Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fish Synucleins: An Update

Identifieur interne : 000004 ( Pmc/Corpus ); précédent : 000003; suivant : 000005

Fish Synucleins: An Update

Auteurs : Mattia Toni ; Carla Cioni

Source :

RBID : PMC:4663547

Abstract

Synucleins (syns) are a family of proteins involved in several human neurodegenerative diseases and tumors. Since the first syn discovery in the brain of the electric ray Torpedo californica, members of the same family have been identified in all vertebrates and comparative studies have indicated that syn proteins are evolutionary conserved. No counterparts of syns were found in invertebrates suggesting that they are vertebrate-specific proteins. Molecular studies showed that the number of syn members varies among vertebrates. Three genes encode for α-, β- and γ-syn in mammals and birds. However, a variable number of syn genes and encoded proteins is expressed or predicted in fish depending on the species. Among biologically verified sequences, four syn genes were identified in fugu, encoding for α, β and two γ (γ1 and γ2) isoforms, whereas only three genes are expressed in zebrafish, which lacks α-syn gene. The list of “non verified” sequences is much longer and is often found in sequence databases. In this review we provide an overview of published papers and known syn sequences in agnathans and fish that are likely to impact future studies in this field. Indeed, fish models may play a key role in elucidating some of the molecular mechanisms involved in physiological and pathological functions of syn proteins.


Url:
DOI: 10.3390/md13116665
PubMed: 26528989
PubMed Central: 4663547

Links to Exploration step

PMC:4663547

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fish Synucleins: An Update</title>
<author>
<name sortKey="Toni, Mattia" sort="Toni, Mattia" uniqKey="Toni M" first="Mattia" last="Toni">Mattia Toni</name>
</author>
<author>
<name sortKey="Cioni, Carla" sort="Cioni, Carla" uniqKey="Cioni C" first="Carla" last="Cioni">Carla Cioni</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26528989</idno>
<idno type="pmc">4663547</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663547</idno>
<idno type="RBID">PMC:4663547</idno>
<idno type="doi">10.3390/md13116665</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000004</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000004</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Fish Synucleins: An Update</title>
<author>
<name sortKey="Toni, Mattia" sort="Toni, Mattia" uniqKey="Toni M" first="Mattia" last="Toni">Mattia Toni</name>
</author>
<author>
<name sortKey="Cioni, Carla" sort="Cioni, Carla" uniqKey="Cioni C" first="Carla" last="Cioni">Carla Cioni</name>
</author>
</analytic>
<series>
<title level="j">Marine Drugs</title>
<idno type="eISSN">1660-3397</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Synucleins (syns) are a family of proteins involved in several human neurodegenerative diseases and tumors. Since the first syn discovery in the brain of the electric ray
<italic>Torpedo californica</italic>
, members of the same family have been identified in all vertebrates and comparative studies have indicated that syn proteins are evolutionary conserved. No counterparts of syns were found in invertebrates suggesting that they are vertebrate-specific proteins. Molecular studies showed that the number of syn members varies among vertebrates. Three genes encode for α-, β- and γ-syn in mammals and birds. However, a variable number of syn genes and encoded proteins is expressed or predicted in fish depending on the species. Among biologically verified sequences, four syn genes were identified in fugu, encoding for α, β and two γ (γ1 and γ2) isoforms, whereas only three genes are expressed in zebrafish, which lacks α-syn gene. The list of “non verified” sequences is much longer and is often found in sequence databases. In this review we provide an overview of published papers and known syn sequences in agnathans and fish that are likely to impact future studies in this field. Indeed, fish models may play a key role in elucidating some of the molecular mechanisms involved in physiological and pathological functions of syn proteins.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Carlson, S S" uniqKey="Carlson S">S.S. Carlson</name>
</author>
<author>
<name sortKey="Kelly, R B" uniqKey="Kelly R">R.B. Kelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maroteaux, L" uniqKey="Maroteaux L">L. Maroteaux</name>
</author>
<author>
<name sortKey="Campanelli, J T" uniqKey="Campanelli J">J.T. Campanelli</name>
</author>
<author>
<name sortKey="Scheller, R H" uniqKey="Scheller R">R.H. Scheller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ueda, K" uniqKey="Ueda K">K. Ueda</name>
</author>
<author>
<name sortKey="Fukushima, H" uniqKey="Fukushima H">H. Fukushima</name>
</author>
<author>
<name sortKey="Masliah, E" uniqKey="Masliah E">E. Masliah</name>
</author>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y. Xia</name>
</author>
<author>
<name sortKey="Iwai, A" uniqKey="Iwai A">A. Iwai</name>
</author>
<author>
<name sortKey="Yoshimoto, M" uniqKey="Yoshimoto M">M. Yoshimoto</name>
</author>
<author>
<name sortKey="Otero, D A" uniqKey="Otero D">D.A. Otero</name>
</author>
<author>
<name sortKey="Kondo, J" uniqKey="Kondo J">J. Kondo</name>
</author>
<author>
<name sortKey="Ihara, Y" uniqKey="Ihara Y">Y. Ihara</name>
</author>
<author>
<name sortKey="Saitoh, T" uniqKey="Saitoh T">T. Saitoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tobe, T" uniqKey="Tobe T">T. Tobe</name>
</author>
<author>
<name sortKey="Nakajo, S" uniqKey="Nakajo S">S. Nakajo</name>
</author>
<author>
<name sortKey="Tanaka, A" uniqKey="Tanaka A">A. Tanaka</name>
</author>
<author>
<name sortKey="Mitoya, A" uniqKey="Mitoya A">A. Mitoya</name>
</author>
<author>
<name sortKey="Omata, K" uniqKey="Omata K">K. Omata</name>
</author>
<author>
<name sortKey="Nakaya, K" uniqKey="Nakaya K">K. Nakaya</name>
</author>
<author>
<name sortKey="Tomita, M" uniqKey="Tomita M">M. Tomita</name>
</author>
<author>
<name sortKey="Nakamura, Y" uniqKey="Nakamura Y">Y. Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakajo, S" uniqKey="Nakajo S">S. Nakajo</name>
</author>
<author>
<name sortKey="Tsukada, K" uniqKey="Tsukada K">K. Tsukada</name>
</author>
<author>
<name sortKey="Omata, K" uniqKey="Omata K">K. Omata</name>
</author>
<author>
<name sortKey="Nakamura, Y" uniqKey="Nakamura Y">Y. Nakamura</name>
</author>
<author>
<name sortKey="Nakaya, K" uniqKey="Nakaya K">K. Nakaya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shibayama Imazu, T" uniqKey="Shibayama Imazu T">T. Shibayama-Imazu</name>
</author>
<author>
<name sortKey="Okahashi, I" uniqKey="Okahashi I">I. Okahashi</name>
</author>
<author>
<name sortKey="Omata, K" uniqKey="Omata K">K. Omata</name>
</author>
<author>
<name sortKey="Nakajo, S" uniqKey="Nakajo S">S. Nakajo</name>
</author>
<author>
<name sortKey="Ochiai, H" uniqKey="Ochiai H">H. Ochiai</name>
</author>
<author>
<name sortKey="Nakai, Y" uniqKey="Nakai Y">Y. Nakai</name>
</author>
<author>
<name sortKey="Hama, T" uniqKey="Hama T">T. Hama</name>
</author>
<author>
<name sortKey="Nakamura, Y" uniqKey="Nakamura Y">Y. Nakamura</name>
</author>
<author>
<name sortKey="Nakaya, K" uniqKey="Nakaya K">K. Nakaya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jakes, R" uniqKey="Jakes R">R. Jakes</name>
</author>
<author>
<name sortKey="Spillantini, M G" uniqKey="Spillantini M">M.G. Spillantini</name>
</author>
<author>
<name sortKey="Goedert, M" uniqKey="Goedert M">M. Goedert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ji, H" uniqKey="Ji H">H. Ji</name>
</author>
<author>
<name sortKey="Liu, Y E" uniqKey="Liu Y">Y.E. Liu</name>
</author>
<author>
<name sortKey="Jia, T" uniqKey="Jia T">T. Jia</name>
</author>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M. Wang</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Xiao, G" uniqKey="Xiao G">G. Xiao</name>
</author>
<author>
<name sortKey="Joseph, B K" uniqKey="Joseph B">B.K. Joseph</name>
</author>
<author>
<name sortKey="Rosen, C" uniqKey="Rosen C">C. Rosen</name>
</author>
<author>
<name sortKey="Shi, Y E" uniqKey="Shi Y">Y.E. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akopian, A N" uniqKey="Akopian A">A.N. Akopian</name>
</author>
<author>
<name sortKey="Wood, J N" uniqKey="Wood J">J.N. Wood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lavedan, C" uniqKey="Lavedan C">C. Lavedan</name>
</author>
<author>
<name sortKey="Leroy, E" uniqKey="Leroy E">E. Leroy</name>
</author>
<author>
<name sortKey="Dehejia, A" uniqKey="Dehejia A">A. Dehejia</name>
</author>
<author>
<name sortKey="Buchholtz, S" uniqKey="Buchholtz S">S. Buchholtz</name>
</author>
<author>
<name sortKey="Dutra, A" uniqKey="Dutra A">A. Dutra</name>
</author>
<author>
<name sortKey="Nussbaum, R L" uniqKey="Nussbaum R">R.L. Nussbaum</name>
</author>
<author>
<name sortKey="Polymeropoulos, M H" uniqKey="Polymeropoulos M">M.H. Polymeropoulos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campion, D" uniqKey="Campion D">D. Campion</name>
</author>
<author>
<name sortKey="Martin, C" uniqKey="Martin C">C. Martin</name>
</author>
<author>
<name sortKey="Heilig, R" uniqKey="Heilig R">R. Heilig</name>
</author>
<author>
<name sortKey="Charbonnier, F" uniqKey="Charbonnier F">F. Charbonnier</name>
</author>
<author>
<name sortKey="Moreau, V" uniqKey="Moreau V">V. Moreau</name>
</author>
<author>
<name sortKey="Flaman, J M" uniqKey="Flaman J">J.M. Flaman</name>
</author>
<author>
<name sortKey="Petit, J L" uniqKey="Petit J">J.L. Petit</name>
</author>
<author>
<name sortKey="Hannequin, D" uniqKey="Hannequin D">D. Hannequin</name>
</author>
<author>
<name sortKey="Brice, A" uniqKey="Brice A">A. Brice</name>
</author>
<author>
<name sortKey="Frebourg, T" uniqKey="Frebourg T">T. Frebourg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="De Silva, H A" uniqKey="De Silva H">H.A. de Silva</name>
</author>
<author>
<name sortKey="Pettenati, M J" uniqKey="Pettenati M">M.J. Pettenati</name>
</author>
<author>
<name sortKey="Rao, P N" uniqKey="Rao P">P.N. Rao</name>
</author>
<author>
<name sortKey="St George Hyslop, P" uniqKey="St George Hyslop P">P. St George-Hyslop</name>
</author>
<author>
<name sortKey="Roses, A D" uniqKey="Roses A">A.D. Roses</name>
</author>
<author>
<name sortKey="Xia, Y" uniqKey="Xia Y">Y. Xia</name>
</author>
<author>
<name sortKey="Horsburgh, K" uniqKey="Horsburgh K">K. Horsburgh</name>
</author>
<author>
<name sortKey="Ueda, K" uniqKey="Ueda K">K. Ueda</name>
</author>
<author>
<name sortKey="Saitoh, T" uniqKey="Saitoh T">T. Saitoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shibasaki, Y" uniqKey="Shibasaki Y">Y. Shibasaki</name>
</author>
<author>
<name sortKey="Baillie, D A" uniqKey="Baillie D">D.A. Baillie</name>
</author>
<author>
<name sortKey="St Clair, D" uniqKey="St Clair D">D. St Clair</name>
</author>
<author>
<name sortKey="Brookes, A J" uniqKey="Brookes A">A.J. Brookes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lavedan, C" uniqKey="Lavedan C">C. Lavedan</name>
</author>
<author>
<name sortKey="Dehejia, A" uniqKey="Dehejia A">A. Dehejia</name>
</author>
<author>
<name sortKey="Pike, B" uniqKey="Pike B">B. Pike</name>
</author>
<author>
<name sortKey="Dutra, A" uniqKey="Dutra A">A. Dutra</name>
</author>
<author>
<name sortKey="Leroy, E" uniqKey="Leroy E">E. Leroy</name>
</author>
<author>
<name sortKey="Ide, S E" uniqKey="Ide S">S.E. Ide</name>
</author>
<author>
<name sortKey="Root, H" uniqKey="Root H">H. Root</name>
</author>
<author>
<name sortKey="Rubenstein, J" uniqKey="Rubenstein J">J. Rubenstein</name>
</author>
<author>
<name sortKey="Boyer, R L" uniqKey="Boyer R">R.L. Boyer</name>
</author>
<author>
<name sortKey="Chandrasekharappa, S" uniqKey="Chandrasekharappa S">S. Chandrasekharappa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spillantini, M G" uniqKey="Spillantini M">M.G. Spillantini</name>
</author>
<author>
<name sortKey="Divane, A" uniqKey="Divane A">A. Divane</name>
</author>
<author>
<name sortKey="Goedert, M" uniqKey="Goedert M">M. Goedert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lavedan, C" uniqKey="Lavedan C">C. Lavedan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruening, W" uniqKey="Bruening W">W. Bruening</name>
</author>
<author>
<name sortKey="Giasson, B I" uniqKey="Giasson B">B.I. Giasson</name>
</author>
<author>
<name sortKey="Klein Szanto, A J" uniqKey="Klein Szanto A">A.J. Klein-Szanto</name>
</author>
<author>
<name sortKey="Lee, V M" uniqKey="Lee V">V.M. Lee</name>
</author>
<author>
<name sortKey="Trojanowski, J Q" uniqKey="Trojanowski J">J.Q. Trojanowski</name>
</author>
<author>
<name sortKey="Godwin, A K" uniqKey="Godwin A">A.K. Godwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Dong, B" uniqKey="Dong B">B. Dong</name>
</author>
<author>
<name sortKey="Lu, A" uniqKey="Lu A">A. Lu</name>
</author>
<author>
<name sortKey="Qu, L" uniqKey="Qu L">L. Qu</name>
</author>
<author>
<name sortKey="Xing, X" uniqKey="Xing X">X. Xing</name>
</author>
<author>
<name sortKey="Meng, L" uniqKey="Meng L">L. Meng</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Eric Shi, Y" uniqKey="Eric Shi Y">Y. Eric Shi</name>
</author>
<author>
<name sortKey="Shou, C" uniqKey="Shou C">C. Shou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Qu, L" uniqKey="Qu L">L. Qu</name>
</author>
<author>
<name sortKey="Dong, B" uniqKey="Dong B">B. Dong</name>
</author>
<author>
<name sortKey="Xing, X" uniqKey="Xing X">X. Xing</name>
</author>
<author>
<name sortKey="Ren, T" uniqKey="Ren T">T. Ren</name>
</author>
<author>
<name sortKey="Zeng, Y" uniqKey="Zeng Y">Y. Zeng</name>
</author>
<author>
<name sortKey="Jiang, B" uniqKey="Jiang B">B. Jiang</name>
</author>
<author>
<name sortKey="Meng, L" uniqKey="Meng L">L. Meng</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Shou, C" uniqKey="Shou C">C. Shou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hibi, T" uniqKey="Hibi T">T. Hibi</name>
</author>
<author>
<name sortKey="Mori, T" uniqKey="Mori T">T. Mori</name>
</author>
<author>
<name sortKey="Fukuma, M" uniqKey="Fukuma M">M. Fukuma</name>
</author>
<author>
<name sortKey="Yamazaki, K" uniqKey="Yamazaki K">K. Yamazaki</name>
</author>
<author>
<name sortKey="Hashiguchi, A" uniqKey="Hashiguchi A">A. Hashiguchi</name>
</author>
<author>
<name sortKey="Yamada, T" uniqKey="Yamada T">T. Yamada</name>
</author>
<author>
<name sortKey="Tanabe, M" uniqKey="Tanabe M">M. Tanabe</name>
</author>
<author>
<name sortKey="Aiura, K" uniqKey="Aiura K">K. Aiura</name>
</author>
<author>
<name sortKey="Kawakami, T" uniqKey="Kawakami T">T. Kawakami</name>
</author>
<author>
<name sortKey="Ogiwara, A" uniqKey="Ogiwara A">A. Ogiwara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buchman, V L" uniqKey="Buchman V">V.L. Buchman</name>
</author>
<author>
<name sortKey="Hunter, H J" uniqKey="Hunter H">H.J. Hunter</name>
</author>
<author>
<name sortKey="Pinon, L G" uniqKey="Pinon L">L.G. Pinon</name>
</author>
<author>
<name sortKey="Thompson, J" uniqKey="Thompson J">J. Thompson</name>
</author>
<author>
<name sortKey="Privalova, E M" uniqKey="Privalova E">E.M. Privalova</name>
</author>
<author>
<name sortKey="Ninkina, N N" uniqKey="Ninkina N">N.N. Ninkina</name>
</author>
<author>
<name sortKey="Davies, A M" uniqKey="Davies A">A.M. Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pfefferkorn, C M" uniqKey="Pfefferkorn C">C.M. Pfefferkorn</name>
</author>
<author>
<name sortKey="Jiang, Z" uniqKey="Jiang Z">Z. Jiang</name>
</author>
<author>
<name sortKey="Lee, J C" uniqKey="Lee J">J.C. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dikiy, I" uniqKey="Dikiy I">I. Dikiy</name>
</author>
<author>
<name sortKey="Eliezer, D" uniqKey="Eliezer D">D. Eliezer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spillantini, M G" uniqKey="Spillantini M">M.G. Spillantini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, D J" uniqKey="Moore D">D.J. Moore</name>
</author>
<author>
<name sortKey="West, A B" uniqKey="West A">A.B. West</name>
</author>
<author>
<name sortKey="Dawson, V L" uniqKey="Dawson V">V.L. Dawson</name>
</author>
<author>
<name sortKey="Dawson, T M" uniqKey="Dawson T">T.M. Dawson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luk, K C" uniqKey="Luk K">K.C. Luk</name>
</author>
<author>
<name sortKey="Lee, V M" uniqKey="Lee V">V.M. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Irwin, D J" uniqKey="Irwin D">D.J. Irwin</name>
</author>
<author>
<name sortKey="Lee, V M" uniqKey="Lee V">V.M. Lee</name>
</author>
<author>
<name sortKey="Trojanowski, J Q" uniqKey="Trojanowski J">J.Q. Trojanowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Norris, E H" uniqKey="Norris E">E.H. Norris</name>
</author>
<author>
<name sortKey="Giasson, B I" uniqKey="Giasson B">B.I. Giasson</name>
</author>
<author>
<name sortKey="Lee, V M" uniqKey="Lee V">V.M. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spillantini, M G" uniqKey="Spillantini M">M.G. Spillantini</name>
</author>
<author>
<name sortKey="Schmidt, M L" uniqKey="Schmidt M">M.L. Schmidt</name>
</author>
<author>
<name sortKey="Lee, V M" uniqKey="Lee V">V.M. Lee</name>
</author>
<author>
<name sortKey="Trojanowski, J Q" uniqKey="Trojanowski J">J.Q. Trojanowski</name>
</author>
<author>
<name sortKey="Jakes, R" uniqKey="Jakes R">R. Jakes</name>
</author>
<author>
<name sortKey="Goedert, M" uniqKey="Goedert M">M. Goedert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gai, W P" uniqKey="Gai W">W.P. Gai</name>
</author>
<author>
<name sortKey="Power, J H" uniqKey="Power J">J.H. Power</name>
</author>
<author>
<name sortKey="Blumbergs, P C" uniqKey="Blumbergs P">P.C. Blumbergs</name>
</author>
<author>
<name sortKey="Blessing, W W" uniqKey="Blessing W">W.W. Blessing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newell, K L" uniqKey="Newell K">K.L. Newell</name>
</author>
<author>
<name sortKey="Boyer, P" uniqKey="Boyer P">P. Boyer</name>
</author>
<author>
<name sortKey="Gomez Tortosa, E" uniqKey="Gomez Tortosa E">E. Gomez-Tortosa</name>
</author>
<author>
<name sortKey="Hobbs, W" uniqKey="Hobbs W">W. Hobbs</name>
</author>
<author>
<name sortKey="Hedley Whyte, E T" uniqKey="Hedley Whyte E">E.T. Hedley-Whyte</name>
</author>
<author>
<name sortKey="Vonsattel, J P" uniqKey="Vonsattel J">J.P. Vonsattel</name>
</author>
<author>
<name sortKey="Hyman, B T" uniqKey="Hyman B">B.T. Hyman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cookson, M R" uniqKey="Cookson M">M.R. Cookson</name>
</author>
<author>
<name sortKey="Van Der Brug, M" uniqKey="Van Der Brug M">M. van der Brug</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, A" uniqKey="Gupta A">A. Gupta</name>
</author>
<author>
<name sortKey="Dawson, V L" uniqKey="Dawson V">V.L. Dawson</name>
</author>
<author>
<name sortKey="Dawson, T M" uniqKey="Dawson T">T.M. Dawson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pals, P" uniqKey="Pals P">P. Pals</name>
</author>
<author>
<name sortKey="Lincoln, S" uniqKey="Lincoln S">S. Lincoln</name>
</author>
<author>
<name sortKey="Manning, J" uniqKey="Manning J">J. Manning</name>
</author>
<author>
<name sortKey="Heckman, M" uniqKey="Heckman M">M. Heckman</name>
</author>
<author>
<name sortKey="Skipper, L" uniqKey="Skipper L">L. Skipper</name>
</author>
<author>
<name sortKey="Hulihan, M" uniqKey="Hulihan M">M. Hulihan</name>
</author>
<author>
<name sortKey="Van Den Broeck, M" uniqKey="Van Den Broeck M">M. van den Broeck</name>
</author>
<author>
<name sortKey="De Pooter, T" uniqKey="De Pooter T">T. de Pooter</name>
</author>
<author>
<name sortKey="Cras, P" uniqKey="Cras P">P. Cras</name>
</author>
<author>
<name sortKey="Crook, J" uniqKey="Crook J">J. Crook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajput, A" uniqKey="Rajput A">A. Rajput</name>
</author>
<author>
<name sortKey="Vilarino Guell, C" uniqKey="Vilarino Guell C">C. Vilarino-Guell</name>
</author>
<author>
<name sortKey="Rajput, M L" uniqKey="Rajput M">M.L. Rajput</name>
</author>
<author>
<name sortKey="Ross, O A" uniqKey="Ross O">O.A. Ross</name>
</author>
<author>
<name sortKey="Soto Ortolaza, A I" uniqKey="Soto Ortolaza A">A.I. Soto-Ortolaza</name>
</author>
<author>
<name sortKey="Lincoln, S J" uniqKey="Lincoln S">S.J. Lincoln</name>
</author>
<author>
<name sortKey="Cobb, S A" uniqKey="Cobb S">S.A. Cobb</name>
</author>
<author>
<name sortKey="Heckman, M G" uniqKey="Heckman M">M.G. Heckman</name>
</author>
<author>
<name sortKey="Farrer, M J" uniqKey="Farrer M">M.J. Farrer</name>
</author>
<author>
<name sortKey="Rajput, A" uniqKey="Rajput A">A. Rajput</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pankratz, N" uniqKey="Pankratz N">N. Pankratz</name>
</author>
<author>
<name sortKey="Wilk, J B" uniqKey="Wilk J">J.B. Wilk</name>
</author>
<author>
<name sortKey="Latourelle, J C" uniqKey="Latourelle J">J.C. Latourelle</name>
</author>
<author>
<name sortKey="Destefano, A L" uniqKey="Destefano A">A.L. DeStefano</name>
</author>
<author>
<name sortKey="Halter, C" uniqKey="Halter C">C. Halter</name>
</author>
<author>
<name sortKey="Pugh, E W" uniqKey="Pugh E">E.W. Pugh</name>
</author>
<author>
<name sortKey="Doheny, K F" uniqKey="Doheny K">K.F. Doheny</name>
</author>
<author>
<name sortKey="Gusella, J F" uniqKey="Gusella J">J.F. Gusella</name>
</author>
<author>
<name sortKey="Nichols, W C" uniqKey="Nichols W">W.C. Nichols</name>
</author>
<author>
<name sortKey="Foroud, T" uniqKey="Foroud T">T. Foroud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maraganore, D M" uniqKey="Maraganore D">D.M. Maraganore</name>
</author>
<author>
<name sortKey="De Andrade, M" uniqKey="De Andrade M">M. de Andrade</name>
</author>
<author>
<name sortKey="Elbaz, A" uniqKey="Elbaz A">A. Elbaz</name>
</author>
<author>
<name sortKey="Farrer, M J" uniqKey="Farrer M">M.J. Farrer</name>
</author>
<author>
<name sortKey="Ioannidis, J P" uniqKey="Ioannidis J">J.P. Ioannidis</name>
</author>
<author>
<name sortKey="Kruger, R" uniqKey="Kruger R">R. Krüger</name>
</author>
<author>
<name sortKey="Rocca, W A" uniqKey="Rocca W">W.A. Rocca</name>
</author>
<author>
<name sortKey="Schneider, N K" uniqKey="Schneider N">N.K. Schneider</name>
</author>
<author>
<name sortKey="Lesnick, T G" uniqKey="Lesnick T">T.G. Lesnick</name>
</author>
<author>
<name sortKey="Lincoln, S J" uniqKey="Lincoln S">S.J. Lincoln</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polymeropoulos, M H" uniqKey="Polymeropoulos M">M.H. Polymeropoulos</name>
</author>
<author>
<name sortKey="Lavedan, C" uniqKey="Lavedan C">C. Lavedan</name>
</author>
<author>
<name sortKey="Leroy, E" uniqKey="Leroy E">E. Leroy</name>
</author>
<author>
<name sortKey="Ide, S E" uniqKey="Ide S">S.E. Ide</name>
</author>
<author>
<name sortKey="Dehejia, A" uniqKey="Dehejia A">A. Dehejia</name>
</author>
<author>
<name sortKey="Dutra, A" uniqKey="Dutra A">A. Dutra</name>
</author>
<author>
<name sortKey="Pike, B" uniqKey="Pike B">B. Pike</name>
</author>
<author>
<name sortKey="Root, H" uniqKey="Root H">H. Root</name>
</author>
<author>
<name sortKey="Rubenstein, J" uniqKey="Rubenstein J">J. Rubenstein</name>
</author>
<author>
<name sortKey="Boyer, R" uniqKey="Boyer R">R. Boyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kruger, R" uniqKey="Kruger R">R. Kruger</name>
</author>
<author>
<name sortKey="Kuhn, W" uniqKey="Kuhn W">W. Kuhn</name>
</author>
<author>
<name sortKey="Muller, T" uniqKey="Muller T">T. Muller</name>
</author>
<author>
<name sortKey="Woitalla, D" uniqKey="Woitalla D">D. Woitalla</name>
</author>
<author>
<name sortKey="Graeber, M" uniqKey="Graeber M">M. Graeber</name>
</author>
<author>
<name sortKey="Kosel, S" uniqKey="Kosel S">S. Kosel</name>
</author>
<author>
<name sortKey="Przuntek, H" uniqKey="Przuntek H">H. Przuntek</name>
</author>
<author>
<name sortKey="Epplen, J T" uniqKey="Epplen J">J.T. Epplen</name>
</author>
<author>
<name sortKey="Schols, L" uniqKey="Schols L">L. Schols</name>
</author>
<author>
<name sortKey="Riess, O" uniqKey="Riess O">O. Riess</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zarranz, J J" uniqKey="Zarranz J">J.J. Zarranz</name>
</author>
<author>
<name sortKey="Alegre, J" uniqKey="Alegre J">J. Alegre</name>
</author>
<author>
<name sortKey="Gomez Esteban, J C" uniqKey="Gomez Esteban J">J.C. Gomez-Esteban</name>
</author>
<author>
<name sortKey="Lezcano, E" uniqKey="Lezcano E">E. Lezcano</name>
</author>
<author>
<name sortKey="Ros, R" uniqKey="Ros R">R. Ros</name>
</author>
<author>
<name sortKey="Ampuero, I" uniqKey="Ampuero I">I. Ampuero</name>
</author>
<author>
<name sortKey="Vidal, L" uniqKey="Vidal L">L. Vidal</name>
</author>
<author>
<name sortKey="Hoenicka, J" uniqKey="Hoenicka J">J. Hoenicka</name>
</author>
<author>
<name sortKey="Rodriguez, O" uniqKey="Rodriguez O">O. Rodriguez</name>
</author>
<author>
<name sortKey="Atares, B" uniqKey="Atares B">B. Atares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Proukakis, C" uniqKey="Proukakis C">C. Proukakis</name>
</author>
<author>
<name sortKey="Dudzik, C G" uniqKey="Dudzik C">C.G. Dudzik</name>
</author>
<author>
<name sortKey="Brier, T" uniqKey="Brier T">T. Brier</name>
</author>
<author>
<name sortKey="Mackay, D S" uniqKey="Mackay D">D.S. MacKay</name>
</author>
<author>
<name sortKey="Cooper, J M" uniqKey="Cooper J">J.M. Cooper</name>
</author>
<author>
<name sortKey="Millhauser, G L" uniqKey="Millhauser G">G.L. Millhauser</name>
</author>
<author>
<name sortKey="Houlden, H" uniqKey="Houlden H">H. Houlden</name>
</author>
<author>
<name sortKey="Schapira, A H" uniqKey="Schapira A">A.H. Schapira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Appel Cresswell, S" uniqKey="Appel Cresswell S">S. Appel-Cresswell</name>
</author>
<author>
<name sortKey="Vilarino Guell, C" uniqKey="Vilarino Guell C">C. Vilarino-Guell</name>
</author>
<author>
<name sortKey="Encarnacion, M" uniqKey="Encarnacion M">M. Encarnacion</name>
</author>
<author>
<name sortKey="Sherman, H" uniqKey="Sherman H">H. Sherman</name>
</author>
<author>
<name sortKey="Yu, I" uniqKey="Yu I">I. Yu</name>
</author>
<author>
<name sortKey="Shah, B" uniqKey="Shah B">B. Shah</name>
</author>
<author>
<name sortKey="Weir, D" uniqKey="Weir D">D. Weir</name>
</author>
<author>
<name sortKey="Thompson, C" uniqKey="Thompson C">C. Thompson</name>
</author>
<author>
<name sortKey="Szu Tu, C" uniqKey="Szu Tu C">C. Szu-Tu</name>
</author>
<author>
<name sortKey="Trinh, J" uniqKey="Trinh J">J. Trinh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lesage, S" uniqKey="Lesage S">S. Lesage</name>
</author>
<author>
<name sortKey="Anheim, M" uniqKey="Anheim M">M. Anheim</name>
</author>
<author>
<name sortKey="Letournel, F" uniqKey="Letournel F">F. Letournel</name>
</author>
<author>
<name sortKey="Bousset, L" uniqKey="Bousset L">L. Bousset</name>
</author>
<author>
<name sortKey="Honore, A" uniqKey="Honore A">A. Honore</name>
</author>
<author>
<name sortKey="Rozas, N" uniqKey="Rozas N">N. Rozas</name>
</author>
<author>
<name sortKey="Pieri, L" uniqKey="Pieri L">L. Pieri</name>
</author>
<author>
<name sortKey="Madiona, K" uniqKey="Madiona K">K. Madiona</name>
</author>
<author>
<name sortKey="Durr, A" uniqKey="Durr A">A. Durr</name>
</author>
<author>
<name sortKey="Melki, R" uniqKey="Melki R">R. Melki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pasanen, P" uniqKey="Pasanen P">P. Pasanen</name>
</author>
<author>
<name sortKey="Myllykangas, L" uniqKey="Myllykangas L">L. Myllykangas</name>
</author>
<author>
<name sortKey="Siitonen, M" uniqKey="Siitonen M">M. Siitonen</name>
</author>
<author>
<name sortKey="Raunio, A" uniqKey="Raunio A">A. Raunio</name>
</author>
<author>
<name sortKey="Kaakkola, S" uniqKey="Kaakkola S">S. Kaakkola</name>
</author>
<author>
<name sortKey="Lyytinen, J" uniqKey="Lyytinen J">J. Lyytinen</name>
</author>
<author>
<name sortKey="Tienari, P J" uniqKey="Tienari P">P.J. Tienari</name>
</author>
<author>
<name sortKey="Poyhonen, M" uniqKey="Poyhonen M">M. Poyhonen</name>
</author>
<author>
<name sortKey="Paetau, A" uniqKey="Paetau A">A. Paetau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conway, K A" uniqKey="Conway K">K.A. Conway</name>
</author>
<author>
<name sortKey="Harper, J D" uniqKey="Harper J">J.D. Harper</name>
</author>
<author>
<name sortKey="Lansbury, P T" uniqKey="Lansbury P">P.T. Lansbury</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chartier Harlin, M C" uniqKey="Chartier Harlin M">M.C. Chartier-Harlin</name>
</author>
<author>
<name sortKey="Kachergus, J" uniqKey="Kachergus J">J. Kachergus</name>
</author>
<author>
<name sortKey="Roumier, C" uniqKey="Roumier C">C. Roumier</name>
</author>
<author>
<name sortKey="Mouroux, V" uniqKey="Mouroux V">V. Mouroux</name>
</author>
<author>
<name sortKey="Douay, X" uniqKey="Douay X">X. Douay</name>
</author>
<author>
<name sortKey="Lincoln, S" uniqKey="Lincoln S">S. Lincoln</name>
</author>
<author>
<name sortKey="Levecque, C" uniqKey="Levecque C">C. Levecque</name>
</author>
<author>
<name sortKey="Larvor, L" uniqKey="Larvor L">L. Larvor</name>
</author>
<author>
<name sortKey="Andrieux, J" uniqKey="Andrieux J">J. Andrieux</name>
</author>
<author>
<name sortKey="Hulihan, M" uniqKey="Hulihan M">M. Hulihan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ibanez, P" uniqKey="Ibanez P">P. Ibanez</name>
</author>
<author>
<name sortKey="Bonnet, A M" uniqKey="Bonnet A">A.M. Bonnet</name>
</author>
<author>
<name sortKey="Debarges, B" uniqKey="Debarges B">B. Debarges</name>
</author>
<author>
<name sortKey="Lohmann, E" uniqKey="Lohmann E">E. Lohmann</name>
</author>
<author>
<name sortKey="Tison, F" uniqKey="Tison F">F. Tison</name>
</author>
<author>
<name sortKey="Pollak, P" uniqKey="Pollak P">P. Pollak</name>
</author>
<author>
<name sortKey="Agid, Y" uniqKey="Agid Y">Y. Agid</name>
</author>
<author>
<name sortKey="Durr, A" uniqKey="Durr A">A. Durr</name>
</author>
<author>
<name sortKey="Brice, A" uniqKey="Brice A">A. Brice</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singleton, A B" uniqKey="Singleton A">A.B. Singleton</name>
</author>
<author>
<name sortKey="Farrer, M" uniqKey="Farrer M">M. Farrer</name>
</author>
<author>
<name sortKey="Johnson, J" uniqKey="Johnson J">J. Johnson</name>
</author>
<author>
<name sortKey="Singleton, A" uniqKey="Singleton A">A. Singleton</name>
</author>
<author>
<name sortKey="Hague, S" uniqKey="Hague S">S. Hague</name>
</author>
<author>
<name sortKey="Kachergus, J" uniqKey="Kachergus J">J. Kachergus</name>
</author>
<author>
<name sortKey="Hulihan, M" uniqKey="Hulihan M">M. Hulihan</name>
</author>
<author>
<name sortKey="Peuralinna, T" uniqKey="Peuralinna T">T. Peuralinna</name>
</author>
<author>
<name sortKey="Dutra, A" uniqKey="Dutra A">A. Dutra</name>
</author>
<author>
<name sortKey="Nussbaum, R" uniqKey="Nussbaum R">R. Nussbaum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giasson, B I" uniqKey="Giasson B">B.I. Giasson</name>
</author>
<author>
<name sortKey="Duda, J E" uniqKey="Duda J">J.E. Duda</name>
</author>
<author>
<name sortKey="Murray, I V" uniqKey="Murray I">I.V. Murray</name>
</author>
<author>
<name sortKey="Chen, Q" uniqKey="Chen Q">Q. Chen</name>
</author>
<author>
<name sortKey="Souza, J M" uniqKey="Souza J">J.M. Souza</name>
</author>
<author>
<name sortKey="Hurtig, H I" uniqKey="Hurtig H">H.I. Hurtig</name>
</author>
<author>
<name sortKey="Ischiropoulos, H" uniqKey="Ischiropoulos H">H. Ischiropoulos</name>
</author>
<author>
<name sortKey="Trojanowski, J Q" uniqKey="Trojanowski J">J.Q. Trojanowski</name>
</author>
<author>
<name sortKey="Lee, V M" uniqKey="Lee V">V.M. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tofaris, G K" uniqKey="Tofaris G">G.K. Tofaris</name>
</author>
<author>
<name sortKey="Razzaq, A" uniqKey="Razzaq A">A. Razzaq</name>
</author>
<author>
<name sortKey="Ghetti, B" uniqKey="Ghetti B">B. Ghetti</name>
</author>
<author>
<name sortKey="Lilley, K S" uniqKey="Lilley K">K.S. Lilley</name>
</author>
<author>
<name sortKey="Spillantini, M G" uniqKey="Spillantini M">M.G. Spillantini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xilouri, M" uniqKey="Xilouri M">M. Xilouri</name>
</author>
<author>
<name sortKey="Stefanis, L" uniqKey="Stefanis L">L. Stefanis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iwai, A" uniqKey="Iwai A">A. Iwai</name>
</author>
<author>
<name sortKey="Masliah, E" uniqKey="Masliah E">E. Masliah</name>
</author>
<author>
<name sortKey="Yoshimoto, M" uniqKey="Yoshimoto M">M. Yoshimoto</name>
</author>
<author>
<name sortKey="Ge, N" uniqKey="Ge N">N. Ge</name>
</author>
<author>
<name sortKey="Flanagan, L" uniqKey="Flanagan L">L. Flanagan</name>
</author>
<author>
<name sortKey="De Silva, H A" uniqKey="De Silva H">H.A. de Silva</name>
</author>
<author>
<name sortKey="Kittel, A" uniqKey="Kittel A">A. Kittel</name>
</author>
<author>
<name sortKey="Saitoh, T" uniqKey="Saitoh T">T. Saitoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chandra, S" uniqKey="Chandra S">S. Chandra</name>
</author>
<author>
<name sortKey="Gallardo, G" uniqKey="Gallardo G">G. Gallardo</name>
</author>
<author>
<name sortKey="Fernandez Chacon, R" uniqKey="Fernandez Chacon R">R. Fernandez-Chacon</name>
</author>
<author>
<name sortKey="Schluter, O M" uniqKey="Schluter O">O.M. Schluter</name>
</author>
<author>
<name sortKey="Sudhof, T C" uniqKey="Sudhof T">T.C. Sudhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burre, J" uniqKey="Burre J">J. Burre</name>
</author>
<author>
<name sortKey="Sharma, M" uniqKey="Sharma M">M. Sharma</name>
</author>
<author>
<name sortKey="Tsetsenis, T" uniqKey="Tsetsenis T">T. Tsetsenis</name>
</author>
<author>
<name sortKey="Buchman, V" uniqKey="Buchman V">V. Buchman</name>
</author>
<author>
<name sortKey="Etherton, M R" uniqKey="Etherton M">M.R. Etherton</name>
</author>
<author>
<name sortKey="Sudhof, T C" uniqKey="Sudhof T">T.C. Sudhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abeliovich, A" uniqKey="Abeliovich A">A. Abeliovich</name>
</author>
<author>
<name sortKey="Schmitz, Y" uniqKey="Schmitz Y">Y. Schmitz</name>
</author>
<author>
<name sortKey="Farinas, I" uniqKey="Farinas I">I. Farinas</name>
</author>
<author>
<name sortKey="Choi Lundberg, D" uniqKey="Choi Lundberg D">D. Choi-Lundberg</name>
</author>
<author>
<name sortKey="Ho, W H" uniqKey="Ho W">W.H. Ho</name>
</author>
<author>
<name sortKey="Castillo, P E" uniqKey="Castillo P">P.E. Castillo</name>
</author>
<author>
<name sortKey="Shinsky, N" uniqKey="Shinsky N">N. Shinsky</name>
</author>
<author>
<name sortKey="Verdugo, J M" uniqKey="Verdugo J">J.M. Verdugo</name>
</author>
<author>
<name sortKey="Armanini, M" uniqKey="Armanini M">M. Armanini</name>
</author>
<author>
<name sortKey="Ryan, A" uniqKey="Ryan A">A. Ryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, D D" uniqKey="Murphy D">D.D. Murphy</name>
</author>
<author>
<name sortKey="Rueter, S M" uniqKey="Rueter S">S.M. Rueter</name>
</author>
<author>
<name sortKey="Trojanowski, J Q" uniqKey="Trojanowski J">J.Q. Trojanowski</name>
</author>
<author>
<name sortKey="Lee, V M" uniqKey="Lee V">V.M. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="George, J M" uniqKey="George J">J.M. George</name>
</author>
<author>
<name sortKey="Jin, H" uniqKey="Jin H">H. Jin</name>
</author>
<author>
<name sortKey="Woods, W S" uniqKey="Woods W">W.S. Woods</name>
</author>
<author>
<name sortKey="Clayton, D F" uniqKey="Clayton D">D.F. Clayton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jia, T" uniqKey="Jia T">T. Jia</name>
</author>
<author>
<name sortKey="Liu, Y E" uniqKey="Liu Y">Y.E. Liu</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Shi, Y E" uniqKey="Shi Y">Y.E. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Spence, M J" uniqKey="Spence M">M.J. Spence</name>
</author>
<author>
<name sortKey="Zhang, Y L" uniqKey="Zhang Y">Y.L. Zhang</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y. Jiang</name>
</author>
<author>
<name sortKey="Liu, Y E" uniqKey="Liu Y">Y.E. Liu</name>
</author>
<author>
<name sortKey="Shi, Y E" uniqKey="Shi Y">Y.E. Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tiunova, A A" uniqKey="Tiunova A">A.A. Tiunova</name>
</author>
<author>
<name sortKey="Anokhin, K V" uniqKey="Anokhin K">K.V. Anokhin</name>
</author>
<author>
<name sortKey="Saha, A R" uniqKey="Saha A">A.R. Saha</name>
</author>
<author>
<name sortKey="Schmidt, O" uniqKey="Schmidt O">O. Schmidt</name>
</author>
<author>
<name sortKey="Hanger, D P" uniqKey="Hanger D">D.P. Hanger</name>
</author>
<author>
<name sortKey="Anderton, B H" uniqKey="Anderton B">B.H. Anderton</name>
</author>
<author>
<name sortKey="Davies, A M" uniqKey="Davies A">A.M. Davies</name>
</author>
<author>
<name sortKey="Ninkina, N N" uniqKey="Ninkina N">N.N. Ninkina</name>
</author>
<author>
<name sortKey="Buchman, V L" uniqKey="Buchman V">V.L. Buchman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoshida, H" uniqKey="Yoshida H">H. Yoshida</name>
</author>
<author>
<name sortKey="Craxton, M" uniqKey="Craxton M">M. Craxton</name>
</author>
<author>
<name sortKey="Jakes, R" uniqKey="Jakes R">R. Jakes</name>
</author>
<author>
<name sortKey="Zibaee, S" uniqKey="Zibaee S">S. Zibaee</name>
</author>
<author>
<name sortKey="Tavare, R" uniqKey="Tavare R">R. Tavare</name>
</author>
<author>
<name sortKey="Fraser, G" uniqKey="Fraser G">G. Fraser</name>
</author>
<author>
<name sortKey="Serpell, L C" uniqKey="Serpell L">L.C. Serpell</name>
</author>
<author>
<name sortKey="Davletov, B" uniqKey="Davletov B">B. Davletov</name>
</author>
<author>
<name sortKey="Crowther, R A" uniqKey="Crowther R">R.A. Crowther</name>
</author>
<author>
<name sortKey="Goedert, M" uniqKey="Goedert M">M. Goedert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larsen, K" uniqKey="Larsen K">K. Larsen</name>
</author>
<author>
<name sortKey="Hedegaard, C" uniqKey="Hedegaard C">C. Hedegaard</name>
</author>
<author>
<name sortKey="Bertelsen, M F" uniqKey="Bertelsen M">M.F. Bertelsen</name>
</author>
<author>
<name sortKey="Bendixen, C" uniqKey="Bendixen C">C. Bendixen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamilton, B A" uniqKey="Hamilton B">B.A. Hamilton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donaldson, E M" uniqKey="Donaldson E">E.M. Donaldson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nelson, J S" uniqKey="Nelson J">J.S. Nelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Busch, D J" uniqKey="Busch D">D.J. Busch</name>
</author>
<author>
<name sortKey="Morgan, J R" uniqKey="Morgan J">J.R. Morgan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J. Yuan</name>
</author>
<author>
<name sortKey="Zhao, Y" uniqKey="Zhao Y">Y. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amores, A" uniqKey="Amores A">A. Amores</name>
</author>
<author>
<name sortKey="Force, A" uniqKey="Force A">A. Force</name>
</author>
<author>
<name sortKey="Yan, Y L" uniqKey="Yan Y">Y.L. Yan</name>
</author>
<author>
<name sortKey="Joly, L" uniqKey="Joly L">L. Joly</name>
</author>
<author>
<name sortKey="Amemiya, C" uniqKey="Amemiya C">C. Amemiya</name>
</author>
<author>
<name sortKey="Fritz, A" uniqKey="Fritz A">A. Fritz</name>
</author>
<author>
<name sortKey="Ho, R K" uniqKey="Ho R">R.K. Ho</name>
</author>
<author>
<name sortKey="Langeland, J" uniqKey="Langeland J">J. Langeland</name>
</author>
<author>
<name sortKey="Prince, V" uniqKey="Prince V">V. Prince</name>
</author>
<author>
<name sortKey="Wang, Y L" uniqKey="Wang Y">Y.L. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaillon, O" uniqKey="Jaillon O">O. Jaillon</name>
</author>
<author>
<name sortKey="Aury, J M" uniqKey="Aury J">J.M. Aury</name>
</author>
<author>
<name sortKey="Brunet, F" uniqKey="Brunet F">F. Brunet</name>
</author>
<author>
<name sortKey="Petit, J L" uniqKey="Petit J">J.L. Petit</name>
</author>
<author>
<name sortKey="Stange Thomann, N" uniqKey="Stange Thomann N">N. Stange-Thomann</name>
</author>
<author>
<name sortKey="Mauceli, E" uniqKey="Mauceli E">E. Mauceli</name>
</author>
<author>
<name sortKey="Bouneau, L" uniqKey="Bouneau L">L. Bouneau</name>
</author>
<author>
<name sortKey="Fischer, C" uniqKey="Fischer C">C. Fischer</name>
</author>
<author>
<name sortKey="Ozouf Costaz, C" uniqKey="Ozouf Costaz C">C. Ozouf-Costaz</name>
</author>
<author>
<name sortKey="Bernot, A" uniqKey="Bernot A">A. Bernot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Z" uniqKey="Sun Z">Z. Sun</name>
</author>
<author>
<name sortKey="Gitler, A D" uniqKey="Gitler A">A.D. Gitler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milanese, C" uniqKey="Milanese C">C. Milanese</name>
</author>
<author>
<name sortKey="Sager, J J" uniqKey="Sager J">J.J. Sager</name>
</author>
<author>
<name sortKey="Bai, Q" uniqKey="Bai Q">Q. Bai</name>
</author>
<author>
<name sortKey="Farrell, T C" uniqKey="Farrell T">T.C. Farrell</name>
</author>
<author>
<name sortKey="Cannon, J R" uniqKey="Cannon J">J.R. Cannon</name>
</author>
<author>
<name sortKey="Greenamyre, J T" uniqKey="Greenamyre J">J.T. Greenamyre</name>
</author>
<author>
<name sortKey="Burton, E A" uniqKey="Burton E">E.A. Burton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y C" uniqKey="Chen Y">Y.C. Chen</name>
</author>
<author>
<name sortKey="Cheng, C H" uniqKey="Cheng C">C.H. Cheng</name>
</author>
<author>
<name sortKey="Chen, G D" uniqKey="Chen G">G.D. Chen</name>
</author>
<author>
<name sortKey="Hung, C C" uniqKey="Hung C">C.C. Hung</name>
</author>
<author>
<name sortKey="Yang, C H" uniqKey="Yang C">C.H. Yang</name>
</author>
<author>
<name sortKey="Hwang, S P" uniqKey="Hwang S">S.P. Hwang</name>
</author>
<author>
<name sortKey="Kawakami, K" uniqKey="Kawakami K">K. Kawakami</name>
</author>
<author>
<name sortKey="Wu, B K" uniqKey="Wu B">B.K. Wu</name>
</author>
<author>
<name sortKey="Huang, C J" uniqKey="Huang C">C.J. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaccaro, R" uniqKey="Vaccaro R">R. Vaccaro</name>
</author>
<author>
<name sortKey="Toni, M" uniqKey="Toni M">M. Toni</name>
</author>
<author>
<name sortKey="Casini, A" uniqKey="Casini A">A. Casini</name>
</author>
<author>
<name sortKey="Vivacqua, G" uniqKey="Vivacqua G">G. Vivacqua</name>
</author>
<author>
<name sortKey="Yu, S" uniqKey="Yu S">S. Yu</name>
</author>
<author>
<name sortKey="D Ste, L" uniqKey="D Ste L">L. D’Este</name>
</author>
<author>
<name sortKey="Cioni, C" uniqKey="Cioni C">C. Cioni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vivacqua, G" uniqKey="Vivacqua G">G. Vivacqua</name>
</author>
<author>
<name sortKey="Casini, A" uniqKey="Casini A">A. Casini</name>
</author>
<author>
<name sortKey="Vaccaro, R" uniqKey="Vaccaro R">R. Vaccaro</name>
</author>
<author>
<name sortKey="Fornai, F" uniqKey="Fornai F">F. Fornai</name>
</author>
<author>
<name sortKey="Yu, S" uniqKey="Yu S">S. Yu</name>
</author>
<author>
<name sortKey="D Ste, L" uniqKey="D Ste L">L. D’Este</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rink, E" uniqKey="Rink E">E. Rink</name>
</author>
<author>
<name sortKey="Wullimann, M F" uniqKey="Wullimann M">M.F. Wullimann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okazaki, H" uniqKey="Okazaki H">H. Okazaki</name>
</author>
<author>
<name sortKey="Lipkin, L E" uniqKey="Lipkin L">L.E. Lipkin</name>
</author>
<author>
<name sortKey="Aronson, S M" uniqKey="Aronson S">S.M. Aronson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vilar, M" uniqKey="Vilar M">M. Vilar</name>
</author>
<author>
<name sortKey="Chou, H T" uniqKey="Chou H">H.T. Chou</name>
</author>
<author>
<name sortKey="Luhrs, T" uniqKey="Luhrs T">T. Luhrs</name>
</author>
<author>
<name sortKey="Maji, S K" uniqKey="Maji S">S.K. Maji</name>
</author>
<author>
<name sortKey="Riek Loher, D" uniqKey="Riek Loher D">D. Riek-Loher</name>
</author>
<author>
<name sortKey="Verel, R" uniqKey="Verel R">R. Verel</name>
</author>
<author>
<name sortKey="Manning, G" uniqKey="Manning G">G. Manning</name>
</author>
<author>
<name sortKey="Stahlberg, H" uniqKey="Stahlberg H">H. Stahlberg</name>
</author>
<author>
<name sortKey="Riek, R" uniqKey="Riek R">R. Riek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanaan, N M" uniqKey="Kanaan N">N.M. Kanaan</name>
</author>
<author>
<name sortKey="Manfredsson, F P" uniqKey="Manfredsson F">F.P. Manfredsson</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Mar Drugs</journal-id>
<journal-id journal-id-type="iso-abbrev">Mar Drugs</journal-id>
<journal-id journal-id-type="publisher-id">marinedrugs</journal-id>
<journal-title-group>
<journal-title>Marine Drugs</journal-title>
</journal-title-group>
<issn pub-type="epub">1660-3397</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26528989</article-id>
<article-id pub-id-type="pmc">4663547</article-id>
<article-id pub-id-type="doi">10.3390/md13116665</article-id>
<article-id pub-id-type="publisher-id">marinedrugs-13-06665</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Fish Synucleins: An Update</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Toni</surname>
<given-names>Mattia</given-names>
</name>
<xref rid="c1-marinedrugs-13-06665" ref-type="corresp">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cioni</surname>
<given-names>Carla</given-names>
</name>
</contrib>
</contrib-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Perry</surname>
<given-names>George</given-names>
</name>
<role>Academic Editor</role>
</contrib>
</contrib-group>
<aff id="af1-marinedrugs-13-06665">Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Via Alfonso Borelli 50, Rome 00161, Italy; E-Mail:
<email>carla.cioni@uniroma1.it</email>
</aff>
<author-notes>
<corresp id="c1-marinedrugs-13-06665">
<label>*</label>
Author to whom correspondence should be addressed; E-Mail:
<email>mattia.toni@uniroma1.it</email>
; Tel.: +390649918005; Fax: +3906499157516.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>30</day>
<month>10</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<month>11</month>
<year>2015</year>
</pub-date>
<volume>13</volume>
<issue>11</issue>
<fpage>6665</fpage>
<lpage>6686</lpage>
<history>
<date date-type="received">
<day>10</day>
<month>8</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>10</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© 2015 by the authors; licensee MDPI, Basel, Switzerland.</copyright-statement>
<copyright-year>2015</copyright-year>
<license>
<license-p>
<pmc-comment>CREATIVE COMMONS</pmc-comment>
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Synucleins (syns) are a family of proteins involved in several human neurodegenerative diseases and tumors. Since the first syn discovery in the brain of the electric ray
<italic>Torpedo californica</italic>
, members of the same family have been identified in all vertebrates and comparative studies have indicated that syn proteins are evolutionary conserved. No counterparts of syns were found in invertebrates suggesting that they are vertebrate-specific proteins. Molecular studies showed that the number of syn members varies among vertebrates. Three genes encode for α-, β- and γ-syn in mammals and birds. However, a variable number of syn genes and encoded proteins is expressed or predicted in fish depending on the species. Among biologically verified sequences, four syn genes were identified in fugu, encoding for α, β and two γ (γ1 and γ2) isoforms, whereas only three genes are expressed in zebrafish, which lacks α-syn gene. The list of “non verified” sequences is much longer and is often found in sequence databases. In this review we provide an overview of published papers and known syn sequences in agnathans and fish that are likely to impact future studies in this field. Indeed, fish models may play a key role in elucidating some of the molecular mechanisms involved in physiological and pathological functions of syn proteins.</p>
</abstract>
<kwd-group>
<kwd>synuclein</kwd>
<kwd>fish</kwd>
<kwd>brain</kwd>
<kwd>zebrafish</kwd>
<kwd>carp</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1-marinedrugs-13-06665">
<title>1. From Fish to Human: The Discovery of the Synuclein Family</title>
<p>Fish played a key role in the studies in the 1980’s that led to the discovery of the first synuclein (syn) sequence. In 1980, Carlson and Kelly [
<xref rid="B1-marinedrugs-13-06665" ref-type="bibr">1</xref>
] produced a rabbit antiserum against highly purified synaptic vesicles from the electric organ of the ray
<italic>Narcine brasiliensis</italic>
. Afterwards, in 1988, Maroteaux and co-workers [
<xref rid="B2-marinedrugs-13-06665" ref-type="bibr">2</xref>
] used the same antiserum to screen a cDNA library constructed with mRNA isolated from the brain electromotor lobe of
<italic>Torpedo californica</italic>
. One gene was characterized and sequenced having a transcript of about 1.4 kb and encoding a protein with a predicted molecular weight of 14.811 Da whose expression was restricted to the central nervous system (CNS). This new protein was named “synuclein” for its predominant localization in both presynaptic terminals and neuronal nucleus. Western blot experiments performed with an antiserum against a
<italic>Torpedo</italic>
syn/B-gal fusion protein detected three protein bands at 17.5, 18.5 and 20.0 kDa in CNS homogenates from
<italic>Torpedo</italic>
. The authors concluded that syn was a protein or a series of proteins specifically expressed in the CNS and possibly involved in the coordination of nuclear and synaptic events. In the same work, Maroteaux and coworkers found a homolog to
<italic>Torpedo</italic>
syn in the rat brain cDNA library. Sequence analysis revealed about 85% identity between fish and rat syns, suggesting that the new protein is conserved among vertebrate lineages.</p>
<p>In 1993, a homologous protein to rat syn was discovered in the brain of patients affected by Alzheimer’s disease (AD) [
<xref rid="B3-marinedrugs-13-06665" ref-type="bibr">3</xref>
]. While studying the composition of the amyloid plaques, Ueda and co-workers [
<xref rid="B3-marinedrugs-13-06665" ref-type="bibr">3</xref>
] were able to solubilize a previously unknown peptide that was named NAC (non-aβ component of AD amyloid). Its precursor, namely NAC protein (NACP), was homologous to rat syn. In the same years, the phosphoneuroprotein 14 (PNP 14), initially identified in bovine brain, was determined to be an additional member of the syn family [
<xref rid="B4-marinedrugs-13-06665" ref-type="bibr">4</xref>
,
<xref rid="B5-marinedrugs-13-06665" ref-type="bibr">5</xref>
,
<xref rid="B6-marinedrugs-13-06665" ref-type="bibr">6</xref>
]. NACP and the human ortholog of PNP 14 were then identified as two distinct isoforms of the syn family and respectively named α- and β-syn [
<xref rid="B7-marinedrugs-13-06665" ref-type="bibr">7</xref>
]. A third variant, structurally homologous to
<italic>Torpedo</italic>
syn was added to α- and β-syn: this protein was identified in both human [
<xref rid="B8-marinedrugs-13-06665" ref-type="bibr">8</xref>
] and rat [
<xref rid="B9-marinedrugs-13-06665" ref-type="bibr">9</xref>
] and named γ-syn [
<xref rid="B10-marinedrugs-13-06665" ref-type="bibr">10</xref>
]. </p>
<p>Human α-, β- and γ-syn are encoded by three distinct genes,
<italic>snca</italic>
,
<italic>sncb</italic>
and
<italic>sncg</italic>
respectively. The three genes map to different chromosomes (4q21.3-q22, 5q35 and 10q23) [
<xref rid="B10-marinedrugs-13-06665" ref-type="bibr">10</xref>
,
<xref rid="B11-marinedrugs-13-06665" ref-type="bibr">11</xref>
,
<xref rid="B12-marinedrugs-13-06665" ref-type="bibr">12</xref>
,
<xref rid="B13-marinedrugs-13-06665" ref-type="bibr">13</xref>
,
<xref rid="B14-marinedrugs-13-06665" ref-type="bibr">14</xref>
,
<xref rid="B15-marinedrugs-13-06665" ref-type="bibr">15</xref>
] and have a well preserved general organization made by five coding exons of similar size [
<xref rid="B16-marinedrugs-13-06665" ref-type="bibr">16</xref>
]. Alpha- and β-syn are predominantly expressed in the brain, particularly in neocortex, hippocampus, striatum, thalamus, and cerebellum whereas γ-syn is mainly expressed in the peripheral and the autonomic nervous system (cell bodies and axons of primary sensory, motor and sympathetic neurons) and in some tumors [
<xref rid="B8-marinedrugs-13-06665" ref-type="bibr">8</xref>
,
<xref rid="B10-marinedrugs-13-06665" ref-type="bibr">10</xref>
,
<xref rid="B17-marinedrugs-13-06665" ref-type="bibr">17</xref>
,
<xref rid="B18-marinedrugs-13-06665" ref-type="bibr">18</xref>
,
<xref rid="B19-marinedrugs-13-06665" ref-type="bibr">19</xref>
,
<xref rid="B20-marinedrugs-13-06665" ref-type="bibr">20</xref>
,
<xref rid="B21-marinedrugs-13-06665" ref-type="bibr">21</xref>
].</p>
<p>After the discovery of the three syns, research was primarily focused on α-syn for its involvement in several human neurodegenerative diseases known as synucleinopathies including Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and a number of less well-characterized neuroaxonal dystrophies [
<xref rid="B22-marinedrugs-13-06665" ref-type="bibr">22</xref>
,
<xref rid="B23-marinedrugs-13-06665" ref-type="bibr">23</xref>
,
<xref rid="B24-marinedrugs-13-06665" ref-type="bibr">24</xref>
,
<xref rid="B25-marinedrugs-13-06665" ref-type="bibr">25</xref>
,
<xref rid="B26-marinedrugs-13-06665" ref-type="bibr">26</xref>
,
<xref rid="B27-marinedrugs-13-06665" ref-type="bibr">27</xref>
,
<xref rid="B28-marinedrugs-13-06665" ref-type="bibr">28</xref>
].</p>
<p>The universal feature of synucleinopathies is the accumulation of intracellular proteinaceous bodies containing α-syn aggregates rich in β-sheets [
<xref rid="B24-marinedrugs-13-06665" ref-type="bibr">24</xref>
]. These aggregates are called Lewy bodies in PD and PDD [
<xref rid="B29-marinedrugs-13-06665" ref-type="bibr">29</xref>
], glial cytoplasmic inclusions in MSA [
<xref rid="B30-marinedrugs-13-06665" ref-type="bibr">30</xref>
] and axonal spheroids in neuroaxonal dystrophies [
<xref rid="B31-marinedrugs-13-06665" ref-type="bibr">31</xref>
]. There is evidence indicating that molecular mechanisms involved in the pathogenesis of synucleinopathies are the misfolding of α-syn proteins into aggregates and their accumulation into intracellular bodies [
<xref rid="B29-marinedrugs-13-06665" ref-type="bibr">29</xref>
], and that neurotoxicity and cell death arise as a consequence of the dramatic α-syn accumulation [
<xref rid="B32-marinedrugs-13-06665" ref-type="bibr">32</xref>
,
<xref rid="B33-marinedrugs-13-06665" ref-type="bibr">33</xref>
].</p>
<p>Among synucleinopathies, the role of α-syn has been more widely investigated in PD. Single nucleotide polymorphisms in
<italic>snca</italic>
are strongly associated with the increased risk for idiopathic PD [
<xref rid="B34-marinedrugs-13-06665" ref-type="bibr">34</xref>
,
<xref rid="B35-marinedrugs-13-06665" ref-type="bibr">35</xref>
,
<xref rid="B36-marinedrugs-13-06665" ref-type="bibr">36</xref>
,
<xref rid="B37-marinedrugs-13-06665" ref-type="bibr">37</xref>
]. The
<italic>snca</italic>
missense mutation A53T was the first causal mutation identified in dominantly inherited PD [
<xref rid="B38-marinedrugs-13-06665" ref-type="bibr">38</xref>
]; other
<italic>snca</italic>
missense mutations such as A30P [
<xref rid="B39-marinedrugs-13-06665" ref-type="bibr">39</xref>
], E46K [
<xref rid="B40-marinedrugs-13-06665" ref-type="bibr">40</xref>
], H50Q [
<xref rid="B41-marinedrugs-13-06665" ref-type="bibr">41</xref>
,
<xref rid="B42-marinedrugs-13-06665" ref-type="bibr">42</xref>
], G51D [
<xref rid="B43-marinedrugs-13-06665" ref-type="bibr">43</xref>
], A53E [
<xref rid="B44-marinedrugs-13-06665" ref-type="bibr">44</xref>
] were then detected.
<italic>In vitro</italic>
experiments demonstrated that
<italic>snca</italic>
missense mutations accelerate the formation of α-syn fibrils [
<xref rid="B45-marinedrugs-13-06665" ref-type="bibr">45</xref>
]. Furthermore,
<italic>snca</italic>
duplications [
<xref rid="B46-marinedrugs-13-06665" ref-type="bibr">46</xref>
,
<xref rid="B47-marinedrugs-13-06665" ref-type="bibr">47</xref>
] and triplications [
<xref rid="B48-marinedrugs-13-06665" ref-type="bibr">48</xref>
] also lead to familiar PD suggesting that excessive amounts of normal proteins also cause PD. In addition, the formation of pathological inclusions may be promoted by α-syn post-translational modifications such as ubiquitination, nitration and phosphorylation [
<xref rid="B49-marinedrugs-13-06665" ref-type="bibr">49</xref>
,
<xref rid="B50-marinedrugs-13-06665" ref-type="bibr">50</xref>
,
<xref rid="B51-marinedrugs-13-06665" ref-type="bibr">51</xref>
].</p>
<p>Twenty-five years of research on syn-linked pathologies provided little advance in the discovery of physiological functions of syn proteins that still remain elusive. The collected body of evidence indicates that α-syn functions are related to its capacity to directly interact with membrane phospholipids by the highly conserved α-helical lipid-binding motif in the N-terminal region [
<xref rid="B52-marinedrugs-13-06665" ref-type="bibr">52</xref>
]. In particular, α-syn has been implicated in vesicle trafficking during neurotransmitter release [
<xref rid="B53-marinedrugs-13-06665" ref-type="bibr">53</xref>
,
<xref rid="B54-marinedrugs-13-06665" ref-type="bibr">54</xref>
], synaptic vesicle pool maintenance [
<xref rid="B55-marinedrugs-13-06665" ref-type="bibr">55</xref>
,
<xref rid="B56-marinedrugs-13-06665" ref-type="bibr">56</xref>
], synaptic plasticity [
<xref rid="B40-marinedrugs-13-06665" ref-type="bibr">40</xref>
] and learning [
<xref rid="B57-marinedrugs-13-06665" ref-type="bibr">57</xref>
]. Differently, γ-syn, first identified as breast cancer specific gene 1 (BCSG1) [
<xref rid="B8-marinedrugs-13-06665" ref-type="bibr">8</xref>
], is involved in tumor pathogenesis and correlates with adverse outcomes in breast [
<xref rid="B8-marinedrugs-13-06665" ref-type="bibr">8</xref>
,
<xref rid="B17-marinedrugs-13-06665" ref-type="bibr">17</xref>
], colon [
<xref rid="B18-marinedrugs-13-06665" ref-type="bibr">18</xref>
,
<xref rid="B19-marinedrugs-13-06665" ref-type="bibr">19</xref>
], pancreatic [
<xref rid="B20-marinedrugs-13-06665" ref-type="bibr">20</xref>
] and ovarian cancer [
<xref rid="B17-marinedrugs-13-06665" ref-type="bibr">17</xref>
]. Studies have revealed that the γ-syn overexpression leads to increased invasiveness of breast tumor cells [
<xref rid="B58-marinedrugs-13-06665" ref-type="bibr">58</xref>
] and stimulates cell proliferation [
<xref rid="B59-marinedrugs-13-06665" ref-type="bibr">59</xref>
].</p>
<p>Despite most research was focused on mammalian models, some advances were also made on syn expression in non-mammalian vertebrates. After Maroteaux’s pioneering work, α-syn-coding mRNAs were sequenced in representative fish, amphibians, reptiles, birds and non-primate mammals. The comparison of deduced amino acid sequences revealed that α-syns are evolutionary conserved in vertebrates [
<xref rid="B60-marinedrugs-13-06665" ref-type="bibr">60</xref>
,
<xref rid="B61-marinedrugs-13-06665" ref-type="bibr">61</xref>
,
<xref rid="B62-marinedrugs-13-06665" ref-type="bibr">62</xref>
]. Moreover, syn proteins are thought to exist only in vertebrates since no counterparts of their genes were found in the invertebrates investigated so far,
<italic>i.e.</italic>
,
<italic>Caenorhabditis elegans</italic>
,
<italic>Drosophila melanogaster</italic>
and
<italic>Ciona intestinalis</italic>
[
<xref rid="B63-marinedrugs-13-06665" ref-type="bibr">63</xref>
]. Recently, one α-syn sequence has been unexpectedly predicted from the genome of the tobacco
<italic>Nicotiana tomentosiformis</italic>
(XP_009616054.1 NCBI database). The mRNA coding sequence of the putative plant α-syn shares 100% of identity with that of human α-syn (transcript variants 1, 2, 3 and 6) and no homologous sequence is present in maize, rice and the
<italic>Arabidopsis</italic>
genome. Given the full identity between human and
<italic>Nicotiana</italic>
syn sequences, it can be assumed that the predicted tobacco syn represents a human contaminant of the plant cDNA library or a mislabeling of the sequence in NCBI. However, syn expression needs to be analyzed in tobacco cells before ruling out the putative existence of syn-like proteins in plants.</p>
<p>Current data on fish syns can be grouped in two sets: results from
<italic>in vivo</italic>
studies and putative nucleotide and amino acid sequences from biological databases, that were not verified in animal models. Although published papers are quite scarce, notable advancements have been made in zebrafish and carp, two ciprinids known as species models for vertebrates. Moreover, the list of putative syn sequences is continuously implemented, and we believe that an overview of available data is likely to stimulate research on the evolution of syn proteins in fish lineages. On the other hand, increasing knowledge about fish syns is helpful to develop new vertebrate models of parkinsonism for investigating relationships between syn proteins and neurodegenerative diseases.</p>
<p>In the present review, we provide a systematic framework for the available syn sequences of agnathans and fish. The same sequences were also compared by the maximum likelihood approach to get a first insight into the evolution of this gene family in fish. We also review the experimental studies recently performed in lamprey, fugu, zebrafish and carp.</p>
</sec>
<sec id="sec2-marinedrugs-13-06665">
<title>2. Syn Isoforms in Agnathans and Fishes</title>
<p>Up to 144 nucleotide or deduced amino acid sequences of fish syns are available in the NCBI database (July 2015) from 29 species including jawless, cartilagineous and bony fishes. Most of them were obtained by RT-PCR of mRNAs extracted from blood or other tissues or predicted by computational analysis of the whole genome expression. Available sequences are summarized in
<xref ref-type="table" rid="marinedrugs-13-06665-t001">Table 1</xref>
. The following orders are represented: Petromyzontiformes (3 sequences), Chimaeriformes (7), Torpediniformes (1), Acipenseriformes (1), Lepisosteiformes (2), Osteoglossiformes (1), Cypriniformes (10), Characiformes (6), Siluriformes (1), Osmeriformes (1), Salmoniformes (8), Esociformes (14), Beloniformes (8), Cyprinodontiformes (16), Scorpaeniformes (1), Perciformes (43), Pleuronectiformes (7), Tetraodontiformes (11), and Coelacanthiformes (3). Twenty-five of the 29 species are ray-finned fishes and 23 of them are teleosts, belonging to the subdivisions Osteoglossomorpha (1 species), Ostarioclupeomorpha (4 species) and Euteleostei (18 species), the first two displaying more primitive morphological characters than Euteleostei. This last subdivision comprises the largest percentage of extant teleosts (94%, about 17,000 species, 346 families) [
<xref rid="B64-marinedrugs-13-06665" ref-type="bibr">64</xref>
,
<xref rid="B65-marinedrugs-13-06665" ref-type="bibr">65</xref>
]. Two more ray-finned fishes are one chondrostean and one lepisostean. The remnant four species include the lamprey, two cartilagineous fishes and one sarcopterigian. Although the picture is far from being complete, some speculations can be made on the evolutionary diversification of syns in fishes.</p>
<p>Three different syn sequences have been described in the lamprey
<italic>Petromyzon marinus</italic>
[
<xref rid="B66-marinedrugs-13-06665" ref-type="bibr">66</xref>
]. On the basis of the percentage of similarity with human syns the authors classified two of them as γ-syn DY (JN544525.1) and γ-syn FD (JN544526.1) whereas the third sequence was named “lamprey synuclein 3” (JN544527.1) as the percentage of identity between this protein and human syns did not allow any reliable classification.</p>
<p>After the discovery of
<italic>Torpedo</italic>
syn, the first study aimed at identifying the number of syn genes in the ray-finned fishes was performed in the pufferfish
<italic>Takifugu rupribes</italic>
[
<xref rid="B61-marinedrugs-13-06665" ref-type="bibr">61</xref>
]. In this tetraodontid, Yoshida and co-workers recognized four different genes that were assigned to α-(
<italic>snca</italic>
), β-(
<italic>sncb</italic>
), γ1- (
<italic>sncga</italic>
=
<italic>sncg1</italic>
) and γ2-syn (
<italic>sncgb</italic>
=
<italic>sncg2</italic>
). Each syn gene in fugu contains five coding exons showing similar size and organization to human syn genes. Interestingly,
<italic>T. rubribes</italic>
was the first species in which four genes were identified, as all vertebrates until then investigated showed three syn genes, likewise mammals [
<xref rid="B61-marinedrugs-13-06665" ref-type="bibr">61</xref>
,
<xref rid="B67-marinedrugs-13-06665" ref-type="bibr">67</xref>
].</p>
<table-wrap id="marinedrugs-13-06665-t001" position="float">
<object-id pub-id-type="pii">marinedrugs-13-06665-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>Amino acid sequences of fish synucleins including agnathans, chondrichthyans and osteichthyans available at the NCBI protein database (
<uri xlink:type="simple" xlink:href="http://www.ncbi.nlm.nih.gov/protein">http://www.ncbi.nlm.nih.gov/protein</uri>
). For each species the class, subclass, order and family are indicated (according to [
<xref rid="B65-marinedrugs-13-06665" ref-type="bibr">65</xref>
]). Sequences are divided in α-syn, β-syn, γ-syn and synuclein/synuclein-like (when the classification was not given). Bold numbers refer to the percentage of identity with human α-, β- and γ-syns and numbers in superscript refer to syn sequences reported in the
<xref ref-type="supplementary-material" rid="marinedrugs-13-06665-s001">Supplemental Data</xref>
. The sequences in the same box of the table refer to identical amino acid sequences. Sequences highlighted in green, blue and red indicate X1, X2 and X3 isoforms, respectively. Dark gray, gray and light gray refer to species belonging to the subdivisions Osteoglossomorpha, Ostarioclupeomorpha and Euteleostei, respectively. Asterisks indicate the partial sequences.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Class</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Subclass</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Order</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Family</th>
<th align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Species</th>
<th colspan="4" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1">Alpha synuclein (identity with human α-syn)</th>
<th colspan="3" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1">Beta synuclein (identity with human β-syn)</th>
<th colspan="3" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1">Gamma synuclein (identity with human γ-syn)</th>
<th colspan="4" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1">Synuclein-like (identity with human α-syn)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Petromyzontida</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Petromyzontiformes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Petromyzontidae</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Petromyzon marinus</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<bold>67%</bold>
<sup>1</sup>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<bold>53%</bold>
<sup>2</sup>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<bold>52%</bold>
<sup>3</sup>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Chondrichthyes</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Holocephali</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Chimaeriformes</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Callorhinchidae</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<italic>Callorhinchus milii</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>74%</bold>
<sup>4,5</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>78%</bold>
<sup>6–8</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>9</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>54%</bold>
<sup>10</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Elasmobranchii</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Torpediniformes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Torpedinidae</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Torpedo californica</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<bold>59%</bold>
<sup>11</sup>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="25" align="center" valign="middle" colspan="1">Actinopterygii</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Chondrostei</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Acipenseriformes</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Acipenseridae</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<italic>Acipenser sturio</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>94%</bold>
<sup>12*</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Neopterygii</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lepisosteiformes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Lepisosteidae</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Lepisosteus oculatus</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<bold>82%</bold>
<sup>13</sup>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>14</sup>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="23" align="center" valign="middle" colspan="1">Neopterygii, Division Teleostei</td>
<td align="center" valign="middle" style="background:gray" rowspan="1" colspan="1">Osteoglossiformes</td>
<td align="center" valign="middle" style="background:gray" rowspan="1" colspan="1">Osteoglossidae</td>
<td align="center" valign="middle" style="background:gray" rowspan="1" colspan="1">
<italic>Scleropages formosus</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>50%</bold>
<sup>15</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="2" align="center" valign="middle" style="background:#BFBFBF" colspan="1">Cypriniformes</td>
<td rowspan="2" align="center" valign="middle" style="background:#BFBFBF" colspan="1">Cyprinidae</td>
<td align="center" valign="middle" style="background:#BFBFBF" rowspan="1" colspan="1">
<italic>Cyprinus carpio</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>99%</bold>
<sup>16*</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#BFBFBF" rowspan="1" colspan="1">
<italic>Danio rerio</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>71%</bold>
<sup>17–20</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>50%</bold>
<sup>21–23</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>52%</bold>
<sup>24,25</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#BFBFBF" rowspan="1" colspan="1">Characiformes</td>
<td align="center" valign="middle" style="background:#BFBFBF" rowspan="1" colspan="1">Characidae</td>
<td align="center" valign="middle" style="background:#BFBFBF" rowspan="1" colspan="1">
<italic>Astyanax mexicanus</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>55%</bold>
<sup>26</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>35%</bold>
<sup>27</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>60%</bold>
<sup>28</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>53%</bold>
<sup>29</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>28%</bold>
<sup>30</sup>
</td>
<td align="center" valign="middle" style="background:red" rowspan="1" colspan="1">
<bold>52%</bold>
<sup>31</sup>
</td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#BFBFBF" rowspan="1" colspan="1">Siluriformes</td>
<td align="center" valign="middle" style="background:#BFBFBF" rowspan="1" colspan="1">Siluridae</td>
<td align="center" valign="middle" style="background:#BFBFBF" rowspan="1" colspan="1">
<italic>Silurus glanis</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>99%</bold>
<sup>32*</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Osmeriformes</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Osmeridae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Osmerus mordax</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>68%</bold>
<sup>33</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Salmoniformes</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Salmonidae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Salmo salar</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>51%</bold>
<sup>34,35</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>50%</bold>
<sup>36,37</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>54%</bold>
<sup>38</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>53%</bold>
<sup>39,40</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>43%</bold>
<sup>41</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Esociformes</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Esocidae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Esox lucius</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>52%</bold>
<sup>42–44</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>46%</bold>
<sup>45</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>51%</bold>
<sup>46</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>56%</bold>
<sup>47,48</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>56%</bold>
<sup>49</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>55%</bold>
<sup>50</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>54%</bold>
<sup>51</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>58%</bold>
<sup>52</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>53%</bold>
<sup>53,54</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>43%</bold>
<sup>55</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Beloniformes</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Adrianichthyidae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Oryzias latipes</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>56,57</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>57%</bold>
<sup>58</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>59%</bold>
<sup>59,60</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>49%</bold>
<sup>61</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>50%</bold>
<sup>62</sup>
</td>
<td align="center" valign="middle" style="background:red" rowspan="1" colspan="1">
<bold>55%</bold>
<sup>63</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="3" align="center" valign="middle" style="background:#D9D9D9" colspan="1">Cyprinodontiformes</td>
<td rowspan="3" align="center" valign="middle" style="background:#D9D9D9" colspan="1">Poeciliidae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Poecilia formosa</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>62%</bold>
<sup>64</sup>
</td>
<td align="center" valign="middle" style="background:red" rowspan="1" colspan="1">
<bold>46%</bold>
<sup>65</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>66</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>55%</bold>
<sup>67</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>46%</bold>
<sup>68</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Poecilia reticulata</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>62%</bold>
<sup>69</sup>
</td>
<td align="center" valign="middle" style="background:red" rowspan="1" colspan="1">
<bold>46%</bold>
<sup>70</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>62%</bold>
<sup>71</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>55%</bold>
<sup>72</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>46%</bold>
<sup>73</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Xiphophorus maculatus</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>62%</bold>
<sup>74</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>75,76</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>56%</bold>
<sup>77</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>55%</bold>
<sup>78</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>50%</bold>
<sup>79</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Scorpaeniformes</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Anoplopomatidae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Anoplopoma fimbria</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>59%</bold>
<sup>80</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="8" align="center" valign="middle" style="background:#D9D9D9" colspan="1">Perciformes</td>
<td rowspan="5" align="center" valign="middle" style="background:#D9D9D9" colspan="1">Cichlidae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Astatotilapia burtoni</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>81</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>52%</bold>
<sup>82</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>60%</bold>
<sup>83</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>84,85</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>56%</bold>
<sup>86</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Maylandia zebra</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>87</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>88,89</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>55%</bold>
<sup>90</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>53%</bold>
<sup>91</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>57%</bold>
<sup>92</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Neolamprologus brichardi</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>48%</bold>
<sup>93</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>94</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>95,96</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>57%</bold>
<sup>97</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Oreochromis niloticus</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>60%</bold>
<sup>98</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>57%</bold>
<sup>99</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>52%</bold>
<sup>100</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>60%</bold>
<sup>101</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>102</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>103</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Pundamilia nyererei</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>104</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>52%</bold>
<sup>105</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>60%</bold>
<sup>106</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>107,108</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>57%</bold>
<sup>109</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Pomacentridae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Stegastes partitus</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>50%</bold>
<sup>110</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>54%</bold>
<sup>111</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>112</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>51%</bold>
<sup>113</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>50%</bold>
<sup>114</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>50%</bold>
<sup>115</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>56%</bold>
<sup>116</sup>
</td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Nototheniidae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Notothenia coriceps</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>43%</bold>
<sup>117</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>58%</bold>
<sup>118</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>58%</bold>
<sup>119</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Sciaenidae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Larimichthys crocea</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>120</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>62%</bold>
<sup>121</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>53%</bold>
<sup>122</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>57%</bold>
<sup>123</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Pleuronectiformes</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Cynoglossidae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Cynoglossus semilaevis</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>54%</bold>
<sup>124,125</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>60%</bold>
<sup>126</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>50%</bold>
<sup>127</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>51%</bold>
<sup>128</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>50%</bold>
<sup>129</sup>
</td>
<td align="center" valign="middle" style="background:#00B0F0" rowspan="1" colspan="1">
<bold>55%</bold>
<sup>130</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Tetraodontiformes</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">Tetraodontidae</td>
<td align="center" valign="middle" style="background:#D9D9D9" rowspan="1" colspan="1">
<italic>Takifugu rubripes</italic>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>131,132</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>61%</bold>
<sup>133</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>60%</bold>
<sup>134–136</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>55%</bold>
<sup>137,138</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">
<bold>52%</bold>
<sup>129,140</sup>
</td>
<td align="center" valign="middle" style="background:#00B050" rowspan="1" colspan="1">
<bold>52%</bold>
<sup>141</sup>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Sarcopterygii</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Coelacanthimorpha</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Coelacanthiformes</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Latimeriidae</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<italic>Latimeria chalumnae</italic>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<bold>83%</bold>
<sup>142</sup>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<bold>86%</bold>
<sup>143</sup>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">
<bold>60%</bold>
<sup>144</sup>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</table-wrap>
<p>The presence of one additional syn gene in fugu was attributed to the whole genome duplication that occurred about 230 million years ago in the ray-finned fishes (Osteichthyes, Actinopterygii) which was followed by the subsequent loss of some duplicated genes [
<xref rid="B68-marinedrugs-13-06665" ref-type="bibr">68</xref>
,
<xref rid="B69-marinedrugs-13-06665" ref-type="bibr">69</xref>
]. On the basis of this assumption, a major variability in the number of syn isoforms can be expected in teleosts caused by events of gene duplication/loss.</p>
<p>A clear example of this variability is represented by zebrafish (
<italic>Danio rerio</italic>
) in which three genes were identified,
<italic>sncb</italic>
(coding for β-syn),
<italic>sncga</italic>
(γ1) and
<italic>sncgb</italic>
(γ2) [
<xref rid="B70-marinedrugs-13-06665" ref-type="bibr">70</xref>
,
<xref rid="B71-marinedrugs-13-06665" ref-type="bibr">71</xref>
,
<xref rid="B72-marinedrugs-13-06665" ref-type="bibr">72</xref>
], none of which coded for α-syn. Indeed, the zebrafish genome lacks
<italic>snca</italic>
. This absence has been explained by the putative loss of the ancestral
<italic>snca,</italic>
together with its flanking sequences, during zebrafish evolution [
<xref rid="B71-marinedrugs-13-06665" ref-type="bibr">71</xref>
]. The same studies demonstrated that zebrafish
<italic>sncb</italic>
and
<italic>sncga</italic>
give rise to single mRNA species of 1.45 kb and 2.7 kb respectively, whereas s
<italic>ncgb</italic>
is alternatively spliced to produce two transcripts encoding two isoforms with divergent C-terminals. Both
<italic>sncga</italic>
and
<italic>sncgb</italic>
contain five exons whereas
<italic>sncb</italic>
contains six exons, the first of which is noncoding. Gene structure and splice boundaries in
<italic>sncb</italic>
,
<italic>sncga</italic>
, and
<italic>sncgb</italic>
are conserved with respect to their human orthologs, providing evidence of their common origin.</p>
<p>At least one coding sequence for α-syn was predicted in the other fish except from
<italic>Lepisosteus ocellatus</italic>
,
<italic>Scleropages formosus</italic>
,
<italic>Osmerus mordax</italic>
,
<italic>Salmo salar</italic>
and
<italic>Anoplopoma fimbri</italic>
(
<xref ref-type="table" rid="marinedrugs-13-06665-t001">Table 1</xref>
). In most of them, one or more β- and γ-syn sequences were also identified.</p>
<p>The absence of α-syn sequences from genebank could be theoretically attributed to the absence of
<italic>snca</italic>
in respective fish genomes. If confirmed, this would suggest that the α-syn coding gene had been independently lost in distinct actinopterygian fish lineages. At the moment, however, available data cannot be interpreted in this way, as the presence of α-syn sequences was not specifically investigated in all species. Data are still scarce. Moreover, some sequences have not been classified yet as α, β- or γ-syn, being simply reported as “syn” or “syn-like” isoforms. In addition, almost all the encoded or predicted proteins were not isolated nor characterized and several accession numbers refer to gene sequences encoding the same protein.</p>
<p>Additional isoforms named X1, X2 or X3 are present among α-, β-, and γ-syns. The denomination “X1, X2 and X3” refers to the name reported in the NCBI database and no physiological relevance may be currently assigned to this nomenclature. X1 and X2 α-syn isoforms have been sequenced in the esocid
<italic>Esox lucius</italic>
and cichlids
<italic>Astatotilapia burtoni</italic>
,
<italic>Oreochromis niloticus and Pundamilia nyererei.</italic>
Only X1 or X2 α-syn sequences are available in
<italic>T. rubripes</italic>
, and the pomacentrid
<italic>Stegastes partitus</italic>
, respectively. Moreover, X3 α-syn isoform has been sequenced in poecilids,
<italic>Poecilia formosa</italic>
and
<italic>Poecilia reticulata</italic>
.</p>
<p>X1 and X2 β-syn isoforms have been sequenced in
<italic>E. lucius</italic>
, the poecilid
<italic>Xiphophorus maculates</italic>
, cichlid
<italic>Astatotilapia maculatus</italic>
, cichlids
<italic>A. burtoni</italic>
,
<italic>Neolamprologus brichardi</italic>
,
<italic>O. niloticus</italic>
and
<italic>P. nyererei</italic>
. Only X1 β-syn sequences are available in
<italic>T. rubripes</italic>
. Moreover, X1, X2 or X3 γ-syn isoforms have been sequenced in the osteoglossid
<italic>Scleropages formosus</italic>
(X2), in
<italic>E. lucius</italic>
(X1 and X2), in the adrianichthyd
<italic>Oryzias latipes</italic>
(X1, X2 and X3), in
<italic>P. formosa</italic>
and
<italic>P. reticulata</italic>
(X1), in the cichlid
<italic>Maylandia zebra</italic>
(X1 and X2), in the cynoglossid
<italic>Cynoglossus semilaevis</italic>
(X1 and X2), and in
<italic>T. rubripes</italic>
(X1).</p>
<p>Finally, among sequences classified as “syn” or “syn-like”, X1, X2, X3 isoforms have been sequenced in the characid
<italic>Astyanax mexicanus</italic>
(X1, X2, X3), in
<italic>X. maculatus</italic>
(X1, X2), in
<italic>S. partitus</italic>
(X1, X2) and in
<italic>C. semilaevis</italic>
(X1, X2).</p>
<p>Predicted fish syns are small proteins of 95–230 aa with a molecular weight (MW) ranging from 10,204 Da to 24,219 Da. Currently known α-syns correspond to proteins ranging from 102 aa (XP_010862493,
<italic>E. lucius</italic>
) to 224 aa (XP_008435281.1,
<italic>P. reticulata</italic>
) with a predicted MW of 10,204 and 23,439 Da, respectively. The 222 aa long protein XP_007562501.1 expressed in
<italic>P. formosa</italic>
showed, among fish α-syns, the highest MW of 23,458 Da. Fish β-syns are proteins with a length ranging from 115 aa (ACM08255.1 and ACI68037.1 of
<italic>S. salar</italic>
, XP_010898460.1 of
<italic>E. lucius</italic>
) to 150 aa (XP_007904439.1,
<italic>Callorhinchus milii</italic>
) with a predicted MW of 12,030 Da, 12,124 Da, 11,971 Da and 15,636 Da, respectively. Fish γ-syns range from 95 aa (XP_007234673.1,
<italic>A. mexicanus</italic>
) to 381 aa (KKX05474.1,
<italic>S. formosus</italic>
) that correspond to a predicted MW of 10,262 Da and 39,353 Da, respectively. The sequences named generally as “syn” or “syn-like” proteins consist of a number of amino acids ranging from 103 (XP_007240046.1,
<italic>A. mexicanus</italic>
) to 137 (AEO50950.1,
<italic>P. marinus</italic>
) corresponding to a MW of 10,548 and 14,244 Da, respectively.</p>
<p>Predicted fish syns are generally acidic proteins with an isoelectric point (pI) ranging from 4.31 to 7.75. α-syns showed a predicted pI from 4.35 (XP_010862484;
<italic>E. lucius</italic>
) to 6.20 (XP_010775984.1,
<italic>Notothenia coriiceps</italic>
); β-syns from 4.31 (ACM08255.1,
<italic>S. salar</italic>
and NP_001029018.1,
<italic>T. rubripes</italic>
) to 4.48 (XP_006631988.1,
<italic>L. ocellatus</italic>
), and γ- syns from 4.39 (NP_001029017.1,
<italic>T. rubripes</italic>
) to 7.75 (XP_007234673.1,
<italic>A. mexicanus</italic>
). The sequences generally named “syn” or “syn-like” proteins showed a predicted pI from 4.35 (XP_008297681.1,
<italic>S. partitus</italic>
) to 5.54 (XP_005943970.1,
<italic>A. burtoni</italic>
).</p>
<p>The comparison between fish and human syn sequences showed that fish syns share a percentage of identity from 28% to 99% with their human orthologs (
<xref ref-type="table" rid="marinedrugs-13-06665-t001">Table 1</xref>
). Sequence identity varies from 43% to 99% for α-syns, from 50% to 86% for β-syns and from 35% to 67% for γ-syns.</p>
<p>With the aim of classifying available fish syns, we have analyzed the 144 aa sequences reported in
<xref ref-type="table" rid="marinedrugs-13-06665-t001">Table 1</xref>
by Clustal W2, ProtTest 2.4 server (
<uri xlink:type="simple" xlink:href="http://darwin.uvigo.es/software/prottest2_server.html">http://darwin.uvigo.es/software/prottest2_server.html</uri>
) and MEGA 6.02 software and obtained the maximum likelihood tree represented in
<xref ref-type="fig" rid="marinedrugs-13-06665-f001">Figure 1</xref>
. </p>
<p>As shown, there is a good separation between α- and β-syns. Only five α-syn sequences clustered together with human and rat α-syns (α-syn C1). The remaining α-syns showed a lower degree of identity with the mammalian isoforms clustering in two main distant groups (α-syn C2 and C3). The α-syn C2 and C3 are composed of 19 and 9 sequences respectively. The α-syn C2 contains mainly the so-called “α-syn-like” sequences whereas α-syn C3 contains mainly X1 and X2 α-syn isoforms. The remaining 9 α-syn sequences clustered with “syn-like” proteins and γ-syns. </p>
<p>The 26 fish β-syn sequences showed a good level of identity with human β-syn, grouping in the cluster β-syn C1.</p>
<p>Gamma-syns are widely distributed in the cladogram forming two main groups (γ-syn C1 and C2). γ-syn C1 contains fish γ-syns with the highest identity to mammalian γ-isoforms. Interestingly, γ-syns from
<italic>P. marinus</italic>
and
<italic>T. californica</italic>
were located in this cluster. The cluster γ-syn C2 contains mainly the X1, X2, and X3 γ-syn isoforms. The remaining γ-syn are distributed in the cladogram clustering mainly with X1, X2 and X3 isoform of α-syns and syn-like sequences. Moreover, nine “syn-like” sequences clustered together in the sl group.</p>
<fig id="marinedrugs-13-06665-f001" position="float">
<label>Figure 1</label>
<caption>
<p>Cladogram of a ClustalX2 alignment of the ammino acid sequence of fish syns available in the NCBI database and reported in
<xref ref-type="table" rid="marinedrugs-13-06665-t001">Table 1</xref>
. The syn isoforms (a = α-syn; b = β-syn; g = γ-syn; s = synuclein, sl = synuclein like) with their accession numbers are shown on the right of the tree. The distance matrix employed maximum likelihood with bootstrapping (500 repetitions). Sequences highlighted in gray, orange, light blue, green and yellow refers to α-syns, β-syns, γ-syns, syn and syn-like, respectively. Arrows indicate human and rat sequences. Main sequence clusters (C) are indicated on the right of the figure.</p>
</caption>
<graphic xlink:href="marinedrugs-13-06665-g001"></graphic>
</fig>
<p>The cladogram shows that most α-syn isoforms previously classified as α-syn-like or X1, X2 and X3 showed major affinity for γ-syn isoforms, whereas X1 and X2 β-syn have high identity percentage with mammalian β-syn.</p>
<p>This comparative analysis indicated that the assignment of syn sequences to α-, β- or γ-syn group is not reliable until detailed sequence information will be available. Sequence data thus needs to be implemented in more fish groups and better characterized in order to give a clear framework on how syn proteins evolved in fish lineages.</p>
</sec>
<sec id="sec3-marinedrugs-13-06665">
<title>3. Gene Expression and Localization of Synucleins in Fish</title>
<p>Syn expression has been studied in lamprey (
<italic>P. marinus</italic>
), electric ray (
<italic>T. californica</italic>
), zebrafish (
<italic>D. rerio</italic>
), carp
<italic>(Cyprinus carpio</italic>
) and fugu (
<italic>T. rupribes</italic>
).</p>
<p>As stated above, information on syn expression first came from Maroteaux and coworker’s studies in
<italic>T. californica</italic>
. These authors identified the first syn sequence, which is now considered a γ-syn isoform [
<xref rid="B2-marinedrugs-13-06665" ref-type="bibr">2</xref>
,
<xref rid="B10-marinedrugs-13-06665" ref-type="bibr">10</xref>
]. Both gene and protein expression of
<italic>Torpedo</italic>
syn are restricted to the CNS with most abundant transcripts in the electric lobe followed by the spinal cord and the brain. In the electric organ syn proteins were only detected without their mRNA transcripts. This is consistent with the fact that syns are synthesized in neuronal cell bodies and axonally transported to nerve terminals. The subcellular localization of syn proteins was analyzed in electromotor neurons by immunohistochemistry at LM (light microscopy) and TEM (transmission electron microscopy) level and results showed that syn is present in presynaptic terminals and in cell nuclei where labeling was intense along the inner nuclear membranes and diminished toward the center of the nuclei.</p>
<p>The expression of the four syn isoforms was analyzed in the fugu
<italic>T. rupribes</italic>
by Western blot using specific antibodies [
<xref rid="B61-marinedrugs-13-06665" ref-type="bibr">61</xref>
]. The semiquantitative analysis showed that α-, β- and γ1-syn are expressed at similar high levels in brain homogenates, whereas γ2-syn is expressed at lower levels.</p>
<p>The three syns showed different levels of gene expression and regulation in the lamprey brain [
<xref rid="B66-marinedrugs-13-06665" ref-type="bibr">66</xref>
]. Higher amounts of γ-syn DY transcripts were detected in comparison to γ-syn FD and syn-3 transcripts. Moreover, the three genes were expressed to different levels in different neuronal populations. High γ-syn DY expression was detected in giant reticulospinal (RS) neurons, while γ-syn FD and syn-3 showed the highest expression levels in the facial motor nucleus (VIIn) (
<xref ref-type="fig" rid="marinedrugs-13-06665-f002">Figure 2</xref>
A). Interestingly, the three genes were differently regulated in axotomized neurons. Indeed, mRNA levels for γ-syn DY strongly decreased in injured neurons while no changes were detected for γ-syn FD and syn-3 mRNA levels. Cellular distribution of syn proteins was analyzed by immunofluorescence using a pan-syn polyclonal antibody able to detect all three syn isoforms. Results showed that lamprey syns are located in cell soma of control RS neurons but are also associated to nuclear and plasma membranes of axotomized neurons.</p>
<fig id="marinedrugs-13-06665-f002" position="float">
<label>Figure 2</label>
<caption>
<p>Synuclein expression in lamprey, zebrafish and carp. (
<bold>A</bold>
) Schematic representation of syn gene expression in a parasagittal section of the adult lamprey brain drawn on the base of data published by [
<xref rid="B66-marinedrugs-13-06665" ref-type="bibr">66</xref>
]; (
<bold>B</bold>
) Temporal expression pattern of syn genes in zebrafish embryo as described by [
<xref rid="B70-marinedrugs-13-06665" ref-type="bibr">70</xref>
]. The expression of
<italic>sncb</italic>
was initially detected in the trigeminal placode (a), then it expanded to ventral diencephalon, olfactory placode, ventral tegmentum, spinal cord neurons (b) and finally it was restricted to the brain and retina (c). The expression of
<italic>sncga</italic>
was initially detected in spinal cord neurons and pineal gland (d), afterwards it was detected in hindbrain neurons (e), then it was much prominent in brain and cranial ganglia (f) and finally
<italic>sncga</italic>
expression was restricted to the brain and retina (g). The expression of
<italic>sncgb</italic>
showed a different spatio-temporal distribution limited only to notochord (h); (
<bold>C</bold>
) Spatial expression pattern of syn genes in zebrafish embryo at 24 hpf (h post fertilization) as described by [
<xref rid="B71-marinedrugs-13-06665" ref-type="bibr">71</xref>
]. The
<italic>sncgb</italic>
expression is restricted to the notochord, whereas
<italic>sncb</italic>
and
<italic>sncga</italic>
are expressed in the brain and spinal cord. Red, blue and green dots indicate
<italic>sncb</italic>
,
<italic>sncga</italic>
and
<italic>sncgb</italic>
expression, respectively; (
<bold>D</bold>
): Syn genes expression pattern in the main organs of adult zebrafish on the base of results of [
<xref rid="B72-marinedrugs-13-06665" ref-type="bibr">72</xref>
]. Red, blue and green dots indicate
<italic>sncb</italic>
,
<italic>sncga</italic>
and
<italic>sncgb</italic>
expression, respectively; (
<bold>E</bold>
): Schematic representation of
<italic>sncb</italic>
and
<italic>sncga</italic>
expression pattern in a parasagittal section of the adult zebrafish brain drawn on the base of data published by [
<xref rid="B71-marinedrugs-13-06665" ref-type="bibr">71</xref>
]. Red, blue and green dots indicate
<italic>sncb</italic>
,
<italic>sncga</italic>
and
<italic>sncgb</italic>
expression, respectively. The different expression pattern of the two syn genes is well evident:
<italic>sncb</italic>
showed a most rostral expression whereas
<italic>sncga</italic>
showed a more intensive expression in posterior brain regions; (
<bold>F</bold>
): Schematic representation of the expression of α-syn-like proteins in a parasagittal section of the adult carp brain drawn on the base of data published in [
<xref rid="B73-marinedrugs-13-06665" ref-type="bibr">73</xref>
]. Large black dots indicate 3D5 immunoreactive perikarya and small black dots indicate 3D5 immunoreactive varicose fibers.</p>
</caption>
<graphic xlink:href="marinedrugs-13-06665-g002"></graphic>
</fig>
<p>More detailed information are available for zebrafish in which the expression of syn genes was analyzed in both embryos and adult animals [
<xref rid="B70-marinedrugs-13-06665" ref-type="bibr">70</xref>
,
<xref rid="B71-marinedrugs-13-06665" ref-type="bibr">71</xref>
,
<xref rid="B72-marinedrugs-13-06665" ref-type="bibr">72</xref>
]. </p>
<p>Early expression of
<italic>sncb</italic>
,
<italic>sncga</italic>
and
<italic>sncgb</italic>
, showed different spatio-temporal patterns in zebrafish embryos analyzed by whole-mount
<italic>in situ</italic>
hybridization [
<xref rid="B70-marinedrugs-13-06665" ref-type="bibr">70</xref>
]. The gene
<italic>sncb</italic>
(β-syn) was first expressed from the eight-somite stage to three days post fertilization (dpf) [
<xref rid="B70-marinedrugs-13-06665" ref-type="bibr">70</xref>
]. Its expression was initially restricted to the trigeminal placode but then extended to the olfactory placode, ventral diencephalon, ventral tegmentum and spinal cord neurons by the 20-somite stage. At later stages,
<italic>sncb</italic>
expression became restricted to the brain and the retina where it was detected from 45 h post fertilization (hpf) up to 3 dpf. The expression of
<italic>sncga</italic>
(γ-synA or γ1) was not detected at early stages but initiated at 26 hpf in the nervous system beginning from spinal cord neurons and the pineal gland. It was then detected in hindbrain segmental neurons (38 hpf) becoming much more prominent in brain and cranial ganglia at two dpf. Similarly to
<italic>sncb</italic>
, the expression of
<italic>sncga</italic>
was restricted to the brain and the retina by three dpf. These data demonstrated that
<italic>sncb</italic>
and
<italic>sncga</italic>
are expressed in central and peripheral neurons irrespective of their different embryonal origin (neural plate
<italic>versus</italic>
placodes or neural crest). Very different spatio-temporal patterns were shown for
<italic>sncgb</italic>
(γ-synB or γ2) whose expression initiated earlier than
<italic>sncga</italic>
, was restricted to the notochord and was only detectable in the short time from the 12-somite stage to two dpf. Later on,
<italic>sncgb</italic>
expression diminished no more being detectable beyond 2 dpf. The spatio-temporal expression pattern of syn genes in zebrafish embryos is represented in
<xref ref-type="fig" rid="marinedrugs-13-06665-f002">Figure 2</xref>
B,C. </p>
<p>Temporal and spatial expression profiles of syn genes were also confirmed in zebrafish embryos by RT-PCR which also provided a semiquantitative evaluation of the expressional patterns [
<xref rid="B72-marinedrugs-13-06665" ref-type="bibr">72</xref>
]. Both
<italic>sncb</italic>
and
<italic>sncgb</italic>
expression were detected at early developmental stages (4 hpf) with
<italic>sncb</italic>
much more abundant than
<italic>sncgb</italic>
transcripts. Expression levels of
<italic>sncb</italic>
were intense at all developmental stages analyzed (4 hpf to 5 dpf). In contrast, levels of
<italic>sncgb</italic>
mRNAs were generally lower than those of
<italic>sncb</italic>
and further decreased by four dpf. The expression of
<italic>sncga</italic>
initiated later than
<italic>sncb</italic>
and
<italic>sncgb</italic>
(by one dpf) but its transcript level was similar to
<italic>sncb</italic>
at five dpf. The expression pattern of
<italic>sngca</italic>
was also analyzed in a transgenic stable zebrafish line. This line was obtained by microinjection into zygotes of a gene construct containing the GFP reporter gene under the control of the
<italic>sngca</italic>
promoter [
<xref rid="B72-marinedrugs-13-06665" ref-type="bibr">72</xref>
]. Expression profiles of
<italic>sngca</italic>
were obtained in transgenic embryos and larvae by whole-mount
<italic>in situ</italic>
hybridization, immunostaining, and high-resolution confocal microscopy. This analysis reported that
<italic>sncga</italic>
is expressed in both CNS and PNS of embryos and larvae. In 48 hpf embryos, GFP expression was found in retina, lens, hindbrain and spinal cord, but also in trigeminal and posterior lateral line ganglia. Similarly, at three dpf, the expression of
<italic>sngca</italic>
was detected in the diencephalon (habenula), eyes, midbrain, hindbrain, but also in trigeminal, vagal, and posterior lateral line ganglia. These results substantially confirmed the distribution of
<italic>sncga</italic>
described by Sun and Gitler [
<xref rid="B70-marinedrugs-13-06665" ref-type="bibr">70</xref>
] except for the positive staining described in the epiphysis that, according to the finest detection made by Chen
<italic>et al.</italic>
[
<xref rid="B72-marinedrugs-13-06665" ref-type="bibr">72</xref>
], is rather localized in the habenula.</p>
<p>Regional expression of syn genes is maintained in adult zebrafish as demonstrated by RT-PCR [
<xref rid="B72-marinedrugs-13-06665" ref-type="bibr">72</xref>
]. Thus, both
<italic>sncb</italic>
and
<italic>sncga</italic>
transcripts were particularly abundant in brain and eye, whereas
<italic>sncgb</italic>
was moderately expressed in brain and several non-nervous tissues, as testis and kidney.</p>
<p>The expression of syn genes was further reinvestigated in zebrafish brain and spinal cord from early embryo to adult stage by Northern blot and RNA
<italic>in situ</italic>
hybridization [
<xref rid="B71-marinedrugs-13-06665" ref-type="bibr">71</xref>
]. Northern blot analysis confirmed that both
<italic>sncb</italic>
and
<italic>sncg1</italic>
(
<italic>sncga</italic>
) are expressed in the adult CNS whereas
<italic>sncg2</italic>
(
<italic>sncgb</italic>
) transcript levels were too low to be identified. On confirming previous results, this study showed that the expression pattern of syn genes in embryos was similar to that found in adults with
<italic>sncb</italic>
and
<italic>sncg1</italic>
mainly expressed in the CNS and
<italic>sncg2</italic>
expressed in the notochord. In adult zebrafish,
<italic>sncb</italic>
and
<italic>sncg1</italic>
transcripts were both found in neurons throughout the brain and the spinal cord but their expression levels were often opposite in anteroposterior direction. Indeed, high levels of
<italic>sncb</italic>
transcripts were detected in the olfactory bulb and dorsal telencephalon where
<italic>sncg1</italic>
is expressed at low levels. Conversely,
<italic>sncg1</italic>
transcripts were abundant in the dorsal diencephalon (habenula) and hindbrain where
<italic>sncb</italic>
expression is moderate. By comparing zebrafish with lamprey it emerges that γ-syn expression in the reticular formation is conserved in the two lineages. Expression profiles of syn genes in the adult lamprey and zebrafish are depicted in
<xref ref-type="fig" rid="marinedrugs-13-06665-f002">Figure 2</xref>
A,E.</p>
<p>At cellular level,
<italic>sncb</italic>
and
<italic>sncg1</italic>
were generally expressed by separate cell populations even in those brain regions in which their expression was overlapped. For example,
<italic>sncb</italic>
was mostly expressed in granules and
<italic>sncga</italic>
in Purkinje cell layer of the cerebellum. However, major catecholaminergic cell groups expressed both
<italic>sncb</italic>
and
<italic>sncg1</italic>
as demonstrated by double labeling ISH/IHC experiments. </p>
<p>Further data in
<italic>Cyprinus carpio</italic>
was recently reported by our group [
<xref rid="B73-marinedrugs-13-06665" ref-type="bibr">73</xref>
]. We studied the distribution of a putative endogenous α-syn in the brain and spinal cord of the adult carp by providing the first neuroanatomical map of the α-syn distribution in the teleost CNS. The expression of α-syn was analyzed by Western blot and immunohistochemistry using a non commercial monoclonal antibody (3D5) developed against the C-terminal epitope (DMPVDPD) of human α-syn. This epitope is perfectly conserved in the carp α-syn. In brain and spinal cord homogenates, 3D5 antibody immunolabeled carp α-syn as a protein band at about 17 kDa. Western blot analysis showed that this protein is expressed to different levels in all brain regions and the spinal cord. The highest expression was detected in the midbrain tectum, followed by cerebellum and diencephalon whereas lower expression levels were found in brainstem, spinal cord and telencephalon [
<xref rid="B73-marinedrugs-13-06665" ref-type="bibr">73</xref>
].</p>
<p>The same 3D5 antibody was used for the immunohistochemical identification of α-syn expressing neuronal populations in the carp CNS. Positive neurons were not identified in the telencephalon but neurons expressing α-syn were localized in prethalamus, hypothalamus, synencephalon, cerebellum, brainstem and spinal cord (
<xref ref-type="fig" rid="marinedrugs-13-06665-f002">Figure 2</xref>
F). Intracellular distribution was almost ubiquitous, since α-syn was localized in perikarya, dendrites, axons and axon terminals, except for the cell nucleus. This aspect differentiated subcellular distribution of carp α-syn from that of
<italic>Torpedo</italic>
syn, which was specifically localized to the nucleus and presynaptic terminals. This may represent a true difference between α-(carp) and γ-syn (electric ray) intracellular distribution. Moreover, since 3D5 is able to specifically recognize nuclear α-syn in mammalian neurons [
<xref rid="B74-marinedrugs-13-06665" ref-type="bibr">74</xref>
], this result suggests that α-syn is present at very low levels in the nucleus of carp neurons. Further studies on the distribution of the three syns in fishes are necessary to elucidate this point.</p>
<p>Our results demonstrated that carp α-syn is expressed by cholinergic ChAT immunoreactive neurons throughout the brain and the spinal cord. Differently, few subpopulations of monoaminergic neurons showed evidence of colocalization 3D5/TH or 3D5/5HT. This distribution markedly differs from expression profiles of syn genes in zebrafish [
<xref rid="B71-marinedrugs-13-06665" ref-type="bibr">71</xref>
]. However, it must be pointed out that cellular distribution of α-syn might be different from that of β and γ isoforms expressed in zebrafish. No data are yet available on cellular distribution of β- and γ-syn proteins in other fish species.</p>
<p>No labeling for α-syn was found in the carp striatum whereas presynaptic staining for α-syn is present in the caudate-putamen and substantia nigra of mouse [
<xref rid="B74-marinedrugs-13-06665" ref-type="bibr">74</xref>
]. As reported above, both
<italic>sncb</italic>
and
<italic>sncg1</italic>
are expressed in dopaminergic neurons of zebrafish that innervate brain structures corresponding to the teleostean striatum. Differences between zebrafish and carp need to be clarified by
<italic>in situ</italic>
hybridization and immunohistochemical studies analyzing the expression profiles of the three syns in the carp.</p>
</sec>
<sec id="sec4-marinedrugs-13-06665">
<title>4. Functions of Fish Synucleins</title>
<p>Few studies addressed the issue of biochemical and physiological functions of syn proteins in fishes. Interestingly,
<italic>in vitro</italic>
experiments in fugu demonstrated that fish syns, as the mammalian isoforms, are lipid-binding proteins able to assembly themselves into filaments [
<xref rid="B61-marinedrugs-13-06665" ref-type="bibr">61</xref>
]. These biochemical properties have strong relevance in both physiological and pathological events, as they are linked to vesicle targeting of syn proteins and the formation of protein inclusions respectively. All of the four syns exhibited liposome-binding activity but α-syn had a greater affinity to liposomes compared with its human counterpart. Alpha-, γ1- and γ2-syn proteins were all able to assembly themselves into filaments at a speed eight times higher than that of mammalian isoforms. Differently, fugu β-syn failed to assembly in bulk as the human β-isoform.</p>
<p>Larval movements were analyzed in zebrafish treated with morpholino to inhibit
<italic>sncb</italic>
and/or
<italic>sncg1</italic>
demonstrating that β- and γ1-syn are required for normal motor activity [
<xref rid="B71-marinedrugs-13-06665" ref-type="bibr">71</xref>
].</p>
<p>The expression of both genes is also necessary for establishment of normal dopamine levels. Thus, it was suggested that β- and γ1-syn expressed in dopaminergic neurons of zebrafish may regulate dopamine release from which normal striatal dopamine levels and movement regulation depends. A similar regulation by dopaminergic circuits is known in mammals. Tracer studies in zebrafish sustain this suggestion having shown that dopaminergic neurons in the posterior tuberculum give rise to ascending projections to the dorsal nucleus of the ventral telencephalon, which is considered the teleostean striatum [
<xref rid="B75-marinedrugs-13-06665" ref-type="bibr">75</xref>
].</p>
<p>Interestingly, in the morpholino-treated zebrafish larvae, the exogenous expression of human α-syn was able to prevent the decrease in motor activity and the reduction in number of dopamine neurons.</p>
<p>Research in zebrafish thus suggests the functional redundancy between syn isoforms, even from different species. This supports the functional conservation of syn proteins in vertebrates and suggests that β- and γ1-syn are required for spontaneous movements and dopaminergic functions playing similar roles to those established for α-syn in humans. Nonetheless, functional properties of α-syn orthologs remain to be investigated in fishes.</p>
</sec>
<sec id="sec5-marinedrugs-13-06665">
<title>5. Conclusions</title>
<p>Pathological, biochemical and genetic evidence suggest that human α-syn plays a crucial role in the pathogenesis of Parkinson’s disease (PD), dementia with Lewy bodies (DLB), Multiple System Atrophy (MSA) and tumors [
<xref rid="B29-marinedrugs-13-06665" ref-type="bibr">29</xref>
,
<xref rid="B76-marinedrugs-13-06665" ref-type="bibr">76</xref>
,
<xref rid="B77-marinedrugs-13-06665" ref-type="bibr">77</xref>
,
<xref rid="B78-marinedrugs-13-06665" ref-type="bibr">78</xref>
]. Nonetheless, the biological activity of α-syn and its precise role in neurodegeneration remain poorly understood. Fish have played a crucial role in this field since the first discovery of α-syn sequence in the electric ray
<italic>T. californica</italic>
[
<xref rid="B2-marinedrugs-13-06665" ref-type="bibr">2</xref>
]. The subsequent discovery of α- β- and γ-syns in mammals and their involvement in diseases focused further studies to mammalian models with much less interest in fish syns.</p>
<p>Available data highlight the species variability in the number of syn genes in fishes. Studies in fugu [
<xref rid="B61-marinedrugs-13-06665" ref-type="bibr">61</xref>
] and zebrafish [
<xref rid="B71-marinedrugs-13-06665" ref-type="bibr">71</xref>
] demonstrated the presence of four syn genes (coding α-, β-, γ1 and γ2) whereas only three genes (coding for β-, γ1 and γ2) are present in the zebrafish genome. Additional sequences for α-, β- and γ-syns have also been annotated in the NCBI database. </p>
<p>Sequence data on fish syns are still limited and need to be biologically verified. However the cladogram of deduced amino acid sequences highlights the degree of identity between β-syn sequences in fish, human and rat. By contrast, only some α- and γ-syns clustered together with the mammalian counterparts. The remaining sequences were distributed in more distant clusters composed of different syn isoforms. This comparative analysis suggests that the majority of sequences first classified as X1, X2 or X3 α-syn or generically classified as “syn” or “syn-like” have a greater similarity to fish and mammalian γ-syn rather than to α- and β-syn; however exceptions are present. On the whole, these data suggest that the current syn nomenclature is still ambiguous and further studies are necessary to correctly classify fish syn sequences.</p>
<p>Experimental data indicated that α- (carp), β- and γ1-syn (zebrafish) are expressed in the nervous system whereas γ2 isoform (zebrafish, fugu) is moderately expressed in the brain and also in non nervous tissues. Moreover, even in the actual panorama of partial and fragmentary information, available data indicated different spatiotemporal patterns of expression for the different syn isoforms in both embryos and adult fish tissues.</p>
<p>Results in zebrafish and carp indicate that different syn isoforms may be expressed in separate, neurochemically different neuronal populations. In addition, intracellular syn distribution may differ with regard to nuclear localization. Indeed, nuclear localization was described for
<italic>Torpedo</italic>
(classified as γ-syn) and lamprey syns (classified as γ-syn DY, γ-syn FD and syn-3) but not in carp and zebrafish neurons.</p>
<p>In conclusion, data available on fish syns demonstrate a good level of sequence similarity with mammalian isoforms, the preservation of biochemical properties related to the pathogenesis of human neurodegenerative diseases and the close relationship among syns, dopamine and motor activity. Overall, this suggests that fish can be useful models for studying molecular mechanisms involved in synucleinopathies.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We thank Chiara Adamo for help in synuclein sequence collection from the NCBI database. This study was supported through the Sapienza University of Rome (Progetti di ricerca 2014).</p>
</ack>
<app-group>
<app>
<title>Supplementary Files</title>
<supplementary-material content-type="local-data" id="marinedrugs-13-06665-s001">
<label>Supplementary File 1</label>
<media xlink:href="marinedrugs-13-06665-s001.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</app>
</app-group>
<notes>
<title>Conflicts of Interest</title>
<p>All of the authors declare no conflict of interest.</p>
</notes>
<glossary>
<title>Abbreviations</title>
<p>
<bold>5HT</bold>
: serotonin;
<bold>AD</bold>
: Alzheimer’s disease;
<bold>BCSG1</bold>
: breast cancer specific gene 1;
<bold>CCe</bold>
: cerebellar corpus;
<bold>ChAT</bold>
: choline acetyltransferase;
<bold>CNS</bold>
: central nervous system;
<bold>Da</bold>
:Dalton;
<bold>DLB</bold>
: dementia with Lewy bodies;
<bold>DM</bold>
: medial zone of dorsal telencephalic area;
<bold>dpf</bold>
: days post fertilization;
<bold>GFP</bold>
: green fluorescence protein;
<bold>ggl</bold>
: ganglionic layer of cerebellum;
<bold>gra</bold>
: granular layer of cerebellum
<bold>Hd</bold>
: dorsal zone of periventricular hypothalamus;
<bold>hpf</bold>
: hours post fertilization;
<bold>HY</bold>
: hypothalamus;
<bold>IMRF</bold>
: intermediate reticular formation;
<bold>IP</bold>
: interpeduncular nucleus;
<bold>IRF</bold>
: inferior reticular formation;
<bold>IsRF</bold>
: isthmic reticular formation;
<bold>LP</bold>
: lateral pallium;
<bold>LM</bold>
: light microscopy;
<bold>LR</bold>
: lateral recess of diencephalic ventricle;
<bold>LX</bold>
: vagal lobe;
<bold>M1-4</bold>
: Müller cell 1–4;
<bold>mol</bold>
: molecular layer of cerebellum
<bold>MON</bold>
: medial octavolateralis nucleus;
<bold>MP</bold>
: medial pallium;
<bold>MRF</bold>
: middle rhombencephalic reticular formation;
<bold>MSA</bold>
: multiple system atrophy;
<bold>Mth</bold>
: Mauthner cell;
<bold>MW</bold>
: molecular weight;
<bold>NAC</bold>
: non-aβ component of AD amyloid;
<bold>NACP</bold>
: NAC protein;
<bold>NIII</bold>
: oculomotor nucleus;
<bold>Nmlf</bold>
: nucleus of the medial longitudinal fascicules;
<bold>NVII</bold>
: facial motor nucleus;
<bold>OB</bold>
: olfactory bulb;
<bold>OT</bold>
: midbrain tectum;
<bold>PD</bold>
: Parkinson’s disease
<bold>PDD</bold>
: Parkinson’s disease dementia;
<bold>pI</bold>
: isoelectric point;
<bold>PNP 14</bold>
: phosphoneuroprotein 14;
<bold>PNS</bold>
: peripheral nervous system
<bold>PPa</bold>
: parvocellular preoptic nucleus, anterior part;
<bold>PT</bold>
: pretectal region;
<bold>PTh</bold>
: prethalamus (ventral thalamus);
<bold>PTN</bold>
: paratubercular nucleus;
<bold>RS</bold>
: reticulospinal;
<bold>SRF</bold>
: superior reticular formation;
<bold>syn:</bold>
synuclein;
<bold>Th</bold>
: thalamus (dorsal thalamus);
<bold>TEM</bold>
: transmission electron microscopy;
<bold>TH</bold>
: tyrosine hydroxylase.
<bold>TPp</bold>
: periventricular nucleus of posterior tuberculum;
<bold>VIIn</bold>
: facial motor nucleus.</p>
</glossary>
<ref-list>
<title>References</title>
<ref id="B1-marinedrugs-13-06665">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carlson</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>R.B.</given-names>
</name>
</person-group>
<article-title>An antiserum specific for cholinergic synaptic vesicles from electric organ</article-title>
<source>J. Cell Boil.</source>
<year>1980</year>
<volume>87</volume>
<fpage>98</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="doi">10.1083/jcb.87.1.98</pub-id>
</element-citation>
</ref>
<ref id="B2-marinedrugs-13-06665">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maroteaux</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Campanelli</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Scheller</surname>
<given-names>R.H.</given-names>
</name>
</person-group>
<article-title>Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal</article-title>
<source>J. Neurosci. Off. J. Soc. Neurosci.</source>
<year>1988</year>
<volume>8</volume>
<fpage>2804</fpage>
<lpage>2815</lpage>
</element-citation>
</ref>
<ref id="B3-marinedrugs-13-06665">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ueda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Fukushima</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Masliah</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Iwai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yoshimoto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Otero</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Kondo</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ihara</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Saitoh</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>1993</year>
<volume>90</volume>
<fpage>11282</fpage>
<lpage>11286</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.90.23.11282</pub-id>
<pub-id pub-id-type="pmid">8248242</pub-id>
</element-citation>
</ref>
<ref id="B4-marinedrugs-13-06665">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tobe</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nakajo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mitoya</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Omata</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakaya</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tomita</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Cloning and characterization of the cDNA encoding a novel brain-specific 14-kDa protein</article-title>
<source>J. Neurochem.</source>
<year>1992</year>
<volume>59</volume>
<fpage>1624</fpage>
<lpage>1629</lpage>
<pub-id pub-id-type="doi">10.1111/j.1471-4159.1992.tb10991.x</pub-id>
<pub-id pub-id-type="pmid">1402909</pub-id>
</element-citation>
</ref>
<ref id="B5-marinedrugs-13-06665">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakajo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tsukada</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Omata</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nakaya</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>A new brain-specific 14-kDa protein is a phosphoprotein. Its complete amino acid sequence and evidence for phosphorylation</article-title>
<source>Eur. J. Biochem.</source>
<year>1993</year>
<volume>217</volume>
<fpage>1057</fpage>
<lpage>1063</lpage>
<pub-id pub-id-type="doi">10.1111/j.1432-1033.1993.tb18337.x</pub-id>
<pub-id pub-id-type="pmid">8223629</pub-id>
</element-citation>
</ref>
<ref id="B6-marinedrugs-13-06665">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shibayama-Imazu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Okahashi</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Omata</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakajo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ochiai</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Nakai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hama</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nakaya</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Cell and tissue distribution and developmental change of neuron specific 14 kDa protein (phosphoneuroprotein 14)</article-title>
<source>Brain Res.</source>
<year>1993</year>
<volume>622</volume>
<fpage>17</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.1016/0006-8993(93)90796-P</pub-id>
<pub-id pub-id-type="pmid">7694766</pub-id>
</element-citation>
</ref>
<ref id="B7-marinedrugs-13-06665">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jakes</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Spillantini</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Goedert</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Identification of two distinct synucleins from human brain</article-title>
<source>FEBS Lett.</source>
<year>1994</year>
<volume>345</volume>
<fpage>27</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1016/0014-5793(94)00395-5</pub-id>
<pub-id pub-id-type="pmid">8194594</pub-id>
</element-citation>
</ref>
<ref id="B8-marinedrugs-13-06665">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ji</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.E.</given-names>
</name>
<name>
<surname>Jia</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Joseph</surname>
<given-names>B.K.</given-names>
</name>
<name>
<surname>Rosen</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y.E.</given-names>
</name>
</person-group>
<article-title>Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing</article-title>
<source>Cancer Res.</source>
<year>1997</year>
<volume>57</volume>
<fpage>759</fpage>
<lpage>764</lpage>
<pub-id pub-id-type="pmid">9044857</pub-id>
</element-citation>
</ref>
<ref id="B9-marinedrugs-13-06665">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akopian</surname>
<given-names>A.N.</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>J.N.</given-names>
</name>
</person-group>
<article-title>Peripheral nervous system-specific genes identified by subtractive cDNA cloning</article-title>
<source>J. Boil. Chem.</source>
<year>1995</year>
<volume>270</volume>
<fpage>21264</fpage>
<lpage>21270</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.270.36.21264</pub-id>
</element-citation>
</ref>
<ref id="B10-marinedrugs-13-06665">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lavedan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Leroy</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Dehejia</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Buchholtz</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dutra</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nussbaum</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Polymeropoulos</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Identification, localization and characterization of the human gamma-synuclein gene</article-title>
<source>Hum. Genet.</source>
<year>1998</year>
<volume>103</volume>
<fpage>106</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="doi">10.1007/s004390050792</pub-id>
<pub-id pub-id-type="pmid">9737786</pub-id>
</element-citation>
</ref>
<ref id="B11-marinedrugs-13-06665">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campion</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Heilig</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Charbonnier</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Moreau</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Flaman</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Petit</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Hannequin</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Brice</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Frebourg</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>The NACP/synuclein gene: Chromosomal assignment and screening for alterations in Alzheimer disease</article-title>
<source>Genomics</source>
<year>1995</year>
<volume>26</volume>
<fpage>254</fpage>
<lpage>257</lpage>
<pub-id pub-id-type="doi">10.1016/0888-7543(95)80208-4</pub-id>
<pub-id pub-id-type="pmid">7601450</pub-id>
</element-citation>
</ref>
<ref id="B12-marinedrugs-13-06665">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>de Silva</surname>
<given-names>H.A.</given-names>
</name>
<name>
<surname>Pettenati</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>P.N.</given-names>
</name>
<name>
<surname>St George-Hyslop</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Roses</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Horsburgh</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ueda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Saitoh</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>The human NACP/alpha-synuclein gene: Chromosome assignment to 4q21.3-q22 and TaqI RFLP analysis</article-title>
<source>Genomics</source>
<year>1995</year>
<volume>26</volume>
<fpage>425</fpage>
<lpage>427</lpage>
<pub-id pub-id-type="doi">10.1016/0888-7543(95)80237-G</pub-id>
<pub-id pub-id-type="pmid">7601479</pub-id>
</element-citation>
</ref>
<ref id="B13-marinedrugs-13-06665">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shibasaki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Baillie</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>St Clair</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Brookes</surname>
<given-names>A.J.</given-names>
</name>
</person-group>
<article-title>High-resolution mapping of SNCA encoding alpha-synuclein, the non-A beta component of Alzheimer’s disease amyloid precursor, to human chromosome 4q21.3→q22 by fluorescence
<italic>in situ</italic>
hybridization</article-title>
<source>Cytogenet. Cell Genet.</source>
<year>1995</year>
<volume>71</volume>
<fpage>54</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1159/000134061</pub-id>
<pub-id pub-id-type="pmid">7606927</pub-id>
</element-citation>
</ref>
<ref id="B14-marinedrugs-13-06665">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lavedan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dehejia</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pike</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Dutra</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Leroy</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ide</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Root</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rubenstein</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Boyer</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Chandrasekharappa</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Contig map of the Parkinson’s disease region on 4q21-q23</article-title>
<source>DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes</source>
<year>1998</year>
<volume>5</volume>
<fpage>19</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1093/dnares/5.1.19</pub-id>
</element-citation>
</ref>
<ref id="B15-marinedrugs-13-06665">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spillantini</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Divane</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Goedert</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Assignment of human alpha-synuclein (SNCA) and beta-synuclein (SNCB) genes to chromosomes 4q21 and 5q35</article-title>
<source>Genomics</source>
<year>1995</year>
<volume>27</volume>
<fpage>379</fpage>
<lpage>381</lpage>
<pub-id pub-id-type="doi">10.1006/geno.1995.1063</pub-id>
<pub-id pub-id-type="pmid">7558013</pub-id>
</element-citation>
</ref>
<ref id="B16-marinedrugs-13-06665">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lavedan</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>The synuclein family</article-title>
<source>Genome Res.</source>
<year>1998</year>
<volume>8</volume>
<fpage>871</fpage>
<lpage>880</lpage>
<pub-id pub-id-type="pmid">9750188</pub-id>
</element-citation>
</ref>
<ref id="B17-marinedrugs-13-06665">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bruening</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Giasson</surname>
<given-names>B.I.</given-names>
</name>
<name>
<surname>Klein-Szanto</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Trojanowski</surname>
<given-names>J.Q.</given-names>
</name>
<name>
<surname>Godwin</surname>
<given-names>A.K.</given-names>
</name>
</person-group>
<article-title>Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary</article-title>
<source>Cancer</source>
<year>2000</year>
<volume>88</volume>
<fpage>2154</fpage>
<lpage>2163</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1097-0142(20000501)88:9<2154::AID-CNCR23>3.0.CO;2-9</pub-id>
<pub-id pub-id-type="pmid">10813729</pub-id>
</element-citation>
</ref>
<ref id="B18-marinedrugs-13-06665">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Eric Shi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shou</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Synuclein gamma predicts poor clinical outcome in colon cancer with normal levels of carcinoembryonic antigen</article-title>
<source>BMC Cancer</source>
<year>2010</year>
<volume>10</volume>
<fpage>359</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2407-10-359</pub-id>
<pub-id pub-id-type="pmid">20604972</pub-id>
</element-citation>
</ref>
<ref id="B19-marinedrugs-13-06665">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shou</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Combined phenotype of 4 markers improves prognostic value of patients with colon cancer</article-title>
<source>Am. J. Med. Sci.</source>
<year>2012</year>
<volume>343</volume>
<fpage>295</fpage>
<lpage>302</lpage>
<pub-id pub-id-type="doi">10.1097/MAJ.0b013e31822cb4cd</pub-id>
<pub-id pub-id-type="pmid">22261620</pub-id>
</element-citation>
</ref>
<ref id="B20-marinedrugs-13-06665">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hibi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Fukuma</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yamazaki</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hashiguchi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tanabe</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Aiura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kawakami</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ogiwara</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synuclein-gamma is closely involved in perineural invasion and distant metastasis in mouse models and is a novel prognostic factor in pancreatic cancer</article-title>
<source>Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.</source>
<year>2009</year>
<volume>15</volume>
<fpage>2864</fpage>
<lpage>2871</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-08-2946</pub-id>
<pub-id pub-id-type="pmid">19351749</pub-id>
</element-citation>
</ref>
<ref id="B21-marinedrugs-13-06665">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buchman</surname>
<given-names>V.L.</given-names>
</name>
<name>
<surname>Hunter</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Pinon</surname>
<given-names>L.G.</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Privalova</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Ninkina</surname>
<given-names>N.N.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>A.M.</given-names>
</name>
</person-group>
<article-title>Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system</article-title>
<source>J. Neurosci. Off. J. Soc. Neurosci.</source>
<year>1998</year>
<volume>18</volume>
<fpage>9335</fpage>
<lpage>9341</lpage>
</element-citation>
</ref>
<ref id="B22-marinedrugs-13-06665">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pfefferkorn</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.C.</given-names>
</name>
</person-group>
<article-title>Biophysics of alpha-synuclein membrane interactions</article-title>
<source>Biochim. Biophys. Acta</source>
<year>2012</year>
<volume>1818</volume>
<fpage>162</fpage>
<lpage>171</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamem.2011.07.032</pub-id>
<pub-id pub-id-type="pmid">21819966</pub-id>
</element-citation>
</ref>
<ref id="B23-marinedrugs-13-06665">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dikiy</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Eliezer</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Folding and misfolding of alpha-synuclein on membranes</article-title>
<source>Biochim. Biophys. Acta</source>
<year>2012</year>
<volume>1818</volume>
<fpage>1013</fpage>
<lpage>1018</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamem.2011.09.008</pub-id>
<pub-id pub-id-type="pmid">21945884</pub-id>
</element-citation>
</ref>
<ref id="B24-marinedrugs-13-06665">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spillantini</surname>
<given-names>M.G.</given-names>
</name>
</person-group>
<article-title>Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy are alpha-synucleinopathies</article-title>
<source>Parkinsonism Relat. Disord.</source>
<year>1999</year>
<volume>5</volume>
<fpage>157</fpage>
<lpage>162</lpage>
<pub-id pub-id-type="doi">10.1016/S1353-8020(99)00031-0</pub-id>
<pub-id pub-id-type="pmid">18591134</pub-id>
</element-citation>
</ref>
<ref id="B25-marinedrugs-13-06665">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>West</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>V.L.</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>T.M.</given-names>
</name>
</person-group>
<article-title>Molecular pathophysiology of Parkinson’s disease</article-title>
<source>Ann. Rev. Neurosci.</source>
<year>2005</year>
<volume>28</volume>
<fpage>57</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.neuro.28.061604.135718</pub-id>
<pub-id pub-id-type="pmid">16022590</pub-id>
</element-citation>
</ref>
<ref id="B26-marinedrugs-13-06665">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luk</surname>
<given-names>K.C.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>V.M.</given-names>
</name>
</person-group>
<article-title>Modeling Lewy pathology propagation in Parkinson’s disease</article-title>
<source>Parkinsonism Relat. Disord.</source>
<year>2014</year>
<volume>20</volume>
<issue>Suppl. 1</issue>
<fpage>S85</fpage>
<lpage>S87</lpage>
<pub-id pub-id-type="doi">10.1016/S1353-8020(13)70022-1</pub-id>
<pub-id pub-id-type="pmid">24262196</pub-id>
</element-citation>
</ref>
<ref id="B27-marinedrugs-13-06665">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Irwin</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Trojanowski</surname>
<given-names>J.Q.</given-names>
</name>
</person-group>
<article-title>Parkinson’s disease dementia: Convergence of alpha-synuclein, tau and amyloid-beta pathologies</article-title>
<source>Nat. Rev. Neurosci.</source>
<year>2013</year>
<volume>14</volume>
<fpage>626</fpage>
<lpage>636</lpage>
<pub-id pub-id-type="doi">10.1038/nrn3549</pub-id>
<pub-id pub-id-type="pmid">23900411</pub-id>
</element-citation>
</ref>
<ref id="B28-marinedrugs-13-06665">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Norris</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Giasson</surname>
<given-names>B.I.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>V.M.</given-names>
</name>
</person-group>
<article-title>Alpha-synuclein: Normal function and role in neurodegenerative diseases</article-title>
<source>Curr. Top. Dev. Boil.</source>
<year>2004</year>
<volume>60</volume>
<fpage>17</fpage>
<lpage>54</lpage>
</element-citation>
</ref>
<ref id="B29-marinedrugs-13-06665">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spillantini</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Trojanowski</surname>
<given-names>J.Q.</given-names>
</name>
<name>
<surname>Jakes</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Goedert</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Alpha-synuclein in Lewy bodies</article-title>
<source>Nature</source>
<year>1997</year>
<volume>388</volume>
<fpage>839</fpage>
<lpage>840</lpage>
<pub-id pub-id-type="doi">10.1038/42166</pub-id>
<pub-id pub-id-type="pmid">9278044</pub-id>
</element-citation>
</ref>
<ref id="B30-marinedrugs-13-06665">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gai</surname>
<given-names>W.P.</given-names>
</name>
<name>
<surname>Power</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Blumbergs</surname>
<given-names>P.C.</given-names>
</name>
<name>
<surname>Blessing</surname>
<given-names>W.W.</given-names>
</name>
</person-group>
<article-title>Multiple-system atrophy: A new alpha-synuclein disease?</article-title>
<source>Lancet</source>
<year>1998</year>
<volume>352</volume>
<fpage>547</fpage>
<lpage>548</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(05)79256-4</pub-id>
<pub-id pub-id-type="pmid">9716068</pub-id>
</element-citation>
</ref>
<ref id="B31-marinedrugs-13-06665">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Newell</surname>
<given-names>K.L.</given-names>
</name>
<name>
<surname>Boyer</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gomez-Tortosa</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hobbs</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Hedley-Whyte</surname>
<given-names>E.T.</given-names>
</name>
<name>
<surname>Vonsattel</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Hyman</surname>
<given-names>B.T.</given-names>
</name>
</person-group>
<article-title>Alpha-synuclein immunoreactivity is present in axonal swellings in neuroaxonal dystrophy and acute traumatic brain injury</article-title>
<source>J. Neuropathol. Exp. Neurol.</source>
<year>1999</year>
<volume>58</volume>
<fpage>1263</fpage>
<lpage>1268</lpage>
<pub-id pub-id-type="doi">10.1097/00005072-199912000-00007</pub-id>
<pub-id pub-id-type="pmid">10604751</pub-id>
</element-citation>
</ref>
<ref id="B32-marinedrugs-13-06665">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cookson</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>van der Brug</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Cell systems and the toxic mechanism(s) of alpha-synuclein</article-title>
<source>Exp. Neurol.</source>
<year>2008</year>
<volume>209</volume>
<fpage>5</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1016/j.expneurol.2007.05.022</pub-id>
<pub-id pub-id-type="pmid">17603039</pub-id>
</element-citation>
</ref>
<ref id="B33-marinedrugs-13-06665">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>V.L.</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>T.M.</given-names>
</name>
</person-group>
<article-title>What causes cell death in Parkinson’s disease?</article-title>
<source>Ann. Neurol.</source>
<year>2008</year>
<volume>64</volume>
<issue>Suppl 2</issue>
<fpage>S3</fpage>
<lpage>S15</lpage>
<pub-id pub-id-type="doi">10.1002/ana.21573</pub-id>
<pub-id pub-id-type="pmid">19127586</pub-id>
</element-citation>
</ref>
<ref id="B34-marinedrugs-13-06665">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pals</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lincoln</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Manning</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Heckman</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Skipper</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hulihan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>van den Broeck</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>de Pooter</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Cras</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Crook</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>alpha-Synuclein promoter confers susceptibility to Parkinson’s disease</article-title>
<source>Ann. Neurol.</source>
<year>2004</year>
<volume>56</volume>
<fpage>591</fpage>
<lpage>595</lpage>
<pub-id pub-id-type="doi">10.1002/ana.20268</pub-id>
<pub-id pub-id-type="pmid">15455394</pub-id>
</element-citation>
</ref>
<ref id="B35-marinedrugs-13-06665">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rajput</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vilarino-Guell</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rajput</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>O.A.</given-names>
</name>
<name>
<surname>Soto-Ortolaza</surname>
<given-names>A.I.</given-names>
</name>
<name>
<surname>Lincoln</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Cobb</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Heckman</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Farrer</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Rajput</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Alpha-synuclein polymorphisms are associated with Parkinson’s disease in a Saskatchewan population</article-title>
<source>Mov. Disord. Off. J. Mov. Disord. Soc.</source>
<year>2009</year>
<volume>24</volume>
<fpage>2411</fpage>
<lpage>2414</lpage>
</element-citation>
</ref>
<ref id="B36-marinedrugs-13-06665">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pankratz</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Wilk</surname>
<given-names>J.B.</given-names>
</name>
<name>
<surname>Latourelle</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>DeStefano</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Halter</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pugh</surname>
<given-names>E.W.</given-names>
</name>
<name>
<surname>Doheny</surname>
<given-names>K.F.</given-names>
</name>
<name>
<surname>Gusella</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Nichols</surname>
<given-names>W.C.</given-names>
</name>
<name>
<surname>Foroud</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genomewide association study for susceptibility genes contributing to familial Parkinson disease</article-title>
<source>Hum. Genet.</source>
<year>2009</year>
<volume>124</volume>
<fpage>593</fpage>
<lpage>605</lpage>
<pub-id pub-id-type="doi">10.1007/s00439-008-0582-9</pub-id>
<pub-id pub-id-type="pmid">18985386</pub-id>
</element-citation>
</ref>
<ref id="B37-marinedrugs-13-06665">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maraganore</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>de Andrade</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Elbaz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Farrer</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Ioannidis</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Krüger</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rocca</surname>
<given-names>W.A.</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>N.K.</given-names>
</name>
<name>
<surname>Lesnick</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Lincoln</surname>
<given-names>S.J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Collaborative analysis of α-synuclein gene promoter variability and Parkinson disease</article-title>
<source>J. Am. Med. Assoc.</source>
<year>2006</year>
<volume>296</volume>
<fpage>661</fpage>
<lpage>670</lpage>
<pub-id pub-id-type="doi">10.1001/jama.296.6.661</pub-id>
<pub-id pub-id-type="pmid">16896109</pub-id>
</element-citation>
</ref>
<ref id="B38-marinedrugs-13-06665">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Polymeropoulos</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Lavedan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Leroy</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ide</surname>
<given-names>S.E.</given-names>
</name>
<name>
<surname>Dehejia</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dutra</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pike</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Root</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rubenstein</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Boyer</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease</article-title>
<source>Science</source>
<year>1997</year>
<volume>276</volume>
<fpage>2045</fpage>
<lpage>2047</lpage>
<pub-id pub-id-type="doi">10.1126/science.276.5321.2045</pub-id>
<pub-id pub-id-type="pmid">9197268</pub-id>
</element-citation>
</ref>
<ref id="B39-marinedrugs-13-06665">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kruger</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kuhn</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Woitalla</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Graeber</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kosel</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Przuntek</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Epplen</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Schols</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Riess</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease</article-title>
<source>Nat. Genet.</source>
<year>1998</year>
<volume>18</volume>
<fpage>106</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="doi">10.1038/ng0298-106</pub-id>
<pub-id pub-id-type="pmid">9462735</pub-id>
</element-citation>
</ref>
<ref id="B40-marinedrugs-13-06665">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zarranz</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Alegre</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gomez-Esteban</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Lezcano</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ros</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ampuero</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Vidal</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hoenicka</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Atares</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia</article-title>
<source>Ann. Neurol.</source>
<year>2004</year>
<volume>55</volume>
<fpage>164</fpage>
<lpage>173</lpage>
<pub-id pub-id-type="doi">10.1002/ana.10795</pub-id>
<pub-id pub-id-type="pmid">14755719</pub-id>
</element-citation>
</ref>
<ref id="B41-marinedrugs-13-06665">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Proukakis</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dudzik</surname>
<given-names>C.G.</given-names>
</name>
<name>
<surname>Brier</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>MacKay</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Millhauser</surname>
<given-names>G.L.</given-names>
</name>
<name>
<surname>Houlden</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Schapira</surname>
<given-names>A.H.</given-names>
</name>
</person-group>
<article-title>A novel alpha-synuclein missense mutation in Parkinson disease</article-title>
<source>Neurology</source>
<year>2013</year>
<volume>80</volume>
<fpage>1062</fpage>
<lpage>1064</lpage>
<pub-id pub-id-type="doi">10.1212/WNL.0b013e31828727ba</pub-id>
<pub-id pub-id-type="pmid">23427326</pub-id>
</element-citation>
</ref>
<ref id="B42-marinedrugs-13-06665">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Appel-Cresswell</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Vilarino-Guell</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Encarnacion</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sherman</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Weir</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Szu-Tu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Trinh</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease</article-title>
<source>Mov. Disord. Off. J. Mov. Disord. Soc.</source>
<year>2013</year>
<volume>28</volume>
<fpage>811</fpage>
<lpage>813</lpage>
<pub-id pub-id-type="doi">10.1002/mds.25421</pub-id>
<pub-id pub-id-type="pmid">23457019</pub-id>
</element-citation>
</ref>
<ref id="B43-marinedrugs-13-06665">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lesage</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Anheim</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Letournel</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bousset</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Honore</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rozas</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Pieri</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Madiona</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Durr</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Melki</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>G51D alpha-synuclein mutation causes a novel parkinsonian-pyramidal syndrome</article-title>
<source>Ann. Neurol.</source>
<year>2013</year>
<volume>73</volume>
<fpage>459</fpage>
<lpage>471</lpage>
<pub-id pub-id-type="doi">10.1002/ana.23894</pub-id>
<pub-id pub-id-type="pmid">23526723</pub-id>
</element-citation>
</ref>
<ref id="B44-marinedrugs-13-06665">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pasanen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Myllykangas</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Siitonen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Raunio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kaakkola</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lyytinen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tienari</surname>
<given-names>P.J.</given-names>
</name>
<name>
<surname>Poyhonen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Paetau</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Novel alpha-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology</article-title>
<source>Neurobiol. Aging</source>
<year>2014</year>
<volume>35</volume>
<fpage>2180.e1</fpage>
<lpage>2180.e5</lpage>
<pub-id pub-id-type="doi">10.1016/j.neurobiolaging.2014.03.024</pub-id>
<pub-id pub-id-type="pmid">24746362</pub-id>
</element-citation>
</ref>
<ref id="B45-marinedrugs-13-06665">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conway</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Harper</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Lansbury</surname>
<given-names>P.T.</given-names>
</name>
</person-group>
<article-title>Accelerated
<italic>in vitro</italic>
fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease</article-title>
<source>Nat. Med.</source>
<year>1998</year>
<volume>4</volume>
<fpage>1318</fpage>
<lpage>1320</lpage>
<pub-id pub-id-type="doi">10.1038/3311</pub-id>
<pub-id pub-id-type="pmid">9809558</pub-id>
</element-citation>
</ref>
<ref id="B46-marinedrugs-13-06665">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chartier-Harlin</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Kachergus</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Roumier</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Mouroux</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Douay</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Lincoln</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Levecque</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Larvor</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Andrieux</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hulihan</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease</article-title>
<source>Lancet</source>
<year>2004</year>
<volume>364</volume>
<fpage>1167</fpage>
<lpage>1169</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(04)17103-1</pub-id>
<pub-id pub-id-type="pmid">15451224</pub-id>
</element-citation>
</ref>
<ref id="B47-marinedrugs-13-06665">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ibanez</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bonnet</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Debarges</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lohmann</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Tison</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pollak</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Agid</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Durr</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Brice</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease</article-title>
<source>Lancet</source>
<year>2004</year>
<volume>364</volume>
<fpage>1169</fpage>
<lpage>1171</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(04)17104-3</pub-id>
<pub-id pub-id-type="pmid">15451225</pub-id>
</element-citation>
</ref>
<ref id="B48-marinedrugs-13-06665">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singleton</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Farrer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Singleton</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hague</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kachergus</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hulihan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Peuralinna</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Dutra</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nussbaum</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>alpha-Synuclein locus triplication causes Parkinson’s disease</article-title>
<source>Science</source>
<year>2003</year>
<volume>302</volume>
<fpage>841</fpage>
<pub-id pub-id-type="doi">10.1126/science.1090278</pub-id>
<pub-id pub-id-type="pmid">14593171</pub-id>
</element-citation>
</ref>
<ref id="B49-marinedrugs-13-06665">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giasson</surname>
<given-names>B.I.</given-names>
</name>
<name>
<surname>Duda</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>I.V.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Souza</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Hurtig</surname>
<given-names>H.I.</given-names>
</name>
<name>
<surname>Ischiropoulos</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Trojanowski</surname>
<given-names>J.Q.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>V.M.</given-names>
</name>
</person-group>
<article-title>Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions</article-title>
<source>Science</source>
<year>2000</year>
<volume>290</volume>
<fpage>985</fpage>
<lpage>989</lpage>
<pub-id pub-id-type="doi">10.1126/science.290.5493.985</pub-id>
<pub-id pub-id-type="pmid">11062131</pub-id>
</element-citation>
</ref>
<ref id="B50-marinedrugs-13-06665">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tofaris</surname>
<given-names>G.K.</given-names>
</name>
<name>
<surname>Razzaq</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ghetti</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lilley</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Spillantini</surname>
<given-names>M.G.</given-names>
</name>
</person-group>
<article-title>Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function</article-title>
<source>J. Boil. Chem.</source>
<year>2003</year>
<volume>278</volume>
<fpage>44405</fpage>
<lpage>44411</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M308041200</pub-id>
<pub-id pub-id-type="pmid">12923179</pub-id>
</element-citation>
</ref>
<ref id="B51-marinedrugs-13-06665">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xilouri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Stefanis</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Autophagic pathways in Parkinson disease and related disorders</article-title>
<source>Expert Rev. Mol. Med.</source>
<year>2011</year>
<volume>13</volume>
<fpage>e8</fpage>
<pub-id pub-id-type="doi">10.1017/S1462399411001803</pub-id>
<pub-id pub-id-type="pmid">21418705</pub-id>
</element-citation>
</ref>
<ref id="B52-marinedrugs-13-06665">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iwai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Masliah</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Yoshimoto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Flanagan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>de Silva</surname>
<given-names>H.A.</given-names>
</name>
<name>
<surname>Kittel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Saitoh</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system</article-title>
<source>Neuron</source>
<year>1995</year>
<volume>14</volume>
<fpage>467</fpage>
<lpage>475</lpage>
<pub-id pub-id-type="doi">10.1016/0896-6273(95)90302-X</pub-id>
<pub-id pub-id-type="pmid">7857654</pub-id>
</element-citation>
</ref>
<ref id="B53-marinedrugs-13-06665">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chandra</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gallardo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fernandez-Chacon</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Schluter</surname>
<given-names>O.M.</given-names>
</name>
<name>
<surname>Sudhof</surname>
<given-names>T.C.</given-names>
</name>
</person-group>
<article-title>Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration</article-title>
<source>Cell</source>
<year>2005</year>
<volume>123</volume>
<fpage>383</fpage>
<lpage>396</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2005.09.028</pub-id>
<pub-id pub-id-type="pmid">16269331</pub-id>
</element-citation>
</ref>
<ref id="B54-marinedrugs-13-06665">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Burre</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sharma</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tsetsenis</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Buchman</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Etherton</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Sudhof</surname>
<given-names>T.C.</given-names>
</name>
</person-group>
<article-title>Alpha-synuclein promotes SNARE-complex assembly
<italic>in vivo</italic>
and
<italic>in vitro</italic>
</article-title>
<source>Science</source>
<year>2010</year>
<volume>329</volume>
<fpage>1663</fpage>
<lpage>1667</lpage>
<pub-id pub-id-type="doi">10.1126/science.1195227</pub-id>
<pub-id pub-id-type="pmid">20798282</pub-id>
</element-citation>
</ref>
<ref id="B55-marinedrugs-13-06665">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abeliovich</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schmitz</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Farinas</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Choi-Lundberg</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>W.H.</given-names>
</name>
<name>
<surname>Castillo</surname>
<given-names>P.E.</given-names>
</name>
<name>
<surname>Shinsky</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Verdugo</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Armanini</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system</article-title>
<source>Neuron</source>
<year>2000</year>
<volume>25</volume>
<fpage>239</fpage>
<lpage>252</lpage>
<pub-id pub-id-type="doi">10.1016/S0896-6273(00)80886-7</pub-id>
<pub-id pub-id-type="pmid">10707987</pub-id>
</element-citation>
</ref>
<ref id="B56-marinedrugs-13-06665">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>D.D.</given-names>
</name>
<name>
<surname>Rueter</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Trojanowski</surname>
<given-names>J.Q.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>V.M.</given-names>
</name>
</person-group>
<article-title>Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons</article-title>
<source>J. Neurosci. Off. J. Soc. Neurosci.</source>
<year>2000</year>
<volume>20</volume>
<fpage>3214</fpage>
<lpage>3220</lpage>
</element-citation>
</ref>
<ref id="B57-marinedrugs-13-06665">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>George</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Woods</surname>
<given-names>W.S.</given-names>
</name>
<name>
<surname>Clayton</surname>
<given-names>D.F.</given-names>
</name>
</person-group>
<article-title>Characterization of a novel protein regulated during the critical period for song learning in the zebra finch</article-title>
<source>Neuron</source>
<year>1995</year>
<volume>15</volume>
<fpage>361</fpage>
<lpage>372</lpage>
<pub-id pub-id-type="doi">10.1016/0896-6273(95)90040-3</pub-id>
<pub-id pub-id-type="pmid">7646890</pub-id>
</element-citation>
</ref>
<ref id="B58-marinedrugs-13-06665">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jia</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.E.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y.E.</given-names>
</name>
</person-group>
<article-title>Stimulation of breast cancer invasion and metastasis by synuclein gamma</article-title>
<source>Cancer Res.</source>
<year>1999</year>
<volume>59</volume>
<fpage>742</fpage>
<lpage>747</lpage>
<pub-id pub-id-type="pmid">9973226</pub-id>
</element-citation>
</ref>
<ref id="B59-marinedrugs-13-06665">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Spence</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.L.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.E.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y.E.</given-names>
</name>
</person-group>
<article-title>Transcriptional suppression of synuclein gamma (SNCG) expression in human breast cancer cells by the growth inhibitory cytokine oncostatin M</article-title>
<source>Breast Cancer Res. Treat.</source>
<year>2000</year>
<volume>62</volume>
<fpage>99</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="doi">10.1023/A:1006418219012</pub-id>
<pub-id pub-id-type="pmid">11016747</pub-id>
</element-citation>
</ref>
<ref id="B60-marinedrugs-13-06665">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tiunova</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Anokhin</surname>
<given-names>K.V.</given-names>
</name>
<name>
<surname>Saha</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Hanger</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Anderton</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Ninkina</surname>
<given-names>N.N.</given-names>
</name>
<name>
<surname>Buchman</surname>
<given-names>V.L.</given-names>
</name>
</person-group>
<article-title>Chicken synucleins: Cloning and expression in the developing embryo</article-title>
<source>Mech. Dev.</source>
<year>2000</year>
<volume>99</volume>
<fpage>195</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="doi">10.1016/S0925-4773(00)00484-6</pub-id>
<pub-id pub-id-type="pmid">11091093</pub-id>
</element-citation>
</ref>
<ref id="B61-marinedrugs-13-06665">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoshida</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Craxton</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Jakes</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zibaee</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tavare</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Serpell</surname>
<given-names>L.C.</given-names>
</name>
<name>
<surname>Davletov</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Crowther</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Goedert</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Synuclein proteins of the pufferfish Fugu rubripes: Sequences and functional characterization</article-title>
<source>Biochemistry</source>
<year>2006</year>
<volume>45</volume>
<fpage>2599</fpage>
<lpage>2607</lpage>
<pub-id pub-id-type="doi">10.1021/bi051993m</pub-id>
<pub-id pub-id-type="pmid">16489753</pub-id>
</element-citation>
</ref>
<ref id="B62-marinedrugs-13-06665">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larsen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hedegaard</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bertelsen</surname>
<given-names>M.F.</given-names>
</name>
<name>
<surname>Bendixen</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Threonine 53 in alpha-synuclein is conserved in long-living non-primate animals</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2009</year>
<volume>387</volume>
<fpage>602</fpage>
<lpage>605</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2009.07.070</pub-id>
<pub-id pub-id-type="pmid">19619507</pub-id>
</element-citation>
</ref>
<ref id="B63-marinedrugs-13-06665">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamilton</surname>
<given-names>B.A.</given-names>
</name>
</person-group>
<article-title>Alpha-Synuclein A53T substitution associated with Parkinson disease also marks the divergence of Old World and New World primates</article-title>
<source>Genomics</source>
<year>2004</year>
<volume>83</volume>
<fpage>739</fpage>
<lpage>742</lpage>
<pub-id pub-id-type="doi">10.1016/j.ygeno.2003.09.016</pub-id>
<pub-id pub-id-type="pmid">15028296</pub-id>
</element-citation>
</ref>
<ref id="B64-marinedrugs-13-06665">
<label>64.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Donaldson</surname>
<given-names>E.M.</given-names>
</name>
</person-group>
<source>The Physiology of Fishes</source>
<person-group person-group-type="editor">
<name>
<surname>Evans</surname>
<given-names>D.H.</given-names>
</name>
</person-group>
<publisher-name>CRC Press</publisher-name>
<publisher-loc>Boca Raton, FL, USA</publisher-loc>
<year>1993</year>
<fpage>592</fpage>
</element-citation>
</ref>
<ref id="B65-marinedrugs-13-06665">
<label>65.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Nelson</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<source>Fishes of the World</source>
<publisher-name>John Wiley & Sons, Inc.</publisher-name>
<publisher-loc>Hoboken, NJ, USA</publisher-loc>
<year>2006</year>
</element-citation>
</ref>
<ref id="B66-marinedrugs-13-06665">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Busch</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>J.R.</given-names>
</name>
</person-group>
<article-title>Synuclein accumulation is associated with cell-specific neuronal death after spinal cord injury</article-title>
<source>J. Comp. Neurol.</source>
<year>2012</year>
<volume>520</volume>
<fpage>1751</fpage>
<lpage>1771</lpage>
<pub-id pub-id-type="doi">10.1002/cne.23011</pub-id>
<pub-id pub-id-type="pmid">22120153</pub-id>
</element-citation>
</ref>
<ref id="B67-marinedrugs-13-06665">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Evolutionary aspects of the synuclein super-family and sub-families based on large-scale phylogenetic and group-discrimination analysis</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2013</year>
<volume>441</volume>
<fpage>308</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2013.09.132</pub-id>
<pub-id pub-id-type="pmid">24140056</pub-id>
</element-citation>
</ref>
<ref id="B68-marinedrugs-13-06665">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amores</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Force</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Y.L.</given-names>
</name>
<name>
<surname>Joly</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Amemiya</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Fritz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>Langeland</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Prince</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Zebrafish hox clusters and vertebrate genome evolution</article-title>
<source>Science</source>
<year>1998</year>
<volume>282</volume>
<fpage>1711</fpage>
<lpage>1714</lpage>
<pub-id pub-id-type="doi">10.1126/science.282.5394.1711</pub-id>
<pub-id pub-id-type="pmid">9831563</pub-id>
</element-citation>
</ref>
<ref id="B69-marinedrugs-13-06665">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaillon</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Aury</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Brunet</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Petit</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Stange-Thomann</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Mauceli</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bouneau</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ozouf-Costaz</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bernot</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype</article-title>
<source>Nature</source>
<year>2004</year>
<volume>431</volume>
<fpage>946</fpage>
<lpage>957</lpage>
<pub-id pub-id-type="doi">10.1038/nature03025</pub-id>
<pub-id pub-id-type="pmid">15496914</pub-id>
</element-citation>
</ref>
<ref id="B70-marinedrugs-13-06665">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Gitler</surname>
<given-names>A.D.</given-names>
</name>
</person-group>
<article-title>Discovery and characterization of three novel synuclein genes in zebrafish</article-title>
<source>Dev. Dyn. Off. Publ. Am. Assoc. Anat.</source>
<year>2008</year>
<volume>237</volume>
<fpage>2490</fpage>
<lpage>2495</lpage>
</element-citation>
</ref>
<ref id="B71-marinedrugs-13-06665">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Milanese</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sager</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Farrell</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Cannon</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Greenamyre</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Burton</surname>
<given-names>E.A.</given-names>
</name>
</person-group>
<article-title>Hypokinesia and reduced dopamine levels in zebrafish lacking beta- and gamma1-synucleins</article-title>
<source>J. Boil. Chem.</source>
<year>2012</year>
<volume>287</volume>
<fpage>2971</fpage>
<lpage>2983</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M111.308312</pub-id>
<pub-id pub-id-type="pmid">22128150</pub-id>
</element-citation>
</ref>
<ref id="B72-marinedrugs-13-06665">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.D.</given-names>
</name>
<name>
<surname>Hung</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>S.P.</given-names>
</name>
<name>
<surname>Kawakami</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>B.K.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C.J.</given-names>
</name>
</person-group>
<article-title>Recapitulation of zebrafish sncga expression pattern and labeling the habenular complex in transgenic zebrafish using green fluorescent protein reporter gene</article-title>
<source>Dev. Dyn. Off. Publ. Am. Assoc. Anat.</source>
<year>2009</year>
<volume>238</volume>
<fpage>746</fpage>
<lpage>754</lpage>
</element-citation>
</ref>
<ref id="B73-marinedrugs-13-06665">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vaccaro</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Toni</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Casini</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vivacqua</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>D’Este</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cioni</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Localization of alpha-synuclein in teleost central nervous system: Immunohistochemical and Western blot evidence by 3D5 monoclonal antibody in the common carp,
<italic>Cyprinus carpio</italic>
</article-title>
<source>J. Comp. Neurol.</source>
<year>2015</year>
<volume>523</volume>
<fpage>1095</fpage>
<lpage>1124</lpage>
<pub-id pub-id-type="doi">10.1002/cne.23722</pub-id>
<pub-id pub-id-type="pmid">25488013</pub-id>
</element-citation>
</ref>
<ref id="B74-marinedrugs-13-06665">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vivacqua</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Casini</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vaccaro</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Fornai</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>D’Este</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Different sub-cellular localization of alpha-synuclein in the C57BL6J mouse’s central nervous system by two novel monoclonal antibodies</article-title>
<source>J. Chem. Neuroanat.</source>
<year>2011</year>
<volume>41</volume>
<fpage>97</fpage>
<lpage>110</lpage>
<pub-id pub-id-type="doi">10.1016/j.jchemneu.2010.12.003</pub-id>
<pub-id pub-id-type="pmid">21172422</pub-id>
</element-citation>
</ref>
<ref id="B75-marinedrugs-13-06665">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rink</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Wullimann</surname>
<given-names>M.F.</given-names>
</name>
</person-group>
<article-title>The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum)</article-title>
<source>Brain Res.</source>
<year>2001</year>
<volume>889</volume>
<fpage>316</fpage>
<lpage>330</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-8993(00)03174-7</pub-id>
<pub-id pub-id-type="pmid">11166725</pub-id>
</element-citation>
</ref>
<ref id="B76-marinedrugs-13-06665">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okazaki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lipkin</surname>
<given-names>L.E.</given-names>
</name>
<name>
<surname>Aronson</surname>
<given-names>S.M.</given-names>
</name>
</person-group>
<article-title>Diffuse intracytoplasmic ganglionic inclusions (Lewy type) associated with progressive dementia and quadriparesis in flexion</article-title>
<source>J. Neuropathol. Exp. Neurol.</source>
<year>1961</year>
<volume>20</volume>
<fpage>237</fpage>
<lpage>244</lpage>
<pub-id pub-id-type="doi">10.1097/00005072-196104000-00007</pub-id>
<pub-id pub-id-type="pmid">13730588</pub-id>
</element-citation>
</ref>
<ref id="B77-marinedrugs-13-06665">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vilar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>H.T.</given-names>
</name>
<name>
<surname>Luhrs</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Maji</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Riek-Loher</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Verel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Manning</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Stahlberg</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Riek</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The fold of alpha-synuclein fibrils</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<year>2008</year>
<volume>105</volume>
<fpage>8637</fpage>
<lpage>8642</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0712179105</pub-id>
<pub-id pub-id-type="pmid">18550842</pub-id>
</element-citation>
</ref>
<ref id="B78-marinedrugs-13-06665">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanaan</surname>
<given-names>N.M.</given-names>
</name>
<name>
<surname>Manfredsson</surname>
<given-names>F.P.</given-names>
</name>
</person-group>
<article-title>Loss of functional alpha-synuclein: A toxic event in Parkinson’s disease?</article-title>
<source>J. Parkinson’s Dis.</source>
<year>2011</year>
<volume>2</volume>
<fpage>249</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="pmid">23938255</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000004 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000004 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4663547
   |texte=   Fish Synucleins: An Update
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26528989" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024