Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon.

Identifieur interne : 000411 ( PubMed/Checkpoint ); précédent : 000410; suivant : 000412

Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon.

Auteurs : Peter J. Allen [États-Unis] ; Joseph J. Cech ; Dietmar Kültz

Source :

RBID : pubmed:19517116

English descriptors

Abstract

Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na(+), K(+)-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na(+), K(+)-ATPase content. Kidneys were analyzed for Na(+), K(+)-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na(+), K(+)-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na(+), K(+)-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na(+), K(+)-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO(3) (-) and 2CO(3) (2-)) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size.

DOI: 10.1007/s00360-009-0372-2
PubMed: 19517116


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19517116

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon.</title>
<author>
<name sortKey="Allen, Peter J" sort="Allen, Peter J" uniqKey="Allen P" first="Peter J" last="Allen">Peter J. Allen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA. pallen@cfr.msstate.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Avenue, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cech, Joseph J" sort="Cech, Joseph J" uniqKey="Cech J" first="Joseph J" last="Cech">Joseph J. Cech</name>
</author>
<author>
<name sortKey="Kultz, Dietmar" sort="Kultz, Dietmar" uniqKey="Kultz D" first="Dietmar" last="Kültz">Dietmar Kültz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19517116</idno>
<idno type="pmid">19517116</idno>
<idno type="doi">10.1007/s00360-009-0372-2</idno>
<idno type="wicri:Area/PubMed/Corpus">000417</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000417</idno>
<idno type="wicri:Area/PubMed/Curation">000417</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000417</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000417</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000417</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon.</title>
<author>
<name sortKey="Allen, Peter J" sort="Allen, Peter J" uniqKey="Allen P" first="Peter J" last="Allen">Peter J. Allen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA. pallen@cfr.msstate.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Avenue, Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cech, Joseph J" sort="Cech, Joseph J" uniqKey="Cech J" first="Joseph J" last="Cech">Joseph J. Cech</name>
</author>
<author>
<name sortKey="Kultz, Dietmar" sort="Kultz, Dietmar" uniqKey="Kultz D" first="Dietmar" last="Kültz">Dietmar Kültz</name>
</author>
</analytic>
<series>
<title level="j">Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</title>
<idno type="eISSN">1432-136X</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acclimatization (physiology)</term>
<term>Aging (physiology)</term>
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Bicarbonates (analysis)</term>
<term>Body Weight</term>
<term>Calcium (analysis)</term>
<term>California</term>
<term>Carbon Dioxide (analysis)</term>
<term>Cell Compartmentation</term>
<term>Cell Size</term>
<term>Fishes (growth & development)</term>
<term>Fishes (physiology)</term>
<term>Fresh Water</term>
<term>Gastrointestinal Contents (chemistry)</term>
<term>Gills (cytology)</term>
<term>Gills (enzymology)</term>
<term>Hydrogen-Ion Concentration</term>
<term>Intestines (chemistry)</term>
<term>Intestines (enzymology)</term>
<term>Kidney (enzymology)</term>
<term>Magnesium (analysis)</term>
<term>Mitochondria</term>
<term>Salinity</term>
<term>Seawater</term>
<term>Sodium-Potassium-Exchanging ATPase (metabolism)</term>
<term>Statistics, Nonparametric</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Bicarbonates</term>
<term>Calcium</term>
<term>Carbon Dioxide</term>
<term>Magnesium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sodium-Potassium-Exchanging ATPase</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>California</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Gastrointestinal Contents</term>
<term>Intestines</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Gills</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Gills</term>
<term>Intestines</term>
<term>Kidney</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fishes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Acclimatization</term>
<term>Aging</term>
<term>Fishes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Body Weight</term>
<term>Cell Compartmentation</term>
<term>Cell Size</term>
<term>Fresh Water</term>
<term>Hydrogen-Ion Concentration</term>
<term>Mitochondria</term>
<term>Salinity</term>
<term>Seawater</term>
<term>Statistics, Nonparametric</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na(+), K(+)-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na(+), K(+)-ATPase content. Kidneys were analyzed for Na(+), K(+)-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na(+), K(+)-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na(+), K(+)-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na(+), K(+)-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO(3) (-) and 2CO(3) (2-)) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19517116</PMID>
<DateCreated>
<Year>2009</Year>
<Month>09</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-136X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>179</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</Title>
<ISOAbbreviation>J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon.</ArticleTitle>
<Pagination>
<MedlinePgn>903-20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00360-009-0372-2</ELocationID>
<Abstract>
<AbstractText>Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na(+), K(+)-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na(+), K(+)-ATPase content. Kidneys were analyzed for Na(+), K(+)-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na(+), K(+)-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na(+), K(+)-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na(+), K(+)-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO(3) (-) and 2CO(3) (2-)) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Allen</LastName>
<ForeName>Peter J</ForeName>
<Initials>PJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA. pallen@cfr.msstate.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cech</LastName>
<ForeName>Joseph J</ForeName>
<Initials>JJ</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Kültz</LastName>
<ForeName>Dietmar</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Comp Physiol B</MedlineTA>
<NlmUniqueID>8413200</NlmUniqueID>
<ISSNLinking>0174-1578</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001639">Bicarbonates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.3.9</RegistryNumber>
<NameOfSubstance UI="D000254">Sodium-Potassium-Exchanging ATPase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>I38ZP9992A</RegistryNumber>
<NameOfSubstance UI="D008274">Magnesium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Histol Histopathol. 2000 Apr;15(2):429-39</RefSource>
<PMID Version="1">10809361</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 2005 Jan;85(1):97-177</RefSource>
<PMID Version="1">15618479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Biochem Zool. 2000 Jul-Aug;73(4):446-53</RefSource>
<PMID Version="1">11009398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Zool. 2001 Jul 1;290(2):73-87</RefSource>
<PMID Version="1">11471137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Zool. 2002 Jun 15;293(1):12-26</RefSource>
<PMID Version="1">12115915</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Zool. 2002 Aug 1;293(3):192-213</RefSource>
<PMID Version="1">12115897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2002 Nov 13;1566(1-2):182-93</RefSource>
<PMID Version="1">12421549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anat Rec A Discov Mol Cell Evol Biol. 2003 Jun;272(2):563-73</RefSource>
<PMID Version="1">12740951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2003 Dec;206(Pt 24):4475-86</RefSource>
<PMID Version="1">14610032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2004 Apr;207(Pt 10):1729-39</RefSource>
<PMID Version="1">15073205</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Mol Integr Physiol. 2004 Jul;138(3):287-95</RefSource>
<PMID Version="1">15313482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Mol Integr Physiol. 2004 Jul;138(3):297-303</RefSource>
<PMID Version="1">15313483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 1969 Jun;50(3):689-703</RefSource>
<PMID Version="1">5793884</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Comp Physiol. 1976;53(4):351-3</RefSource>
<PMID Version="1">3319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1976 Apr;73(4):1348-50</RefSource>
<PMID Version="1">1063415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1983 Dec;245(6):R888-93</RefSource>
<PMID Version="1">6660333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 1985 Oct;150(1):76-85</RefSource>
<PMID Version="1">3843705</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1987 Jan;252(1 Pt 1):G65-76</RefSource>
<PMID Version="1">3812690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Anat. 1988 Nov;183(3):235-44</RefSource>
<PMID Version="1">3213829</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Comp Physiol. 1991;100(4):813-8</RefSource>
<PMID Version="1">1685374</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gen Comp Endocrinol. 1995 Feb;97(2):250-8</RefSource>
<PMID Version="1">7622019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1995 Dec;269(6 Pt 2):R1339-45</RefSource>
<PMID Version="1">8594935</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anat Embryol (Berl). 2005 Feb;209(3):193-206</RefSource>
<PMID Version="1">15616825</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2005 Apr;288(4):R936-46</RefSource>
<PMID Version="1">15576660</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Zool A Comp Exp Biol. 2005 Jul 1;303(7):608-13</RefSource>
<PMID Version="1">15945075</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Mol Integr Physiol. 2005 Jun;141(2):183-90</RefSource>
<PMID Version="1">15955717</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Mol Integr Physiol. 2006 Apr;143(4):523-9</RefSource>
<PMID Version="1">16503178</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2006 May;209(Pt 10):1848-58</RefSource>
<PMID Version="1">16651551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2006 Aug;209(Pt 15):2813-27</RefSource>
<PMID Version="1">16857865</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Tissue Res. 2006 Sep;325(3):481-92</RefSource>
<PMID Version="1">16639617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Mol Integr Physiol. 2007 Nov;148(3):479-97</RefSource>
<PMID Version="1">17689996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2007 Nov;293(5):R2099-111</RefSource>
<PMID Version="1">17761514</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1402-12</RefSource>
<PMID Version="1">18216137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2008 Aug;211(Pt 15):2450-9</RefSource>
<PMID Version="1">18626079</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol B. 2009 Apr;179(3):383-90</RefSource>
<PMID Version="1">19066909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Fish Physiol Biochem. 2009 Jun;35(2):223-30</RefSource>
<PMID Version="1">19343518</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol Regul Integr Comp Physiol. 2000 Jul;279(1):R222-9</RefSource>
<PMID Version="1">10896885</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000064" MajorTopicYN="N">Acclimatization</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001639" MajorTopicYN="N">Bicarbonates</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001835" MajorTopicYN="N">Body Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002140" MajorTopicYN="N" Type="Geographic">California</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002451" MajorTopicYN="N">Cell Compartmentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048429" MajorTopicYN="N">Cell Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005618" MajorTopicYN="N">Fresh Water</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005766" MajorTopicYN="N">Gastrointestinal Contents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005880" MajorTopicYN="N">Gills</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007422" MajorTopicYN="N">Intestines</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007668" MajorTopicYN="N">Kidney</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008274" MajorTopicYN="N">Magnesium</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012623" MajorTopicYN="Y">Seawater</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000254" MajorTopicYN="N">Sodium-Potassium-Exchanging ATPase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018709" MajorTopicYN="N">Statistics, Nonparametric</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC2745624</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19517116</ArticleId>
<ArticleId IdType="doi">10.1007/s00360-009-0372-2</ArticleId>
<ArticleId IdType="pmc">PMC2745624</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cech, Joseph J" sort="Cech, Joseph J" uniqKey="Cech J" first="Joseph J" last="Cech">Joseph J. Cech</name>
<name sortKey="Kultz, Dietmar" sort="Kultz, Dietmar" uniqKey="Kultz D" first="Dietmar" last="Kültz">Dietmar Kültz</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Allen, Peter J" sort="Allen, Peter J" uniqKey="Allen P" first="Peter J" last="Allen">Peter J. Allen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000411 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000411 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:19517116
   |texte=   Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:19517116" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024