Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates.

Identifieur interne : 000441 ( PubMed/Checkpoint ); précédent : 000440; suivant : 000442

Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates.

Auteurs : Carla S B. Viegas [Portugal] ; Dina C. Simes ; Vincent Laizé ; Matthew K. Williamson ; Paul A. Price ; M Leonor Cancela

Source :

RBID : pubmed:18836183

English descriptors

Abstract

We report the isolation of a novel vitamin K-dependent protein from the calcified cartilage of Adriatic sturgeon (Acipenser nacarii). This 10.2-kDa secreted protein contains 16 gamma-carboxyglutamic acid (Gla) residues in its 74-residue sequence, the highest Gla percent of any known protein, and we have therefore termed it Gla-rich protein (GRP). GRP has a high charge density (36 negative+16 positive=20 net negative) yet is insoluble at neutral pH. GRP has orthologs in all taxonomic groups of vertebrates, and a paralog (GRP2) in bony fish; no GRP homolog was found in invertebrates. There is no significant sequence homology between GRP and the Gla-containing region of any presently known vitamin K-dependent protein. Forty-seven GRP sequences were obtained by a combination of cDNA cloning and comparative genomics: all 47 have a propeptide that contains a gamma-carboxylase recognition site and a mature protein with 14 highly conserved Glu residues, each of them being gamma-carboxylated in sturgeon. The protein sequence of GRP is also highly conserved, with 78% identity between sturgeon and human GRP. Analysis of the corresponding gene structures suggests a highly constrained organization, particularly for exon 4, which encodes the core Gla domain. GRP mRNA is found in virtually all rat and sturgeon tissues examined, with the highest expression in cartilage. Cells expressing GRP include chondrocytes, chondroblasts, osteoblasts, and osteocytes. Because of its potential to bind calcium through Gla residues, we suggest that GRP may regulate calcium in the extracellular environment.

DOI: 10.1074/jbc.M802761200
PubMed: 18836183


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18836183

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates.</title>
<author>
<name sortKey="Viegas, Carla S B" sort="Viegas, Carla S B" uniqKey="Viegas C" first="Carla S B" last="Viegas">Carla S B. Viegas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro</wicri:regionArea>
<wicri:noRegion>8005-139 Faro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Simes, Dina C" sort="Simes, Dina C" uniqKey="Simes D" first="Dina C" last="Simes">Dina C. Simes</name>
</author>
<author>
<name sortKey="Laize, Vincent" sort="Laize, Vincent" uniqKey="Laize V" first="Vincent" last="Laizé">Vincent Laizé</name>
</author>
<author>
<name sortKey="Williamson, Matthew K" sort="Williamson, Matthew K" uniqKey="Williamson M" first="Matthew K" last="Williamson">Matthew K. Williamson</name>
</author>
<author>
<name sortKey="Price, Paul A" sort="Price, Paul A" uniqKey="Price P" first="Paul A" last="Price">Paul A. Price</name>
</author>
<author>
<name sortKey="Cancela, M Leonor" sort="Cancela, M Leonor" uniqKey="Cancela M" first="M Leonor" last="Cancela">M Leonor Cancela</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18836183</idno>
<idno type="pmid">18836183</idno>
<idno type="doi">10.1074/jbc.M802761200</idno>
<idno type="wicri:Area/PubMed/Corpus">000448</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000448</idno>
<idno type="wicri:Area/PubMed/Curation">000448</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000448</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000448</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000448</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates.</title>
<author>
<name sortKey="Viegas, Carla S B" sort="Viegas, Carla S B" uniqKey="Viegas C" first="Carla S B" last="Viegas">Carla S B. Viegas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro</wicri:regionArea>
<wicri:noRegion>8005-139 Faro</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Simes, Dina C" sort="Simes, Dina C" uniqKey="Simes D" first="Dina C" last="Simes">Dina C. Simes</name>
</author>
<author>
<name sortKey="Laize, Vincent" sort="Laize, Vincent" uniqKey="Laize V" first="Vincent" last="Laizé">Vincent Laizé</name>
</author>
<author>
<name sortKey="Williamson, Matthew K" sort="Williamson, Matthew K" uniqKey="Williamson M" first="Matthew K" last="Williamson">Matthew K. Williamson</name>
</author>
<author>
<name sortKey="Price, Paul A" sort="Price, Paul A" uniqKey="Price P" first="Paul A" last="Price">Paul A. Price</name>
</author>
<author>
<name sortKey="Cancela, M Leonor" sort="Cancela, M Leonor" uniqKey="Cancela M" first="M Leonor" last="Cancela">M Leonor Cancela</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Cartilage (metabolism)</term>
<term>Conserved Sequence</term>
<term>Fish Proteins (chemistry)</term>
<term>Fish Proteins (metabolism)</term>
<term>Fishes</term>
<term>Gene Expression Regulation</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Models, Biological</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Sequence Homology, Amino Acid</term>
<term>Tissue Distribution</term>
<term>Vitamin K (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fish Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cartilage</term>
<term>Fish Proteins</term>
<term>Vitamin K</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>Fishes</term>
<term>Gene Expression Regulation</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Models, Biological</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Sequence Homology, Amino Acid</term>
<term>Tissue Distribution</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report the isolation of a novel vitamin K-dependent protein from the calcified cartilage of Adriatic sturgeon (Acipenser nacarii). This 10.2-kDa secreted protein contains 16 gamma-carboxyglutamic acid (Gla) residues in its 74-residue sequence, the highest Gla percent of any known protein, and we have therefore termed it Gla-rich protein (GRP). GRP has a high charge density (36 negative+16 positive=20 net negative) yet is insoluble at neutral pH. GRP has orthologs in all taxonomic groups of vertebrates, and a paralog (GRP2) in bony fish; no GRP homolog was found in invertebrates. There is no significant sequence homology between GRP and the Gla-containing region of any presently known vitamin K-dependent protein. Forty-seven GRP sequences were obtained by a combination of cDNA cloning and comparative genomics: all 47 have a propeptide that contains a gamma-carboxylase recognition site and a mature protein with 14 highly conserved Glu residues, each of them being gamma-carboxylated in sturgeon. The protein sequence of GRP is also highly conserved, with 78% identity between sturgeon and human GRP. Analysis of the corresponding gene structures suggests a highly constrained organization, particularly for exon 4, which encodes the core Gla domain. GRP mRNA is found in virtually all rat and sturgeon tissues examined, with the highest expression in cartilage. Cells expressing GRP include chondrocytes, chondroblasts, osteoblasts, and osteocytes. Because of its potential to bind calcium through Gla residues, we suggest that GRP may regulate calcium in the extracellular environment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18836183</PMID>
<DateCreated>
<Year>2008</Year>
<Month>12</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2009</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>283</Volume>
<Issue>52</Issue>
<PubDate>
<Year>2008</Year>
<Month>Dec</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates.</ArticleTitle>
<Pagination>
<MedlinePgn>36655-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M802761200</ELocationID>
<Abstract>
<AbstractText>We report the isolation of a novel vitamin K-dependent protein from the calcified cartilage of Adriatic sturgeon (Acipenser nacarii). This 10.2-kDa secreted protein contains 16 gamma-carboxyglutamic acid (Gla) residues in its 74-residue sequence, the highest Gla percent of any known protein, and we have therefore termed it Gla-rich protein (GRP). GRP has a high charge density (36 negative+16 positive=20 net negative) yet is insoluble at neutral pH. GRP has orthologs in all taxonomic groups of vertebrates, and a paralog (GRP2) in bony fish; no GRP homolog was found in invertebrates. There is no significant sequence homology between GRP and the Gla-containing region of any presently known vitamin K-dependent protein. Forty-seven GRP sequences were obtained by a combination of cDNA cloning and comparative genomics: all 47 have a propeptide that contains a gamma-carboxylase recognition site and a mature protein with 14 highly conserved Glu residues, each of them being gamma-carboxylated in sturgeon. The protein sequence of GRP is also highly conserved, with 78% identity between sturgeon and human GRP. Analysis of the corresponding gene structures suggests a highly constrained organization, particularly for exon 4, which encodes the core Gla domain. GRP mRNA is found in virtually all rat and sturgeon tissues examined, with the highest expression in cartilage. Cells expressing GRP include chondrocytes, chondroblasts, osteoblasts, and osteocytes. Because of its potential to bind calcium through Gla residues, we suggest that GRP may regulate calcium in the extracellular environment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Viegas</LastName>
<ForeName>Carla S B</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Simes</LastName>
<ForeName>Dina C</ForeName>
<Initials>DC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laizé</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Williamson</LastName>
<ForeName>Matthew K</ForeName>
<Initials>MK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Price</LastName>
<ForeName>Paul A</ForeName>
<Initials>PA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cancela</LastName>
<ForeName>M Leonor</ForeName>
<Initials>ML</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>EF413585</AccessionNumber>
<AccessionNumber>EF413586</AccessionNumber>
<AccessionNumber>EU022751</AccessionNumber>
<AccessionNumber>EU022752</AccessionNumber>
<AccessionNumber>EU022753</AccessionNumber>
<AccessionNumber>EU022754</AccessionNumber>
<AccessionNumber>EU482149</AccessionNumber>
<AccessionNumber>P85209</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HL58090</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>10</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029941">Fish Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>12001-79-5</RegistryNumber>
<NameOfSubstance UI="D014812">Vitamin K</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 1987 Apr 6;214(1):1-7</RefSource>
<PMID Version="1">3552723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Mar 14;283(11):7082-93</RefSource>
<PMID Version="1">18156182</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 1990 Mar 15;266(3):625-36</RefSource>
<PMID Version="1">2183788</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1990 Oct 25;18(20):6097-100</RefSource>
<PMID Version="1">2172928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1993 Jun 5;268(16):12040-5</RefSource>
<PMID Version="1">8505327</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1993 May 15;90(10):4611-5</RefSource>
<PMID Version="1">8506307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 1993 Aug;13(8):4976-85</RefSource>
<PMID Version="1">8336730</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1993 Nov 15;268(32):24339-45</RefSource>
<PMID Version="1">8226983</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 1995 Jan 1;224(1):163-5</RefSource>
<PMID Version="1">7535983</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1996 Jun 25;35(25):8234-43</RefSource>
<PMID Version="1">8679578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Protein Eng. 1997 Jan;10(1):1-6</RefSource>
<PMID Version="1">9051728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9058-62</RefSource>
<PMID Version="1">9256434</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1999 Jun 11;274(24):16940-4</RefSource>
<PMID Version="1">10358041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Jul 22;280(29):26659-68</RefSource>
<PMID Version="1">15849363</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Dec 1;275(48):38120-6</RefSource>
<PMID Version="1">10973980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1370-5</RefSource>
<PMID Version="1">11171957</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Mar 16;276(11):7769-74</RefSource>
<PMID Version="1">11110799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2001 May 30;270(1-2):77-91</RefSource>
<PMID Version="1">11404005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Toxicon. 2002 Apr;40(4):447-53</RefSource>
<PMID Version="1">11738238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2002 Aug 9;277(32):28584-91</RefSource>
<PMID Version="1">12034728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Bone Miner Res. 2003 Feb;18(2):244-59</RefSource>
<PMID Version="1">12568402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2003 Mar;13(3):382-90</RefSource>
<PMID Version="1">12618368</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2004 Jun 7;165(5):625-30</RefSource>
<PMID Version="1">15184399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brief Bioinform. 2004 Jun;5(2):150-63</RefSource>
<PMID Version="1">15260895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1974 Jul;71(7):2730-3</RefSource>
<PMID Version="1">4528109</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1975 Oct;72(10):3925-9</RefSource>
<PMID Version="1">1060074</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1976 May;73(5):1447-51</RefSource>
<PMID Version="1">1064018</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1978 Jun 10;253(11):3898-906</RefSource>
<PMID Version="1">25895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 1983 Dec 28;117(3):765-71</RefSource>
<PMID Version="1">6607731</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biochem. 1985;54:459-77</RefSource>
<PMID Version="1">3896125</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Invest Dermatol. 1986 Sep;87(3):377-80</RefSource>
<PMID Version="1">3488354</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2005 Dec;15(12):1675-82</RefSource>
<PMID Version="1">16339365</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2006;34(6):1692-9</RefSource>
<PMID Version="1">16556910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2006 May 2;45(17):5587-98</RefSource>
<PMID Version="1">16634640</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Jun 2;281(22):15037-43</RefSource>
<PMID Version="1">16565091</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2006 Oct 24;45(42):12828-39</RefSource>
<PMID Version="1">17042501</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Thromb Haemost. 2007 Jul;98(1):120-5</RefSource>
<PMID Version="1">17598002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2007;8:165</RefSource>
<PMID Version="1">17565682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Matrix Biol. 2008 Jan;27(1):3-11</RefSource>
<PMID Version="1">17707622</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 1987 Apr;162(1):156-9</RefSource>
<PMID Version="1">2440339</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002356" MajorTopicYN="N">Cartilage</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029941" MajorTopicYN="N">Fish Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014018" MajorTopicYN="N">Tissue Distribution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014812" MajorTopicYN="N">Vitamin K</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC2605998</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18836183</ArticleId>
<ArticleId IdType="pii">M802761200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M802761200</ArticleId>
<ArticleId IdType="pmc">PMC2605998</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Portugal</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cancela, M Leonor" sort="Cancela, M Leonor" uniqKey="Cancela M" first="M Leonor" last="Cancela">M Leonor Cancela</name>
<name sortKey="Laize, Vincent" sort="Laize, Vincent" uniqKey="Laize V" first="Vincent" last="Laizé">Vincent Laizé</name>
<name sortKey="Price, Paul A" sort="Price, Paul A" uniqKey="Price P" first="Paul A" last="Price">Paul A. Price</name>
<name sortKey="Simes, Dina C" sort="Simes, Dina C" uniqKey="Simes D" first="Dina C" last="Simes">Dina C. Simes</name>
<name sortKey="Williamson, Matthew K" sort="Williamson, Matthew K" uniqKey="Williamson M" first="Matthew K" last="Williamson">Matthew K. Williamson</name>
</noCountry>
<country name="Portugal">
<noRegion>
<name sortKey="Viegas, Carla S B" sort="Viegas, Carla S B" uniqKey="Viegas C" first="Carla S B" last="Viegas">Carla S B. Viegas</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000441 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000441 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:18836183
   |texte=   Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:18836183" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024