Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000051 ( Pmc/Corpus ); précédent : 0000509; suivant : 0000520 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimization of enzyme-assisted extraction and characterization of collagen from Chinese sturgeon (
<italic>Acipenser sturio Linnaeus</italic>
) skin</title>
<author>
<name sortKey="Feng, Weiwei" sort="Feng, Weiwei" uniqKey="Feng W" first="Weiwei" last="Feng">Weiwei Feng</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Ting" sort="Zhao, Ting" uniqKey="Zhao T" first="Ting" last="Zhao">Ting Zhao</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Ye" sort="Zhou, Ye" uniqKey="Zhou Y" first="Ye" last="Zhou">Ye Zhou</name>
<affiliation>
<nlm:aff id="aff2">
<italic>School of Pharmacy, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Fang" sort="Li, Fang" uniqKey="Li F" first="Fang" last="Li">Fang Li</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zou, Ye" sort="Zou, Ye" uniqKey="Zou Y" first="Ye" last="Zou">Ye Zou</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bai, Shiqi" sort="Bai, Shiqi" uniqKey="Bai S" first="Shiqi" last="Bai">Shiqi Bai</name>
<affiliation>
<nlm:aff id="aff2">
<italic>School of Pharmacy, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei" sort="Wang, Wei" uniqKey="Wang W" first="Wei" last="Wang">Wei Wang</name>
<affiliation>
<nlm:aff id="aff2">
<italic>School of Pharmacy, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Liuqing" sort="Yang, Liuqing" uniqKey="Yang L" first="Liuqing" last="Yang">Liuqing Yang</name>
<affiliation>
<nlm:aff id="aff3">
<italic>School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xiangyang" sort="Wu, Xiangyang" uniqKey="Wu X" first="Xiangyang" last="Wu">Xiangyang Wu</name>
<affiliation>
<nlm:aff id="aff4">
<italic>School of Environment, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24143042</idno>
<idno type="pmc">3798137</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798137</idno>
<idno type="RBID">PMC:3798137</idno>
<idno type="doi">10.4103/0973-1296.117859</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000051</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000051</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Optimization of enzyme-assisted extraction and characterization of collagen from Chinese sturgeon (
<italic>Acipenser sturio Linnaeus</italic>
) skin</title>
<author>
<name sortKey="Feng, Weiwei" sort="Feng, Weiwei" uniqKey="Feng W" first="Weiwei" last="Feng">Weiwei Feng</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Ting" sort="Zhao, Ting" uniqKey="Zhao T" first="Ting" last="Zhao">Ting Zhao</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Ye" sort="Zhou, Ye" uniqKey="Zhou Y" first="Ye" last="Zhou">Ye Zhou</name>
<affiliation>
<nlm:aff id="aff2">
<italic>School of Pharmacy, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Fang" sort="Li, Fang" uniqKey="Li F" first="Fang" last="Li">Fang Li</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zou, Ye" sort="Zou, Ye" uniqKey="Zou Y" first="Ye" last="Zou">Ye Zou</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bai, Shiqi" sort="Bai, Shiqi" uniqKey="Bai S" first="Shiqi" last="Bai">Shiqi Bai</name>
<affiliation>
<nlm:aff id="aff2">
<italic>School of Pharmacy, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei" sort="Wang, Wei" uniqKey="Wang W" first="Wei" last="Wang">Wei Wang</name>
<affiliation>
<nlm:aff id="aff2">
<italic>School of Pharmacy, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Liuqing" sort="Yang, Liuqing" uniqKey="Yang L" first="Liuqing" last="Yang">Liuqing Yang</name>
<affiliation>
<nlm:aff id="aff3">
<italic>School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wu, Xiangyang" sort="Wu, Xiangyang" uniqKey="Wu X" first="Xiangyang" last="Wu">Xiangyang Wu</name>
<affiliation>
<nlm:aff id="aff4">
<italic>School of Environment, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pharmacognosy Magazine</title>
<idno type="ISSN">0973-1296</idno>
<idno type="eISSN">0976-4062</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="st1">
<title>Background:</title>
<p>Sturgeon (
<italic>Acipenser sturio Linnaeus</italic>
) skin contains high amount of nutrients including unsaturated fatty acids and collagen. A pepsin-assisted extraction procedure was developed and optimized for the extraction of collagen from Chinese sturgeon (
<italic>Acipenser sturio Linnaeus</italic>
) skins.</p>
</sec>
<sec id="st2">
<title>Objective:</title>
<p>To determine the optimum conditions with the maximum yield of the pepsin-soluble collagen (PSC) extraction.</p>
</sec>
<sec id="st3">
<title>Materials and Methods:</title>
<p>The conditions of the extraction were optimized using response surface methodology. The Box–Behnken design was used to evaluate the effects of the three independent variables (extraction time, enzyme concentration, and solid–liquid ratio) on the PSC yield of the sturgeon skin.</p>
</sec>
<sec id="st4">
<title>Results:</title>
<p>The optimal conditions were: solid–liquid ratio of 1:11.88, enzyme concentration of 2.42%, and extraction time of 6.45 h. The maximum yield of 86.69% of PSC was obtained under the optimal conditions. This value was not significantly different from the predicted value (87.4%) of the RSM (
<italic>P</italic>
< 0.05).</p>
</sec>
<sec id="st5">
<title>Conclusion:</title>
<p>The results of this study indicated that the production of PSC from sturgeon skin is feasible and beneficial. The patterns of sodium dodecyl sulfate-polyacrylamide gel electrophoretic patterns (SDS-PAGE) indicated that the sturgeon skin contains type I collagen, which is made of α-chain and β-chain. The infrared spectra of the collagens also indicated that pepsin hydrolysis does not affect the secondary structure of collagen, especially triple-helical structure.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Bai, J" uniqKey="Bai J">J Bai</name>
</author>
<author>
<name sortKey="Ma, D" uniqKey="Ma D">D Ma</name>
</author>
<author>
<name sortKey="Lao, H" uniqKey="Lao H">H Lao</name>
</author>
<author>
<name sortKey="Jian, Q" uniqKey="Jian Q">Q Jian</name>
</author>
<author>
<name sortKey="Ye, X" uniqKey="Ye X">X Ye</name>
</author>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bo, Cheng Yh" uniqKey="Bo C">Cheng YH Bo</name>
</author>
<author>
<name sortKey="Zhong, Lv" uniqKey="Zhong L">LV Zhong</name>
</author>
<author>
<name sortKey="Qiang, D" uniqKey="Qiang D">D Qiang</name>
</author>
<author>
<name sortKey="Hongyan, Z" uniqKey="Hongyan Z">Z Hongyan</name>
</author>
<author>
<name sortKey="Fenfen, Fu" uniqKey="Fenfen F">FU Fenfen</name>
</author>
<author>
<name sortKey="Zeqiao, L" uniqKey="Zeqiao L">L Zeqiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hao, S" uniqKey="Hao S">S Hao</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X Yang</name>
</author>
<author>
<name sortKey="Cen, J" uniqKey="Cen J">J Cen</name>
</author>
<author>
<name sortKey="Shi, H" uniqKey="Shi H">H Shi</name>
</author>
<author>
<name sortKey="Bo, Q" uniqKey="Bo Q">Q Bo</name>
</author>
<author>
<name sortKey="He, J" uniqKey="He J">J He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kittiphattanabawon, P" uniqKey="Kittiphattanabawon P">P Kittiphattanabawon</name>
</author>
<author>
<name sortKey="Benjakul, S" uniqKey="Benjakul S">S Benjakul</name>
</author>
<author>
<name sortKey="Visessanguan, W" uniqKey="Visessanguan W">W Visessanguan</name>
</author>
<author>
<name sortKey="Kishimura, H" uniqKey="Kishimura H">H Kishimura</name>
</author>
<author>
<name sortKey="Shahidi, F" uniqKey="Shahidi F">F Shahidi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, J" uniqKey="Guo J">J Guo</name>
</author>
<author>
<name sortKey="Luo, Ye" uniqKey="Luo Y">Ye Luo</name>
</author>
<author>
<name sortKey="Fan, D" uniqKey="Fan D">D Fan</name>
</author>
<author>
<name sortKey="Gao, P" uniqKey="Gao P">P Gao</name>
</author>
<author>
<name sortKey="Ma, X" uniqKey="Ma X">X Ma</name>
</author>
<author>
<name sortKey="Zhu, C" uniqKey="Zhu C">C Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, C" uniqKey="Zhang C">C Zhang</name>
</author>
<author>
<name sortKey="Fan, D" uniqKey="Fan D">D Fan</name>
</author>
<author>
<name sortKey="Shang, La" uniqKey="Shang L">La Shang</name>
</author>
<author>
<name sortKey="Ma, X" uniqKey="Ma X">X Ma</name>
</author>
<author>
<name sortKey="Luo, Ye" uniqKey="Luo Y">Ye Luo</name>
</author>
<author>
<name sortKey="Xue, W" uniqKey="Xue W">W Xue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, P" uniqKey="Singh P">P Singh</name>
</author>
<author>
<name sortKey="Benjakul, S" uniqKey="Benjakul S">S Benjakul</name>
</author>
<author>
<name sortKey="Maqsood, S" uniqKey="Maqsood S">S Maqsood</name>
</author>
<author>
<name sortKey="Kishimura, H" uniqKey="Kishimura H">H Kishimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nalinanon, S" uniqKey="Nalinanon S">S Nalinanon</name>
</author>
<author>
<name sortKey="Benjakul, S" uniqKey="Benjakul S">S Benjakul</name>
</author>
<author>
<name sortKey="Kishimura, H" uniqKey="Kishimura H">H Kishimura</name>
</author>
<author>
<name sortKey="Osako, K" uniqKey="Osako K">K Osako</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Triveni, R" uniqKey="Triveni R">R Triveni</name>
</author>
<author>
<name sortKey="Shamala, Tr" uniqKey="Shamala T">TR Shamala</name>
</author>
<author>
<name sortKey="Rastogi, Nk" uniqKey="Rastogi N">NK Rastogi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, Xh" uniqKey="Tang X">XH Tang</name>
</author>
<author>
<name sortKey="Yan, Lf" uniqKey="Yan L">LF Yan</name>
</author>
<author>
<name sortKey="Gao, J" uniqKey="Gao J">J Gao</name>
</author>
<author>
<name sortKey="Ge, Hy" uniqKey="Ge H">HY Ge</name>
</author>
<author>
<name sortKey="Yang, Hd" uniqKey="Yang H">HD Yang</name>
</author>
<author>
<name sortKey="Lin, N" uniqKey="Lin N">N Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B Yang</name>
</author>
<author>
<name sortKey="Zhao, M" uniqKey="Zhao M">M Zhao</name>
</author>
<author>
<name sortKey="Shi, J" uniqKey="Shi J">J Shi</name>
</author>
<author>
<name sortKey="Yang, N" uniqKey="Yang N">N Yang</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B Yang</name>
</author>
<author>
<name sortKey="Du, X" uniqKey="Du X">X Du</name>
</author>
<author>
<name sortKey="Yi, C" uniqKey="Yi C">C Yi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suphatharaprateep, W" uniqKey="Suphatharaprateep W">W Suphatharaprateep</name>
</author>
<author>
<name sortKey="Cheirsilp, B" uniqKey="Cheirsilp B">B Cheirsilp</name>
</author>
<author>
<name sortKey="Jongjareonrak, A" uniqKey="Jongjareonrak A">A Jongjareonrak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, H" uniqKey="Cao H">H Cao</name>
</author>
<author>
<name sortKey="Xu, S Y" uniqKey="Xu S">S-Y Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, R" uniqKey="Xu R">R Xu</name>
</author>
<author>
<name sortKey="Chen, Yj" uniqKey="Chen Y">YJ Chen</name>
</author>
<author>
<name sortKey="Wan, Dr" uniqKey="Wan D">DR Wan</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liyana Pathirana, C" uniqKey="Liyana Pathirana C">C Liyana-Pathirana</name>
</author>
<author>
<name sortKey="Shahidi, F" uniqKey="Shahidi F">F Shahidi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nath, A" uniqKey="Nath A">A Nath</name>
</author>
<author>
<name sortKey="Chattopadhyay, Pk" uniqKey="Chattopadhyay P">PK Chattopadhyay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sin, Hn" uniqKey="Sin H">HN Sin</name>
</author>
<author>
<name sortKey="Yusof, S" uniqKey="Yusof S">S Yusof</name>
</author>
<author>
<name sortKey="Sheikh, Abdul Hamid N" uniqKey="Sheikh A">Abdul Hamid N Sheikh</name>
</author>
<author>
<name sortKey="Rahman, Ra" uniqKey="Rahman R">RA Rahman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenthal, A" uniqKey="Rosenthal A">A Rosenthal</name>
</author>
<author>
<name sortKey="Pyle, Dl" uniqKey="Pyle D">DL Pyle</name>
</author>
<author>
<name sortKey="Niranjan, K" uniqKey="Niranjan K">K Niranjan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muyonga, Jh" uniqKey="Muyonga J">JH Muyonga</name>
</author>
<author>
<name sortKey="Cole, Cgb" uniqKey="Cole C">CGB Cole</name>
</author>
<author>
<name sortKey="Duodu, Kg" uniqKey="Duodu K">KG Duodu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kittiphattanabawon, P" uniqKey="Kittiphattanabawon P">P Kittiphattanabawon</name>
</author>
<author>
<name sortKey="Benjakul, S" uniqKey="Benjakul S">S Benjakul</name>
</author>
<author>
<name sortKey="Visessanguan, W" uniqKey="Visessanguan W">W Visessanguan</name>
</author>
<author>
<name sortKey="Nagai, T" uniqKey="Nagai T">T Nagai</name>
</author>
<author>
<name sortKey="Tanaka, M" uniqKey="Tanaka M">M Tanaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friess, W" uniqKey="Friess W">W Friess</name>
</author>
<author>
<name sortKey="Lee, G" uniqKey="Lee G">G Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muyonga, Jh" uniqKey="Muyonga J">JH Muyonga</name>
</author>
<author>
<name sortKey="Cole, Cg" uniqKey="Cole C">CG Cole</name>
</author>
<author>
<name sortKey="Duodu, Kg" uniqKey="Duodu K">KG Duodu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abe, Y" uniqKey="Abe Y">Y Abe</name>
</author>
<author>
<name sortKey="Krimm, S" uniqKey="Krimm S">S Krimm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Payne, Kj" uniqKey="Payne K">KJ Payne</name>
</author>
<author>
<name sortKey="Veis, A" uniqKey="Veis A">A Veis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Surewicz, Wk" uniqKey="Surewicz W">WK Surewicz</name>
</author>
<author>
<name sortKey="Mantsh, H H" uniqKey="Mantsh H">H.H Mantsh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krimm, S" uniqKey="Krimm S">S Krimm</name>
</author>
<author>
<name sortKey="Bandekar, J" uniqKey="Bandekar J">J Bandekar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagai, T" uniqKey="Nagai T">T Nagai</name>
</author>
<author>
<name sortKey="Suzuki, N" uniqKey="Suzuki N">N Suzuki</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Pharmacogn Mag</journal-id>
<journal-id journal-id-type="iso-abbrev">Pharmacogn Mag</journal-id>
<journal-id journal-id-type="publisher-id">PM</journal-id>
<journal-title-group>
<journal-title>Pharmacognosy Magazine</journal-title>
</journal-title-group>
<issn pub-type="ppub">0973-1296</issn>
<issn pub-type="epub">0976-4062</issn>
<publisher>
<publisher-name>Medknow Publications & Media Pvt Ltd</publisher-name>
<publisher-loc>India</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24143042</article-id>
<article-id pub-id-type="pmc">3798137</article-id>
<article-id pub-id-type="publisher-id">PM-9-32</article-id>
<article-id pub-id-type="doi">10.4103/0973-1296.117859</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Optimization of enzyme-assisted extraction and characterization of collagen from Chinese sturgeon (
<italic>Acipenser sturio Linnaeus</italic>
) skin</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Feng</surname>
<given-names>Weiwei</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhao</surname>
<given-names>Ting</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhou</surname>
<given-names>Ye</given-names>
</name>
<xref ref-type="aff" rid="aff2">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Fang</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zou</surname>
<given-names>Ye</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bai</surname>
<given-names>Shiqi</given-names>
</name>
<xref ref-type="aff" rid="aff2">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Wei</given-names>
</name>
<xref ref-type="aff" rid="aff2">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Liuqing</given-names>
</name>
<xref ref-type="aff" rid="aff3">2</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wu</surname>
<given-names>Xiangyang</given-names>
</name>
<xref ref-type="aff" rid="aff4">3</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<italic>School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</aff>
<aff id="aff2">
<label>1</label>
<italic>School of Pharmacy, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</aff>
<aff id="aff3">
<label>2</label>
<italic>School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</aff>
<aff id="aff4">
<label>3</label>
<italic>School of Environment, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China</italic>
</aff>
<author-notes>
<corresp id="cor1">
<bold>Address for correspondence:</bold>
Dr. Liuqing Yang, School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China. E-mail:
<email xlink:href="yangliuqing@ujs.edu.cn">yangliuqing@ujs.edu.cn</email>
Dr. Xiangyang Wu, School of Environment, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China E-mail:
<email xlink:href="wuxy@ujs.edu.cn">wuxy@ujs.edu.cn</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<season>Oct-Dec</season>
<year>2013</year>
</pub-date>
<volume>9</volume>
<issue>Suppl 1</issue>
<fpage>S32</fpage>
<lpage>S37</lpage>
<history>
<date date-type="received">
<day>14</day>
<month>7</month>
<year>2012</year>
</date>
<date date-type="rev-recd">
<day>19</day>
<month>9</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>07</day>
<month>9</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright: © Pharmacognosy Magazine</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-sa/3.0">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<sec id="st1">
<title>Background:</title>
<p>Sturgeon (
<italic>Acipenser sturio Linnaeus</italic>
) skin contains high amount of nutrients including unsaturated fatty acids and collagen. A pepsin-assisted extraction procedure was developed and optimized for the extraction of collagen from Chinese sturgeon (
<italic>Acipenser sturio Linnaeus</italic>
) skins.</p>
</sec>
<sec id="st2">
<title>Objective:</title>
<p>To determine the optimum conditions with the maximum yield of the pepsin-soluble collagen (PSC) extraction.</p>
</sec>
<sec id="st3">
<title>Materials and Methods:</title>
<p>The conditions of the extraction were optimized using response surface methodology. The Box–Behnken design was used to evaluate the effects of the three independent variables (extraction time, enzyme concentration, and solid–liquid ratio) on the PSC yield of the sturgeon skin.</p>
</sec>
<sec id="st4">
<title>Results:</title>
<p>The optimal conditions were: solid–liquid ratio of 1:11.88, enzyme concentration of 2.42%, and extraction time of 6.45 h. The maximum yield of 86.69% of PSC was obtained under the optimal conditions. This value was not significantly different from the predicted value (87.4%) of the RSM (
<italic>P</italic>
< 0.05).</p>
</sec>
<sec id="st5">
<title>Conclusion:</title>
<p>The results of this study indicated that the production of PSC from sturgeon skin is feasible and beneficial. The patterns of sodium dodecyl sulfate-polyacrylamide gel electrophoretic patterns (SDS-PAGE) indicated that the sturgeon skin contains type I collagen, which is made of α-chain and β-chain. The infrared spectra of the collagens also indicated that pepsin hydrolysis does not affect the secondary structure of collagen, especially triple-helical structure.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Extraction</kwd>
<kwd>pepsin-soluble collagen</kwd>
<kwd>response surface methodology</kwd>
<kwd>sturgeon skin</kwd>
<kwd>SDS-PAGE</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1-1">
<title>INTRODUCTION</title>
<p>Sturgeon (
<italic>Acipenser sturio Linnaeus</italic>
) is one of the most common freshwater fish consumed worldwide. This is as results of its high nutrient (unsaturated fatty acids and proteins) content with a good mouth-feel taste. Chinese sturgeon is a prehistoric fish that attracts price for its high quality flesh, and it is suitable for processing to other fish products. The nutritional value coupled with the high patronage of the sturgeon has resulted in increased production (“Sturgeon Aquaculture”).[
<xref ref-type="bibr" rid="ref1">1</xref>
] Statistics available indicates that the annual production of sturgeon in China alone exceeds 10,000 tonnes.[
<xref ref-type="bibr" rid="ref2">2</xref>
] Sturgeon can be used for sturgeon fillet production. During processing, solid waste is mostly generated, especially at the skins and cartilages. Sturgeon's skin is a form of connective tissue that contains a lot of collagen, proteoglycans, and water,[
<xref ref-type="bibr" rid="ref3">3</xref>
] and that can be used as a potential raw material for collagen extraction.</p>
<p>According to Kittiphattanabawon
<italic>et al</italic>
.,[
<xref ref-type="bibr" rid="ref4">4</xref>
] sturgeon skin contains collagen that is used to manufacture leathers. The collagen also used in the film industries, pharmaceuticals, and for cosmetic, food, and biomedical materials. Collagen is commonly isolated from the skins and bones of sturgeon fish. It is a crucial structural protein responsible for the formation of tissues such as skin, bone, and tendon. Collagen also provides support for organs and protect tissues.[
<xref ref-type="bibr" rid="ref5">5</xref>
] The molecules of collagen have common triple-helical domains with each of the three α-helices containing the repeating sequences Gly-X-Y (X and Y are proline and hydroxyproline residues, respectively).[
<xref ref-type="bibr" rid="ref6">6</xref>
]</p>
<p>The extraction of collagen from fish skin was carried out using pepsin and acid.[
<xref ref-type="bibr" rid="ref7">7</xref>
<xref ref-type="bibr" rid="ref8">8</xref>
] As far as we are concerned, not much research has been conducted on the optimal conditions for the optimum yield of pepsin-soluble collagen (PSC). Factors such as extraction time, enzyme concentration, and solid–liquid ratio affect the extraction ability of the collagen. In this study, response surface methodology (a statistical method that uses quantitative data from an appropriate experimental design for determining or simultaneously for solving multivariate equations) was use to generate mathematical model and optimize the process levels.[
<xref ref-type="bibr" rid="ref9">9</xref>
<xref ref-type="bibr" rid="ref10">10</xref>
<xref ref-type="bibr" rid="ref11">11</xref>
] The aim of the study was to investigate the effect of extraction time, enzyme concentration, and solid–liquid ratio on the yield of PSC extracted from sturgeon skin using response surface methodology and to determine the structure of sturgeon skin characterization.</p>
</sec>
<sec sec-type="materials|methods" id="sec1-2">
<title>MATERIALS AND METHODS</title>
<sec id="sec2-1">
<title>Materials and Chemicals</title>
<p>Pepsin was purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). High molecular weight protein marker and calf-skin collagen were produced at TaKaRa Biotechnology (Dalian) Co., Ltd. and Sigma Chemical Co., respectively. All solvents and chemicals were of analytical grade and obtained from Zhenjiang Chemical Company (Zhenjiang, Jiangsu, China). Distilled water was used throughout the study. The live sturgeons (average weights in the range of 1.5–2.5 kg) were obtained from Lianchuang Aquatic Science and Technology Demonstration Park of Zhenjiang, China. After killing the sturgeons, the skins were washed with water and frozen at –18 °C for 2 weeks (prior to collagen extraction).</p>
</sec>
<sec id="sec2-2">
<title>Preparation of collagen from sturgeon skin</title>
<p>The collagens were extracted using the method of Nalinanon
<italic>et al</italic>
.[
<xref ref-type="bibr" rid="ref8">8</xref>
] with slight modification. All the preparation procedures were carried out at a temperature of 4 °C.</p>
</sec>
<sec id="sec2-3">
<title>Pretreatment of sturgeon skin</title>
<p>The skins of sturgeons were first thawed and washed with water. The residual meat on the skins were removed manually and washed with water. The skins were then chopped into lengths of 0.5–1.0 cm and further washed with water. To remove noncollagenous proteins, the prepared sturgeon skins were mixed with 3.5% NaCl at a solid ratio of 1:10 (w/v) followed by continuous stirring at 200 rpm for 24 h. The NaCl solution was changed every 4 h. The skins were then washed with water and defatted with 0.5% Na
<sub>2</sub>
CO
<sub>3</sub>
at a solid–liquid ratio of 1:20 (w/v), followed by continuous stirring at 200 rpm for 48 h. The 0.5% Na
<sub>2</sub>
CO
<sub>3</sub>
solution was changed every 8 h. The defatted skins were washed with water till the neutral point, and then freeze-dried (prior to collagen extraction).</p>
</sec>
<sec id="sec2-4">
<title>Pepsin-soluble collagen extraction</title>
<p>The defatted skins were subjected to collagen extraction using pepsin solution. Extraction time, enzyme concentration, and solid–liquid ratio were the chosen variables with five levels. The resulting viscous solution was centrifuged at 5000 rpm for 20 min in order to remove the insoluble substances. The collagen was then precipitated by adding (NH
<sub>4</sub>
)
<sub>2</sub>
SO
<sub>4</sub>
to the final concentration of 2.6 M in the presence of 0.05 M tris(hydroxymethyl)aminomethane (pH 7.0). The resulting sediments were collected by centrifugation at 5000 rpm for 20 min and dissolved in water, then sequentially dialyzed against water. The dialyzates were freeze-dried and denoted as PSC.</p>
</sec>
<sec id="sec2-5">
<title>Box–Behnken design</title>
<p>Among the PSC extraction, the one with the highest content was chosen for further optimization with RSM (software Design Expert 6.0, Stat-Ease Inc., USA). A Box–Behnken design with three variables was used to determine the response pattern and to establish the statistical model.[
<xref ref-type="bibr" rid="ref12">12</xref>
] The effects of extraction time (
<italic>X</italic>
<sub>1</sub>
), solid-liquid ratio (
<italic>X</italic>
<sub>2</sub>
), and enzyme concentration (
<italic>X</italic>
<sub>3</sub>
) on the enzymatic extraction of the PSC from sturgeon skin were then determined with RSM at a three-variable and five-level. The observed values for the PSC extracted at different combinations of the independent variables are presented in
<xref ref-type="table" rid="T1">Table 1</xref>
. The coded levels of the independent variables used in BBD are also listed in
<xref ref-type="table" rid="T2">Table 2</xref>
.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Box–Behnken design and the response for the content of pepsin-soluble collagen from sturgeon skin</p>
</caption>
<graphic xlink:href="PM-9-32-g001"></graphic>
</table-wrap>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Coded levels of independent variables used in the RSM design</p>
</caption>
<graphic xlink:href="PM-9-32-g002"></graphic>
</table-wrap>
</sec>
<sec id="sec2-6">
<title>Sodium dodecyl sulfate-polyacrylamide gel electrophoresis</title>
<p>Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE; DYCZ-24DN mini double vertical electrophoresis apparatus and DYY-6C-type bi-stable electrophoresis power supply, Beijing 61 Instrument Factory, China) was performed to determine the purity of PSC described by Suphatharaprateep.[
<xref ref-type="bibr" rid="ref13">13</xref>
] The samples were dissolved in a 50 g/L SDS solution. The mixtures were then heated to 100 °C for 15 min, followed by centrifugation at 8500 rpm for 5 min to remove undissolved debris. The solubilized samples were mixed with the buffer sample (0.5 mol/L Tris-HCl, pH 6.8 containing 40 g/L SDS, 4% glycerol in the presence or absence of 20% β ME) in the ratio of 1:1 (volume ratio). The mixtures were loaded onto a polyacrylamide gel, which was made of 75 g/L separating gel and 40 g/L stacking gel and then subjected to electrophoresis at a constant current of 20 mA/gel. After electrophoresis, the gels were stained with 0.05% (w/v) Coomassie blue R-250 in 15% (v/v) methanol and 5% (v/v) acetic acid for 30 min. The gels were then de-stained with a mixture of 30% (v/v) methanol and 10% (v/v) acetic acid. High molecular weight protein markers were used to estimate the molecular weight of the proteins. Type I collagens from calf-skins were used as standard collagens.</p>
</sec>
<sec id="sec2-7">
<title>Fourier transform infrared spectroscopy</title>
<p>Fourier transform infrared (FTIR) (Nexus 470 Fourier transform infrared spectrometer, Thermo Nicolet Co., USA) spectroscopy of collagens were analyzed using the method of Cao
<italic>et al</italic>
. and Xu
<italic>et al</italic>
.[
<xref ref-type="bibr" rid="ref14">14</xref>
<xref ref-type="bibr" rid="ref15">15</xref>
] The FTIR spectra were obtained at a resolution of 4 cm
<sup>-1</sup>
in the range of 4000–400 cm
<sup>-1</sup>
at room temperature. The FTIR spectra were obtained with discs containing 2 mg samples in approximately 100 mg potassium bromide (KBr disk) with a Fourier transform IR instrument.</p>
</sec>
</sec>
<sec id="sec1-3">
<title>RESULTS AND DISCUSSION</title>
<sec id="sec2-8">
<title>Optimization of conditions for extraction of PSC</title>
<p>The analysis of variance (ANOVA) of RSM on the enzymatic extraction of PSC from the sturgeon skins is shown in
<xref ref-type="table" rid="T3">Table 3</xref>
. The exploration and optimization of a fitted response surface may produce poor or misleading results unless the model exhibits a good fit, which makes checking of the model adequacy essential.[
<xref ref-type="bibr" rid="ref16">16</xref>
] The
<italic>P</italic>
value of the model was less than 0.0001. Lack of fitness value of the model was 0.2389, which was not statistically significant. These two values confirmed the goodness of the model fitness.</p>
<table-wrap id="T3" position="float">
<label>Table 3</label>
<caption>
<p>Analysis of variance for the response surface quadratic model of the content of pepsin-soluble collagen from sturgeon skin</p>
</caption>
<graphic xlink:href="PM-9-32-g003"></graphic>
</table-wrap>
<p>Coefficient of determination (
<italic>R</italic>
-Squared) is defined as the ratio of the variation of the variables under consideration to the total variation, which measures the degree of fitness.[
<xref ref-type="bibr" rid="ref17">17</xref>
] The value of
<italic>R</italic>
-Squared less than 1 indicates a poor relevance of the dependent variables in the model. The model can fit well with the actual data when
<italic>R</italic>
-Squared approaches unity (0).[
<xref ref-type="bibr" rid="ref18">18</xref>
] The coefficient of determination (
<italic>R</italic>
-Squared) of the model was 0.9747, which indicated that the model adequately represented the real relationship between the chosen parameters. The results of the error analysis indicated that the lack of fitness was insignificant (
<italic>P</italic>
> 0.05). The coefficient of variation (CV) was less than 5% which indicated that the model was reproducible.[
<xref ref-type="bibr" rid="ref19">19</xref>
] The predicted residual sum of squares for the model that describes the measure of how a particular model fits each point in the design was 1554.43. The model
<italic>F</italic>
-value (30.02) implied that the model was significant. The predicted second-order polynomial model was:</p>
<p>
<italic>Y</italic>
= 81.20 + 8.32
<italic>X</italic>
<sub>1</sub>
+ 17.73
<italic>X</italic>
<sub>2</sub>
+ 6.80
<italic>X</italic>
<sub>3</sub>
– 1.72
<italic>X</italic>
<sub>1</sub>
<italic>X</italic>
<sub>2</sub>
– 2.21
<italic>X</italic>
<sub>I</sub>
<italic>X</italic>
<sub>3</sub>
– 4.12
<italic>X</italic>
<sub>2</sub>
<italic>X</italic>
<sub>3</sub>
– 8.21
<italic>X</italic>
<sub>1</sub>
<sup>2</sup>
– 16.37
<italic>X</italic>
<sub>2</sub>
<sup>2</sup>
– 11.77
<italic>X</italic>
<sub>3</sub>
<sup>2</sup>
</p>
<p>where
<italic>Y</italic>
is the yield of PSC,
<italic>X</italic>
<sub>1</sub>
,
<italic>X</italic>
<sub>2</sub>
, and
<italic>X</italic>
<sub>3</sub>
are the coded variables for extraction time, solid–liquid ratio, and enzyme concentration, respectively.</p>
<p>The effect of extraction time and solid-liquid ratio on the yield of PSC at the fixed reaction enzyme concentration of 2.0% is shown in
<xref ref-type="fig" rid="F1">Figure 1</xref>
. From
<xref ref-type="fig" rid="F1">Figure 1</xref>
, it is observed that at a low solid–liquid ratio, the PSC yield increased with an increase in solid–liquid ratio. This is probably due to the increase in the reaction area of the enzyme. The PSC yield did not increase with a further increase in the solid–liquid ratio, which could be due to the complete reaction of sturgeon skin with the liquid. In addition, the extraction time indicated positive effects on the yield of PSC. The yield of PSC increased with the extension of time, especially between 3 and 7 h. When the extraction time was longer than 7 h, an increase in the yield was relatively slight. The optimal value of the extraction time and the solid–liquid ratio was 6.45 and 1:11.88, respectively.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>Response surface plot showing the effects of extraction time and solid–liquid ratio on the yield of pepsin-soluble collagen: the enzyme concentration was constant at 2.0%</p>
</caption>
<graphic xlink:href="PM-9-32-g004"></graphic>
</fig>
<p>The effect of enzyme concentration and extraction time on the PSC yield was determined at the a fixed solid-liquid ratio of 1:10, which was shown in
<xref ref-type="fig" rid="F2">Figure 2</xref>
. Enzyme concentration indicated the positive effect on the yield of PSC. The yield of PSC was increased with an increase in enzyme concentration to a certain value (approximately 2.4 M), thereafter decreased. Pepsin is the most popular reagent used for collagen preparation due to the high extractability. The solubility of collagen in pepsin solution can affect the extraction of the collagen from sturgeon skin. The concentration of the pepsin solution can change the number of contact sites. In this study, a relatively higher yield was obtained at the concentration of 2.42%. This could be attributed to more positively charged amine groups of the collagen at this concentration. The effect of solid–liquid ratio and enzyme concentration on the PSC yield at the fixed extraction time of 6 h is shown in
<xref ref-type="fig" rid="F3">Figure 3</xref>
. Evidently, there was significant interaction difference between the solid–liquid ratio and enzyme concentration. The optimal conditions obtained with RSM at a three-variable and five-level central composite design include a solid–liquid ratio of 1:11.88, an enzyme concentration of 2.42%, and an extraction time of 6.45 h. Under the optimal conditions, the content of the PSCs was 86.69%.</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>Response surface plot showing the effects of extraction time and enzyme concentration on the yield of pepsin-soluble collagen: the solid–liquid ratio was constant at 1:10</p>
</caption>
<graphic xlink:href="PM-9-32-g005"></graphic>
</fig>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>Response surface plot showing the effects of solid–liquid ratio and enzyme concentration on the yield of pepsin-soluble collagen: the extraction time was constant at 6 h</p>
</caption>
<graphic xlink:href="PM-9-32-g006"></graphic>
</fig>
</sec>
<sec id="sec2-9">
<title>SDS-PAGE patterns of PSC</title>
<p>The SDS-PAGE patterns of the collagens from the skin of the sturgeons were determined under nonreducing and reducing conditions, which was shown in
<xref ref-type="fig" rid="F4">Figure 4</xref>
. It is observed that the major components of collagens comprised α-chain and β-chain. The α
<sub>1</sub>
-chain, α
<sub>2</sub>
-chain, and β-chain patterns were similar to those of standard collagen type I from calf skin (lane 1). The α-chain and β-chain had subunits molecular weights of 116 and 200 kDa, respectively. It was, therefore, evident that the sturgeon skin collagen is type I collagen and the electrophoretic patterns of collagens under nonreducing and reducing conditions were quite similar. The major component of type I collagen are two α
<sub>1</sub>
- and one α2-chain ([α
<sub>1</sub>
]
<sub>2</sub>
α
<sub>2</sub>
). The sturgeon skin collagen molecule depicted [α
<sub>1</sub>
]
<sub>2</sub>
α2. It is obvious that type I collagen is the main collagen in collagen extracted with pepsin from the sturgeon skin. This observation is in agreement with the findings reported by Muyonga and Kittiphattanabawon.[
<xref ref-type="bibr" rid="ref20">20</xref>
<xref ref-type="bibr" rid="ref21">21</xref>
]</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>SDS-PAGE pattern of collagen from sturgeon skin under reducing and nonreducing conditions. Lane M: high MW protein markers; lane 1: calf-skin collagen; lane 2: collagen from sturgeon skin under reducing conditions; lane 3: collagen from sturgeon skin under nonreducing condition</p>
</caption>
<graphic xlink:href="PM-9-32-g007"></graphic>
</fig>
</sec>
<sec id="sec2-10">
<title>FTIR spectra of PSC from sturgeon skin</title>
<p>Fourier transform infrared spectroscopy was used to study changes in the secondary structure of collagen.[
<xref ref-type="bibr" rid="ref22">22</xref>
] The FTIR spectra in the range of 4000–400 cm
<sup>-1</sup>
of collagens from the sturgeon skin are presented in
<xref ref-type="fig" rid="F5">Figure 5</xref>
. The main absorption bands were amide A (3333 cm
<sup>-1</sup>
), amide B (2922 cm
<sup>-1</sup>
), amide I (1653 cm
<sup>-1</sup>
), amide II (1539 cm
<sup>-1</sup>
), and the amide III (1238 cm
<sup>-1</sup>
).</p>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>The FTIR spectra of pepsin-soluble collagen</p>
</caption>
<graphic xlink:href="PM-9-32-g008"></graphic>
</fig>
<p>Amide A peak of PSC was found at 3333 cm
<sup>-1</sup>
. However, there was a slight shift of the amide A peak of PSC to lower wave number when compared with other proteins. Normally, a free N–H stretching vibration commonly occurs in the range of 3400–3440 cm
<sup>-1</sup>
, and the position is shifted to the lower frequencies when the hydrogen bonds formed stabilized the helix structure.[
<xref ref-type="bibr" rid="ref23">23</xref>
] The amide B peak of the collagens (2922 cm
<sup>-1</sup>
) was attributed to the asymmetrical stretch of CH
<sub>2</sub>
(2920–2922 cm
<sup>-1</sup>
) stretching vibration.[
<xref ref-type="bibr" rid="ref24">24</xref>
]</p>
<p>Amide I peak of PSC was also found at 1653 cm
<sup>-1</sup>
, which was associated with C=O stretching vibration or hydrogen bond coupled with COO
<sup>-</sup>
.[
<xref ref-type="bibr" rid="ref25">25</xref>
] The amide I band is said to be the most useful amide for the infrared spectroscopic analysis of the secondary structure of proteins.[
<xref ref-type="bibr" rid="ref26">26</xref>
] The amide II peak of the collagens was observed at 1539 cm
<sup>-1</sup>
, resulting from N–H bending vibration coupled with the stretching vibration of CN (1536–1544 cm
<sup>-1</sup>
).[
<xref ref-type="bibr" rid="ref27">27</xref>
] The amide III peak of the collagens was observed at 1238 cm
<sup>-1</sup>
. The amide I peak was associated with the triple-helical structure 1 (1234–1235 cm
<sup>-1</sup>
). On the basis of the slight differences with other proteins, the triple-helical structure might be slightly affected by pepsin digestion during collagen extraction.[
<xref ref-type="bibr" rid="ref28">28</xref>
]</p>
</sec>
</sec>
<sec sec-type="conclusions" id="sec1-4">
<title>CONCLUSION</title>
<p>From the study, various factors including, extraction time, enzyme concentration, and solid–liquid ratio had significant effects on the yield of PSC. The optimal conditions include a solid–liquid ratio of 1:11.88, an enzyme concentration of 2.42%, and the extraction time of 6.45 h. Under the optimal conditions, the maximum content of PSC was 86.69%, which was not significantly different from the predicted yield (87.4%) (
<italic>P</italic>
< 0.05). The results of the study therefore indicated that the production of PSC from sturgeon skin is feasible and beneficial. From the SDS-PAGE patterns, it was concluded that the sturgeon skin collagen was type I collagen, with the collagen molecule depicted as [α
<sub>1</sub>
]
<sub>2</sub>
α
<sub>2</sub>
. The FTIR spectra, therefore, suggested that pepsin hydrolysis does not affect the triple-helical structure.</p>
</sec>
</body>
<back>
<ack>
<title>ACKNOWLEDGEMENT</title>
<p>This work was supported financially by Graduate Innovative Projects in Jiangu Province (CXZZ11-0589). The authors gratefully acknowledge Lianchuang Aquatic Science and Technology Demonstration Park of Zhenjiang(China) for providing sturgeon. We also appreciate Dr. Mohanmmed Takase for language polishing.</p>
</ack>
<fn-group>
<fn fn-type="supported-by">
<p>
<bold>Source of Support:</bold>
Nil</p>
</fn>
<fn fn-type="conflict">
<p>
<bold>Conflict of Interest:</bold>
None declared.</p>
</fn>
</fn-group>
<ref-list>
<title>REFERENCES</title>
<ref id="ref1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bai</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Jian</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular cloning, sequencing, expression of Chinese sturgeon cystatin in yeast Pichia pastoris and its proteinase inhibitory activity</article-title>
<source>J Biotechnol</source>
<year>2006</year>
<volume>125</volume>
<fpage>231</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">16713004</pub-id>
</element-citation>
</ref>
<ref id="ref2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bo</surname>
<given-names>Cheng YH</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>LV</given-names>
</name>
<name>
<surname>Qiang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hongyan</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Fenfen</surname>
<given-names>FU</given-names>
</name>
<name>
<surname>Zeqiao</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Study on determination of collagen in the fin of cultivated sturgeon</article-title>
<source>Chin Food Addict</source>
<year>2008</year>
<volume>4</volume>
<fpage>126</fpage>
<lpage>9</lpage>
</element-citation>
</ref>
<ref id="ref3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Cen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bo</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>He</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The characteristics of gelatin extracted from sturgeon (Acipenser baeri) skin using various pretreatments</article-title>
<source>Food Chem</source>
<year>2009</year>
<volume>115</volume>
<fpage>124</fpage>
<lpage>8</lpage>
</element-citation>
</ref>
<ref id="ref4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kittiphattanabawon</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Benjakul</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Visessanguan</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Kishimura</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Shahidi</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Isolation and Characterisation of collagen from the skin of brownbanded bamboo shark (Chiloscyllium punctatum)</article-title>
<source>Food Chem</source>
<year>2010</year>
<volume>119</volume>
<fpage>1519</fpage>
<lpage>26</lpage>
</element-citation>
</ref>
<ref id="ref5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>Ye</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Analysis of metabolic products by response surface methodology for production of human-like collagen II</article-title>
<source>Chin J Chem Eng</source>
<year>2010</year>
<volume>18</volume>
<fpage>830</fpage>
<lpage>6</lpage>
</element-citation>
</ref>
<ref id="ref6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Shang</surname>
<given-names>La</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>Ye</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Optimization of fermentation process for human-like collagen production of recombinant escherichia coli using response surface methodology</article-title>
<source>Chin J Chem Eng</source>
<year>2010</year>
<volume>18</volume>
<fpage>137</fpage>
<lpage>42</lpage>
</element-citation>
</ref>
<ref id="ref7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Benjakul</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Maqsood</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kishimura</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus)</article-title>
<source>Food Chem</source>
<year>2011</year>
<volume>124</volume>
<fpage>97</fpage>
<lpage>105</lpage>
</element-citation>
</ref>
<ref id="ref8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nalinanon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Benjakul</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kishimura</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Osako</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Type I collagen from the skin of ornate threadfin bream (Nemipterus hexodon): Characteristics and effect of pepsin hydrolysis</article-title>
<source>Food Chem</source>
<year>2011</year>
<volume>125</volume>
<fpage>500</fpage>
<lpage>7</lpage>
</element-citation>
</ref>
<ref id="ref9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Triveni</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Shamala</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Rastogi</surname>
<given-names>NK</given-names>
</name>
</person-group>
<article-title>Optimised production and utilisation of exopolysaccharide from Agrobacterium radiobacter</article-title>
<source>Process Biochem</source>
<year>2001</year>
<volume>36</volume>
<fpage>787</fpage>
<lpage>95</lpage>
</element-citation>
</ref>
<ref id="ref10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>XH</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>HY</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Optimization of extraction process and investigation of antioxidant effect of polysaccharides from the root of Limonium sinense Kuntze</article-title>
<source>Phcog Mag</source>
<year>2011</year>
<volume>7</volume>
<fpage>186</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="pmid">21969788</pub-id>
</element-citation>
</ref>
<ref id="ref11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp</article-title>
<source>Food Chem</source>
<year>2008</year>
<volume>106</volume>
<fpage>685</fpage>
<lpage>90</lpage>
</element-citation>
</ref>
<ref id="ref12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Yi</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata</article-title>
<source>Food Chem</source>
<year>2008</year>
<volume>108</volume>
<fpage>737</fpage>
<lpage>41</lpage>
</element-citation>
</ref>
<ref id="ref13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suphatharaprateep</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cheirsilp</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Jongjareonrak</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Production and properties of two collagenases from bacteria and their application for collagen extraction</article-title>
<source>New Biotechnol</source>
<year>2011</year>
<volume>28</volume>
<fpage>649</fpage>
<lpage>55</lpage>
</element-citation>
</ref>
<ref id="ref14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>S-Y</given-names>
</name>
</person-group>
<article-title>Purification and characterization of type II collagen from chick sternal cartilage</article-title>
<source>Food Chem</source>
<year>2008</year>
<volume>108</volume>
<fpage>439</fpage>
<lpage>45</lpage>
</element-citation>
</ref>
<ref id="ref15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Identification of four Sedum plant medicines by fourier transform infrared spectra</article-title>
<source>Phcog Mag</source>
<year>2012</year>
<volume>8</volume>
<fpage>107</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="pmid">22701282</pub-id>
</element-citation>
</ref>
<ref id="ref16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liyana-Pathirana</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Shahidi</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Optimization of extraction of phenolic compounds from wheat using response surface methodology</article-title>
<source>Food Chem</source>
<year>2005</year>
<volume>93</volume>
<fpage>47</fpage>
<lpage>56</lpage>
</element-citation>
</ref>
<ref id="ref17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nath</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chattopadhyay</surname>
<given-names>PK</given-names>
</name>
</person-group>
<article-title>Optimization of oven toasting for improving crispness and other quality attributes of ready to eat potato-soy snack using response surface methodology</article-title>
<source>J Food Eng</source>
<year>2007</year>
<volume>80</volume>
<fpage>1282</fpage>
<lpage>92</lpage>
</element-citation>
</ref>
<ref id="ref18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sin</surname>
<given-names>HN</given-names>
</name>
<name>
<surname>Yusof</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sheikh</surname>
<given-names>Abdul Hamid N</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Optimization of enzymatic clarification of sapodilla juice using response surface methodology</article-title>
<source>J Food Eng</source>
<year>2006</year>
<volume>73</volume>
<fpage>313</fpage>
<lpage>9</lpage>
</element-citation>
</ref>
<ref id="ref19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenthal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pyle</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Niranjan</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Aqueous and enzymatic processes for edible oil extraction</article-title>
<source>Enzyme Microb Tech</source>
<year>1996</year>
<volume>19</volume>
<fpage>402</fpage>
<lpage>20</lpage>
</element-citation>
</ref>
<ref id="ref20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muyonga</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>CGB</given-names>
</name>
<name>
<surname>Duodu</surname>
<given-names>KG</given-names>
</name>
</person-group>
<article-title>Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus)</article-title>
<source>Food Chem</source>
<year>2004</year>
<volume>85</volume>
<fpage>81</fpage>
<lpage>9</lpage>
</element-citation>
</ref>
<ref id="ref21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kittiphattanabawon</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Benjakul</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Visessanguan</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Nagai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus)</article-title>
<source>Food Chem</source>
<year>2005</year>
<volume>89</volume>
<fpage>363</fpage>
<lpage>72</lpage>
</element-citation>
</ref>
<ref id="ref22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friess</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Basic thermoanalytical studies of insoluble collagen matrices</article-title>
<source>Biomaterials</source>
<year>1996</year>
<volume>17</volume>
<fpage>2289</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="pmid">8968525</pub-id>
</element-citation>
</ref>
<ref id="ref23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muyonga</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Duodu</surname>
<given-names>KG</given-names>
</name>
</person-group>
<article-title>Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus)</article-title>
<source>Food Chem</source>
<year>2004</year>
<volume>86</volume>
<fpage>325</fpage>
<lpage>32</lpage>
</element-citation>
</ref>
<ref id="ref24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abe</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Krimm</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Normal vibrations of crystalline polyglycine I</article-title>
<source>Biopolymers</source>
<year>1972</year>
<volume>11</volume>
<fpage>1817</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="pmid">5072731</pub-id>
</element-citation>
</ref>
<ref id="ref25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Payne</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Veis</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the Amide I band for conformational studies</article-title>
<source>Biopolymers</source>
<year>1988</year>
<volume>27</volume>
<fpage>1749</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="pmid">3233328</pub-id>
</element-citation>
</ref>
<ref id="ref26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Surewicz</surname>
<given-names>WK</given-names>
</name>
<name>
<surname>Mantsh</surname>
<given-names>H.H</given-names>
</name>
</person-group>
<article-title>New insight into protein secondary structure from resolution-enhanced infrared spectra</article-title>
<source>Biochim Biophys Acta</source>
<year>1988</year>
<volume>952</volume>
<fpage>115</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">3276352</pub-id>
</element-citation>
</ref>
<ref id="ref27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krimm</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bandekar</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins</article-title>
<source>Adv Protein Chem</source>
<year>1986</year>
<volume>38</volume>
<fpage>181</fpage>
<lpage>364</lpage>
<pub-id pub-id-type="pmid">3541539</pub-id>
</element-citation>
</ref>
<ref id="ref28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Isolation of collagen from fish waste material—skin, bone and fins</article-title>
<source>Food Chem</source>
<year>2000</year>
<volume>68</volume>
<fpage>277</fpage>
<lpage>81</lpage>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000051  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000051  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024