
<nlm:affiliation>Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary, H-1094.</nlm:affiliation>
<wicri:noCountry code="subField">H-1094</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ari, Csilla" sort="Ari, Csilla" uniqKey="Ari C" first="Csilla" last="Ari">Csilla Ari</name>
</author>
</analytic>
<series>
<title level="j">The Journal of experimental zoology</title>
<idno type="ISSN">0022-104X</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Brain (metabolism)</term>
<term>Carps (metabolism)</term>
<term>Glial Fibrillary Acidic Protein (metabolism)</term>
<term>Immunohistochemistry</term>
<term>Rhombencephalon (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glial Fibrillary Acidic Protein</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brain</term>
<term>Carps</term>
<term>Rhombencephalon</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Immunohistochemistry</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previous studies have revealed that although the brains of cypriniform teleosts (iberian barb, Barbus comiza; carp, Cyprinus carpio; goldfish, Carassius auratus) are rich in glial fibrillary acidic protein (GFAP), they have, however, areas devoid of GFAP immunoreactivity. The largest ones of these are in the rhombencephalon, e.g., the zones of the sensory and motor neurons in the vagal lobe. Our studies in amniotes suggested that the GFAP immunonegative areas could be characteristic of the more advanced brains (avian and mammalian), whereas no similar areas were found in reptiles. A similar tendency was found in the Chondrichthyes, i.e., GFAP immunonegative areas appeared as brain complexity progressed. The question arose whether the GFAP immunonegative brain areas in the Teleostei were also the result of such a tendency. Within the radiation of ray-finned fishes (Actinopterygii), Chondrostei represent a less advanced level as compared to the Teleostei. Therefore, the distribution of GFAP immunoreactivity was investigated in the rhombencephalon of the sterlet (Acipenser ruthenus) as a representative of Chondrostei, and in the carp. Serial vibratome sections were processed according to the avidin-biotinylated horseradish peroxidase method.Several comparable GFAP immunoreactive structures were found in the two species: the dense periventricular ependymoglial plexus, the midsagittal glial septum, the small glial septa separating the nerve fiber bundles, and the wide glial endfeet lining the meningeal surface. In the vagal lobe in the zones adjacent to the meningeal and ventricular surfaces, the glial structures also proved to be similar. In contrast to the carp, however, no areas were found devoid of GFAP immunoreactivity in the sterlet.The results suggest that this trend of glial evolution, i.e., GFAP immunonegative areas appearing as brain complexity progressed, is a common feature shared by Actinopterygii, Amniota, and Chondrichthyes, despite their separate evolutionary histories. J. Exp. Zool. 293:395-406, 2002.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12210122</PMID>
<DateCreated>
<Year>2002</Year>
<Month>09</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2002</Year>
<Month>09</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-104X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>293</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2002</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of experimental zoology</Title>
<ISOAbbreviation>J. Exp. Zool.</ISOAbbreviation>
</Journal>
<ArticleTitle>Distribution of GFAP immunoreactive structures in the rhombencephalon of the sterlet (Acipenser ruthenus) and its evolutionary implication.</ArticleTitle>
<Pagination>
<MedlinePgn>395-406</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Previous studies have revealed that although the brains of cypriniform teleosts (iberian barb, Barbus comiza; carp, Cyprinus carpio; goldfish, Carassius auratus) are rich in glial fibrillary acidic protein (GFAP), they have, however, areas devoid of GFAP immunoreactivity. The largest ones of these are in the rhombencephalon, e.g., the zones of the sensory and motor neurons in the vagal lobe. Our studies in amniotes suggested that the GFAP immunonegative areas could be characteristic of the more advanced brains (avian and mammalian), whereas no similar areas were found in reptiles. A similar tendency was found in the Chondrichthyes, i.e., GFAP immunonegative areas appeared as brain complexity progressed. The question arose whether the GFAP immunonegative brain areas in the Teleostei were also the result of such a tendency. Within the radiation of ray-finned fishes (Actinopterygii), Chondrostei represent a less advanced level as compared to the Teleostei. Therefore, the distribution of GFAP immunoreactivity was investigated in the rhombencephalon of the sterlet (Acipenser ruthenus) as a representative of Chondrostei, and in the carp. Serial vibratome sections were processed according to the avidin-biotinylated horseradish peroxidase method.Several comparable GFAP immunoreactive structures were found in the two species: the dense periventricular ependymoglial plexus, the midsagittal glial septum, the small glial septa separating the nerve fiber bundles, and the wide glial endfeet lining the meningeal surface. In the vagal lobe in the zones adjacent to the meningeal and ventricular surfaces, the glial structures also proved to be similar. In contrast to the carp, however, no areas were found devoid of GFAP immunoreactivity in the sterlet.The results suggest that this trend of glial evolution, i.e., GFAP immunonegative areas appearing as brain complexity progressed, is a common feature shared by Actinopterygii, Amniota, and Chondrichthyes, despite their separate evolutionary histories. J. Exp. Zool. 293:395-406, 2002.</AbstractText>
<CopyrightInformation>Copyright 2002 Wiley-Liss, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kálmán</LastName>
<ForeName>Mihály</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary, H-1094.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ari</LastName>
<ForeName>Csilla</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Exp Zool</MedlineTA>
<NlmUniqueID>0375365</NlmUniqueID>
<ISSNLinking>0022-104X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005904">Glial Fibrillary Acidic Protein</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002347" MajorTopicYN="Y">Carps</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005904" MajorTopicYN="Y">Glial Fibrillary Acidic Protein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007150" MajorTopicYN="N">Immunohistochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012249" MajorTopicYN="N">Rhombencephalon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12210122</ArticleId>
<ArticleId IdType="doi">10.1002/jez.10134</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Ari, Csilla" sort="Ari, Csilla" uniqKey="Ari C" first="Csilla" last="Ari">Csilla Ari</name>
<name sortKey="Kalman, Mihaly" sort="Kalman, Mihaly" uniqKey="Kalman M" first="Mihály" last="Kálmán">Mihály Kálmán</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000572 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000572 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:12210122
   |texte=   Distribution of GFAP immunoreactive structures in the rhombencephalon of the sterlet (Acipenser ruthenus) and its evolutionary implication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:12210122" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024