Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of the lateral line system in the shovelnose sturgeon.

Identifieur interne : 000532 ( PubMed/Checkpoint ); précédent : 000531; suivant : 000533

Development of the lateral line system in the shovelnose sturgeon.

Auteurs : Melissa A. Gibbs [États-Unis] ; R Glenn Northcutt

Source :

RBID : pubmed:15205543

English descriptors

Abstract

The lateral line systems of aquatic amphibians and all chondrichthyan and osteichthyan fish present a similar array of mechanoreceptors. However, electroreceptors, the second major component of the lateral line system, have clearly undergone more significant evolutionary change. Chondrichthyans and non-neopterygian fish possess primitive ampullary organ electroreceptors, whereas significantly different 'new' ampullary organs and tuberous electroreceptors are found in a few groups of teleosts (mormyrids, gymnotids and some catfish). The pairing of mechano- and electroreceptors in the lateral line system, as well as the morphologically and physiologically distinct electroreceptors of teleosts have inspired several recent studies on the origin and evolution of the lateral line receptors. We described the development of the lateral line system in sturgeon (Scaphirhynchus platorynchus) as part of an outgroup analysis of lateral line development in three taxa: vertebrates that have both mechanoreceptive neuromasts and primitive electroreceptors; neopterygian fish that only have mechanoreceptors; and teleosts that have re-evolved new electroreceptors. Development in Scaphirhynchus was consistent with previously studied taxa in that the lateral line system developed from a series of six dorsolateral placodes. Interestingly, we found that the octaval placode was bound rostrally and caudally by large placodal fields, out of which the six lateral line placodes arose. This finding supports recent suggestions for a common placodal primordium for all placodes. Each of the six placodes gave rise to the lateral line nerves before elongating into sensory ridges, which contained neuromast primordia. The ampullary organ fields of Scaphirhynchus arose from the lateral zones of the anterodorsal, anteroventral, otic and supratemporal sensory ridges, which is also consistent with recently studied taxa. Comparisons of the lateral line system of Scaphirhynchus and close relatives, Acipenser and Polyodon, indicate that variation in some aspects of lateral line receptor numbers and distribution are related to changes in head morphology and feeding strategy, whereas other changes, such as a reduction in receptor number without a change in placode field size, indicate changes in placode development.

DOI: 10.1159/000079117
PubMed: 15205543


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15205543

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development of the lateral line system in the shovelnose sturgeon.</title>
<author>
<name sortKey="Gibbs, Melissa A" sort="Gibbs, Melissa A" uniqKey="Gibbs M" first="Melissa A" last="Gibbs">Melissa A. Gibbs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Stetson University, DeLand, Fla. 32723, USA. mgibbs@stetson.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stetson University, DeLand, Fla. 32723</wicri:regionArea>
<wicri:noRegion>Fla. 32723</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Northcutt, R Glenn" sort="Northcutt, R Glenn" uniqKey="Northcutt R" first="R Glenn" last="Northcutt">R Glenn Northcutt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15205543</idno>
<idno type="pmid">15205543</idno>
<idno type="doi">10.1159/000079117</idno>
<idno type="wicri:Area/PubMed/Corpus">000570</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000570</idno>
<idno type="wicri:Area/PubMed/Curation">000570</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000570</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000570</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000570</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Development of the lateral line system in the shovelnose sturgeon.</title>
<author>
<name sortKey="Gibbs, Melissa A" sort="Gibbs, Melissa A" uniqKey="Gibbs M" first="Melissa A" last="Gibbs">Melissa A. Gibbs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Stetson University, DeLand, Fla. 32723, USA. mgibbs@stetson.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Stetson University, DeLand, Fla. 32723</wicri:regionArea>
<wicri:noRegion>Fla. 32723</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Northcutt, R Glenn" sort="Northcutt, R Glenn" uniqKey="Northcutt R" first="R Glenn" last="Northcutt">R Glenn Northcutt</name>
</author>
</analytic>
<series>
<title level="j">Brain, behavior and evolution</title>
<idno type="ISSN">0006-8977</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Ectoderm (cytology)</term>
<term>Embryo, Nonmammalian</term>
<term>Fishes (anatomy & histology)</term>
<term>Fishes (growth & development)</term>
<term>Head (anatomy & histology)</term>
<term>Head (growth & development)</term>
<term>Larva</term>
<term>Mechanoreceptors (anatomy & histology)</term>
<term>Mechanoreceptors (growth & development)</term>
<term>Sense Organs (anatomy & histology)</term>
<term>Sense Organs (growth & development)</term>
<term>Sensory Receptor Cells (anatomy & histology)</term>
<term>Sensory Receptor Cells (growth & development)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Fishes</term>
<term>Head</term>
<term>Mechanoreceptors</term>
<term>Sense Organs</term>
<term>Sensory Receptor Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Ectoderm</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fishes</term>
<term>Head</term>
<term>Mechanoreceptors</term>
<term>Sense Organs</term>
<term>Sensory Receptor Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Embryo, Nonmammalian</term>
<term>Larva</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The lateral line systems of aquatic amphibians and all chondrichthyan and osteichthyan fish present a similar array of mechanoreceptors. However, electroreceptors, the second major component of the lateral line system, have clearly undergone more significant evolutionary change. Chondrichthyans and non-neopterygian fish possess primitive ampullary organ electroreceptors, whereas significantly different 'new' ampullary organs and tuberous electroreceptors are found in a few groups of teleosts (mormyrids, gymnotids and some catfish). The pairing of mechano- and electroreceptors in the lateral line system, as well as the morphologically and physiologically distinct electroreceptors of teleosts have inspired several recent studies on the origin and evolution of the lateral line receptors. We described the development of the lateral line system in sturgeon (Scaphirhynchus platorynchus) as part of an outgroup analysis of lateral line development in three taxa: vertebrates that have both mechanoreceptive neuromasts and primitive electroreceptors; neopterygian fish that only have mechanoreceptors; and teleosts that have re-evolved new electroreceptors. Development in Scaphirhynchus was consistent with previously studied taxa in that the lateral line system developed from a series of six dorsolateral placodes. Interestingly, we found that the octaval placode was bound rostrally and caudally by large placodal fields, out of which the six lateral line placodes arose. This finding supports recent suggestions for a common placodal primordium for all placodes. Each of the six placodes gave rise to the lateral line nerves before elongating into sensory ridges, which contained neuromast primordia. The ampullary organ fields of Scaphirhynchus arose from the lateral zones of the anterodorsal, anteroventral, otic and supratemporal sensory ridges, which is also consistent with recently studied taxa. Comparisons of the lateral line system of Scaphirhynchus and close relatives, Acipenser and Polyodon, indicate that variation in some aspects of lateral line receptor numbers and distribution are related to changes in head morphology and feeding strategy, whereas other changes, such as a reduction in receptor number without a change in placode field size, indicate changes in placode development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15205543</PMID>
<DateCreated>
<Year>2004</Year>
<Month>07</Month>
<Day>20</Day>
</DateCreated>
<DateCompleted>
<Year>2004</Year>
<Month>09</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2008</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-8977</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>64</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2004</Year>
</PubDate>
</JournalIssue>
<Title>Brain, behavior and evolution</Title>
<ISOAbbreviation>Brain Behav. Evol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Development of the lateral line system in the shovelnose sturgeon.</ArticleTitle>
<Pagination>
<MedlinePgn>70-84</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The lateral line systems of aquatic amphibians and all chondrichthyan and osteichthyan fish present a similar array of mechanoreceptors. However, electroreceptors, the second major component of the lateral line system, have clearly undergone more significant evolutionary change. Chondrichthyans and non-neopterygian fish possess primitive ampullary organ electroreceptors, whereas significantly different 'new' ampullary organs and tuberous electroreceptors are found in a few groups of teleosts (mormyrids, gymnotids and some catfish). The pairing of mechano- and electroreceptors in the lateral line system, as well as the morphologically and physiologically distinct electroreceptors of teleosts have inspired several recent studies on the origin and evolution of the lateral line receptors. We described the development of the lateral line system in sturgeon (Scaphirhynchus platorynchus) as part of an outgroup analysis of lateral line development in three taxa: vertebrates that have both mechanoreceptive neuromasts and primitive electroreceptors; neopterygian fish that only have mechanoreceptors; and teleosts that have re-evolved new electroreceptors. Development in Scaphirhynchus was consistent with previously studied taxa in that the lateral line system developed from a series of six dorsolateral placodes. Interestingly, we found that the octaval placode was bound rostrally and caudally by large placodal fields, out of which the six lateral line placodes arose. This finding supports recent suggestions for a common placodal primordium for all placodes. Each of the six placodes gave rise to the lateral line nerves before elongating into sensory ridges, which contained neuromast primordia. The ampullary organ fields of Scaphirhynchus arose from the lateral zones of the anterodorsal, anteroventral, otic and supratemporal sensory ridges, which is also consistent with recently studied taxa. Comparisons of the lateral line system of Scaphirhynchus and close relatives, Acipenser and Polyodon, indicate that variation in some aspects of lateral line receptor numbers and distribution are related to changes in head morphology and feeding strategy, whereas other changes, such as a reduction in receptor number without a change in placode field size, indicate changes in placode development.</AbstractText>
<CopyrightInformation>Copyright 2004 S. Karger AG, Basel</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gibbs</LastName>
<ForeName>Melissa A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Stetson University, DeLand, Fla. 32723, USA. mgibbs@stetson.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Northcutt</LastName>
<ForeName>R Glenn</ForeName>
<Initials>RG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>NS24669</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>06</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Brain Behav Evol</MedlineTA>
<NlmUniqueID>0151620</NlmUniqueID>
<ISSNLinking>0006-8977</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004475" MajorTopicYN="N">Ectoderm</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004625" MajorTopicYN="N">Embryo, Nonmammalian</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006257" MajorTopicYN="N">Head</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008465" MajorTopicYN="N">Mechanoreceptors</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012679" MajorTopicYN="N">Sense Organs</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011984" MajorTopicYN="N">Sensory Receptor Cells</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2003</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15205543</ArticleId>
<ArticleId IdType="doi">10.1159/000079117</ArticleId>
<ArticleId IdType="pii">79117</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Northcutt, R Glenn" sort="Northcutt, R Glenn" uniqKey="Northcutt R" first="R Glenn" last="Northcutt">R Glenn Northcutt</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Gibbs, Melissa A" sort="Gibbs, Melissa A" uniqKey="Gibbs M" first="Melissa A" last="Gibbs">Melissa A. Gibbs</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000532 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000532 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:15205543
   |texte=   Development of the lateral line system in the shovelnose sturgeon.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:15205543" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024