Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessing the effect of the Three Gorges reservoir impoundment on spawning habitat suitability of Chinese sturgeon (Acipenser sinensis) in Yangtze River, China

Identifieur interne : 000351 ( PascalFrancis/Curation ); précédent : 000350; suivant : 000352

Assessing the effect of the Three Gorges reservoir impoundment on spawning habitat suitability of Chinese sturgeon (Acipenser sinensis) in Yangtze River, China

Auteurs : JIANZHONG ZHOU [République populaire de Chine] ; YUE ZHAO [République populaire de Chine] ; LIXIANG SONG [République populaire de Chine] ; SHENG BI [République populaire de Chine] ; HUAJIE ZHANG [République populaire de Chine]

Source :

RBID : Pascal:14-0097204

Descripteurs français

English descriptors

Abstract

The Chinese sturgeon (Acipenser sinensis), a kind of maricolous anadromous migratory fish species, is endangered and protected in China. Historical spawning habitats were distributed in the lower reaches of Jinsha River and the upper reaches of Yangtze River. Since the establishment of the Gezhouba water conservancy pivot in 1981, the migratory route of Chinese sturgeon spawning was blocked. Therefore, the fish was forced to propagate in a new spawning ground which was mainly distributed in the 4-km-long mainstream from Gezhouba Dam to Miaozui in the middle Yangtze River. After water storage and power generation of the Three Gorges reservoir (TGR) in 2003, the propagation of Chinese sturgeon has been impacted gradually. According to field surveys, the fish used to spawn twice a year before TGR impoundment, but only once happened after that. Besides, the spawning scale is also declining with each passing year. In order to simulate and evaluate the effect of TGR impoundment on spawning habitats of Chinese sturgeon, with consideration of their reproductive characteristics, an eco-hydrodynamic model was established by coupling a two-dimensional hydrodynamic model and a fuzzy fish habitat module based on fuzzy logic inference. Flow fields at the studied site in an impoundment scenario and an assumed no impoundment scenario were simulated with the 2D hydrodynamic model. Afterwards, by linking hydrodynamic conditions to the expert knowledge base, the fuzzy habitat model used fuzzy logic inference to compute habitat suitability of the Chinese sturgeon. In addition, the approach was used to propose a suitable instream flow range during the propagation period for Chinese sturgeon. The results indicated that the suitable instream flow needed for Chinese sturgeon spawning in middle Yangtze River should be between 10,000 m3/s and 17,000 m3/s and it also showed that after TGR was put into pilot impoundment operation at the designed water level of 175 m, the habitat suitability has decreased significantly in October. Besides, the water temperature of spawning habitat increased to a higher level in propagation period due to the impoundment of the TGR. All these alterations have had imposed tremendous impacts on the propagation of Chinese sturgeon. Therefore, adjusting impoundment schedule of the TGR to recover the water flow over spawning habitat in October is a crucial way to improve the habitat suitability. Furthermore, the presented method also provides a theoretical basis for further research on the assessment of habitat suitability of aquatic species at a micro-habitat scale.
pA  
A01 01  1    @0 1574-9541
A05       @2 20
A08 01  1  ENG  @1 Assessing the effect of the Three Gorges reservoir impoundment on spawning habitat suitability of Chinese sturgeon (Acipenser sinensis) in Yangtze River, China
A11 01  1    @1 JIANZHONG ZHOU
A11 02  1    @1 YUE ZHAO
A11 03  1    @1 LIXIANG SONG
A11 04  1    @1 SHENG BI
A11 05  1    @1 HUAJIE ZHANG
A14 01      @1 School of Hydropower and Information Engineering, Huazhong University of Science and Technology @2 Wuhan, Hubei 430074 @3 CHN @Z 1 aut. @Z 2 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 Pearl River Hydraulic Research Institute, PRWRC @2 Guangzhou, Guangdong 510611 @3 CHN @Z 3 aut.
A20       @1 33-46
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 28168 @5 354000506186520040
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 14-0097204
A60       @1 P
A61       @0 A
A64 01  1    @0 Ecological informatics
A66 01      @0 NLD
C01 01    ENG  @0 The Chinese sturgeon (Acipenser sinensis), a kind of maricolous anadromous migratory fish species, is endangered and protected in China. Historical spawning habitats were distributed in the lower reaches of Jinsha River and the upper reaches of Yangtze River. Since the establishment of the Gezhouba water conservancy pivot in 1981, the migratory route of Chinese sturgeon spawning was blocked. Therefore, the fish was forced to propagate in a new spawning ground which was mainly distributed in the 4-km-long mainstream from Gezhouba Dam to Miaozui in the middle Yangtze River. After water storage and power generation of the Three Gorges reservoir (TGR) in 2003, the propagation of Chinese sturgeon has been impacted gradually. According to field surveys, the fish used to spawn twice a year before TGR impoundment, but only once happened after that. Besides, the spawning scale is also declining with each passing year. In order to simulate and evaluate the effect of TGR impoundment on spawning habitats of Chinese sturgeon, with consideration of their reproductive characteristics, an eco-hydrodynamic model was established by coupling a two-dimensional hydrodynamic model and a fuzzy fish habitat module based on fuzzy logic inference. Flow fields at the studied site in an impoundment scenario and an assumed no impoundment scenario were simulated with the 2D hydrodynamic model. Afterwards, by linking hydrodynamic conditions to the expert knowledge base, the fuzzy habitat model used fuzzy logic inference to compute habitat suitability of the Chinese sturgeon. In addition, the approach was used to propose a suitable instream flow range during the propagation period for Chinese sturgeon. The results indicated that the suitable instream flow needed for Chinese sturgeon spawning in middle Yangtze River should be between 10,000 m3/s and 17,000 m3/s and it also showed that after TGR was put into pilot impoundment operation at the designed water level of 175 m, the habitat suitability has decreased significantly in October. Besides, the water temperature of spawning habitat increased to a higher level in propagation period due to the impoundment of the TGR. All these alterations have had imposed tremendous impacts on the propagation of Chinese sturgeon. Therefore, adjusting impoundment schedule of the TGR to recover the water flow over spawning habitat in October is a crucial way to improve the habitat suitability. Furthermore, the presented method also provides a theoretical basis for further research on the assessment of habitat suitability of aquatic species at a micro-habitat scale.
C02 01  X    @0 002A14A02
C02 02  X    @0 002A14B04C
C02 03  X    @0 002A15B
C03 01  X  FRE  @0 Réservoir @5 01
C03 01  X  ENG  @0 Reservoir @5 01
C03 01  X  SPA  @0 Depósito @5 01
C03 02  X  FRE  @0 Bassin retenue @5 02
C03 02  X  ENG  @0 Impoundment @5 02
C03 02  X  SPA  @0 Presa retención @5 02
C03 03  X  FRE  @0 Frai @5 03
C03 03  X  ENG  @0 Spawning @5 03
C03 03  X  SPA  @0 Freza @5 03
C03 04  X  FRE  @0 Habitabilité @5 04
C03 04  X  ENG  @0 Habitat suitability @5 04
C03 04  X  SPA  @0 Habitabilidad @5 04
C03 05  X  FRE  @0 Habitat @5 05
C03 05  X  ENG  @0 Habitat @5 05
C03 05  X  SPA  @0 Habitat @5 05
C03 06  X  FRE  @0 Modèle @5 06
C03 06  X  ENG  @0 Models @5 06
C03 06  X  SPA  @0 Modelo @5 06
C03 07  X  FRE  @0 Logique floue @5 07
C03 07  X  ENG  @0 Fuzzy logic @5 07
C03 07  X  SPA  @0 Lógica difusa @5 07
C03 08  X  FRE  @0 Stockage @5 08
C03 08  X  ENG  @0 Storage @5 08
C03 08  X  SPA  @0 Almacenamiento @5 08
C03 09  X  FRE  @0 Chine @2 NG @5 19
C03 09  X  ENG  @0 China @2 NG @5 19
C03 09  X  SPA  @0 China @2 NG @5 19
C03 10  X  FRE  @0 Acipenser sinensis @4 INC @5 87
C03 11  X  FRE  @0 Rivière Yangtze @4 INC @5 88
C07 01  X  FRE  @0 Asie @2 NG
C07 01  X  ENG  @0 Asia @2 NG
C07 01  X  SPA  @0 Asia @2 NG
C07 02  X  FRE  @0 Pisces @2 NS @5 26
C07 02  X  ENG  @0 Pisces @2 NS @5 26
C07 02  X  SPA  @0 Pisces @2 NS @5 26
C07 03  X  FRE  @0 Vertebrata @2 NS
C07 03  X  ENG  @0 Vertebrata @2 NS
C07 03  X  SPA  @0 Vertebrata @2 NS
N21       @1 132
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0097204

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Assessing the effect of the Three Gorges reservoir impoundment on spawning habitat suitability of Chinese sturgeon (Acipenser sinensis) in Yangtze River, China</title>
<author>
<name sortKey="Jianzhong Zhou" sort="Jianzhong Zhou" uniqKey="Jianzhong Zhou" last="Jianzhong Zhou">JIANZHONG ZHOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Hydropower and Information Engineering, Huazhong University of Science and Technology</s1>
<s2>Wuhan, Hubei 430074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Yue Zhao" sort="Yue Zhao" uniqKey="Yue Zhao" last="Yue Zhao">YUE ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Hydropower and Information Engineering, Huazhong University of Science and Technology</s1>
<s2>Wuhan, Hubei 430074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Lixiang Song" sort="Lixiang Song" uniqKey="Lixiang Song" last="Lixiang Song">LIXIANG SONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Pearl River Hydraulic Research Institute, PRWRC</s1>
<s2>Guangzhou, Guangdong 510611</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Sheng Bi" sort="Sheng Bi" uniqKey="Sheng Bi" last="Sheng Bi">SHENG BI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Hydropower and Information Engineering, Huazhong University of Science and Technology</s1>
<s2>Wuhan, Hubei 430074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Huajie Zhang" sort="Huajie Zhang" uniqKey="Huajie Zhang" last="Huajie Zhang">HUAJIE ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Hydropower and Information Engineering, Huazhong University of Science and Technology</s1>
<s2>Wuhan, Hubei 430074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0097204</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0097204 INIST</idno>
<idno type="RBID">Pascal:14-0097204</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000023</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000351</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Assessing the effect of the Three Gorges reservoir impoundment on spawning habitat suitability of Chinese sturgeon (Acipenser sinensis) in Yangtze River, China</title>
<author>
<name sortKey="Jianzhong Zhou" sort="Jianzhong Zhou" uniqKey="Jianzhong Zhou" last="Jianzhong Zhou">JIANZHONG ZHOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Hydropower and Information Engineering, Huazhong University of Science and Technology</s1>
<s2>Wuhan, Hubei 430074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Yue Zhao" sort="Yue Zhao" uniqKey="Yue Zhao" last="Yue Zhao">YUE ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Hydropower and Information Engineering, Huazhong University of Science and Technology</s1>
<s2>Wuhan, Hubei 430074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Lixiang Song" sort="Lixiang Song" uniqKey="Lixiang Song" last="Lixiang Song">LIXIANG SONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Pearl River Hydraulic Research Institute, PRWRC</s1>
<s2>Guangzhou, Guangdong 510611</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Sheng Bi" sort="Sheng Bi" uniqKey="Sheng Bi" last="Sheng Bi">SHENG BI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Hydropower and Information Engineering, Huazhong University of Science and Technology</s1>
<s2>Wuhan, Hubei 430074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Huajie Zhang" sort="Huajie Zhang" uniqKey="Huajie Zhang" last="Huajie Zhang">HUAJIE ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Hydropower and Information Engineering, Huazhong University of Science and Technology</s1>
<s2>Wuhan, Hubei 430074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Ecological informatics</title>
<idno type="ISSN">1574-9541</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Ecological informatics</title>
<idno type="ISSN">1574-9541</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>China</term>
<term>Fuzzy logic</term>
<term>Habitat</term>
<term>Habitat suitability</term>
<term>Impoundment</term>
<term>Models</term>
<term>Reservoir</term>
<term>Spawning</term>
<term>Storage</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Réservoir</term>
<term>Bassin retenue</term>
<term>Frai</term>
<term>Habitabilité</term>
<term>Habitat</term>
<term>Modèle</term>
<term>Logique floue</term>
<term>Stockage</term>
<term>Chine</term>
<term>Acipenser sinensis</term>
<term>Rivière Yangtze</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Habitat</term>
<term>Stockage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Chinese sturgeon (Acipenser sinensis), a kind of maricolous anadromous migratory fish species, is endangered and protected in China. Historical spawning habitats were distributed in the lower reaches of Jinsha River and the upper reaches of Yangtze River. Since the establishment of the Gezhouba water conservancy pivot in 1981, the migratory route of Chinese sturgeon spawning was blocked. Therefore, the fish was forced to propagate in a new spawning ground which was mainly distributed in the 4-km-long mainstream from Gezhouba Dam to Miaozui in the middle Yangtze River. After water storage and power generation of the Three Gorges reservoir (TGR) in 2003, the propagation of Chinese sturgeon has been impacted gradually. According to field surveys, the fish used to spawn twice a year before TGR impoundment, but only once happened after that. Besides, the spawning scale is also declining with each passing year. In order to simulate and evaluate the effect of TGR impoundment on spawning habitats of Chinese sturgeon, with consideration of their reproductive characteristics, an eco-hydrodynamic model was established by coupling a two-dimensional hydrodynamic model and a fuzzy fish habitat module based on fuzzy logic inference. Flow fields at the studied site in an impoundment scenario and an assumed no impoundment scenario were simulated with the 2D hydrodynamic model. Afterwards, by linking hydrodynamic conditions to the expert knowledge base, the fuzzy habitat model used fuzzy logic inference to compute habitat suitability of the Chinese sturgeon. In addition, the approach was used to propose a suitable instream flow range during the propagation period for Chinese sturgeon. The results indicated that the suitable instream flow needed for Chinese sturgeon spawning in middle Yangtze River should be between 10,000 m
<sup>3</sup>
/s and 17,000 m
<sup>3</sup>
/s and it also showed that after TGR was put into pilot impoundment operation at the designed water level of 175 m, the habitat suitability has decreased significantly in October. Besides, the water temperature of spawning habitat increased to a higher level in propagation period due to the impoundment of the TGR. All these alterations have had imposed tremendous impacts on the propagation of Chinese sturgeon. Therefore, adjusting impoundment schedule of the TGR to recover the water flow over spawning habitat in October is a crucial way to improve the habitat suitability. Furthermore, the presented method also provides a theoretical basis for further research on the assessment of habitat suitability of aquatic species at a micro-habitat scale.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1574-9541</s0>
</fA01>
<fA05>
<s2>20</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Assessing the effect of the Three Gorges reservoir impoundment on spawning habitat suitability of Chinese sturgeon (Acipenser sinensis) in Yangtze River, China</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JIANZHONG ZHOU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YUE ZHAO</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIXIANG SONG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SHENG BI</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HUAJIE ZHANG</s1>
</fA11>
<fA14 i1="01">
<s1>School of Hydropower and Information Engineering, Huazhong University of Science and Technology</s1>
<s2>Wuhan, Hubei 430074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Pearl River Hydraulic Research Institute, PRWRC</s1>
<s2>Guangzhou, Guangdong 510611</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>33-46</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>28168</s2>
<s5>354000506186520040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0097204</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Ecological informatics</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The Chinese sturgeon (Acipenser sinensis), a kind of maricolous anadromous migratory fish species, is endangered and protected in China. Historical spawning habitats were distributed in the lower reaches of Jinsha River and the upper reaches of Yangtze River. Since the establishment of the Gezhouba water conservancy pivot in 1981, the migratory route of Chinese sturgeon spawning was blocked. Therefore, the fish was forced to propagate in a new spawning ground which was mainly distributed in the 4-km-long mainstream from Gezhouba Dam to Miaozui in the middle Yangtze River. After water storage and power generation of the Three Gorges reservoir (TGR) in 2003, the propagation of Chinese sturgeon has been impacted gradually. According to field surveys, the fish used to spawn twice a year before TGR impoundment, but only once happened after that. Besides, the spawning scale is also declining with each passing year. In order to simulate and evaluate the effect of TGR impoundment on spawning habitats of Chinese sturgeon, with consideration of their reproductive characteristics, an eco-hydrodynamic model was established by coupling a two-dimensional hydrodynamic model and a fuzzy fish habitat module based on fuzzy logic inference. Flow fields at the studied site in an impoundment scenario and an assumed no impoundment scenario were simulated with the 2D hydrodynamic model. Afterwards, by linking hydrodynamic conditions to the expert knowledge base, the fuzzy habitat model used fuzzy logic inference to compute habitat suitability of the Chinese sturgeon. In addition, the approach was used to propose a suitable instream flow range during the propagation period for Chinese sturgeon. The results indicated that the suitable instream flow needed for Chinese sturgeon spawning in middle Yangtze River should be between 10,000 m
<sup>3</sup>
/s and 17,000 m
<sup>3</sup>
/s and it also showed that after TGR was put into pilot impoundment operation at the designed water level of 175 m, the habitat suitability has decreased significantly in October. Besides, the water temperature of spawning habitat increased to a higher level in propagation period due to the impoundment of the TGR. All these alterations have had imposed tremendous impacts on the propagation of Chinese sturgeon. Therefore, adjusting impoundment schedule of the TGR to recover the water flow over spawning habitat in October is a crucial way to improve the habitat suitability. Furthermore, the presented method also provides a theoretical basis for further research on the assessment of habitat suitability of aquatic species at a micro-habitat scale.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14A02</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A14B04C</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002A15B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Réservoir</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Reservoir</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Depósito</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Bassin retenue</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Impoundment</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Presa retención</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Frai</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Spawning</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Freza</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Habitabilité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Habitat suitability</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Habitabilidad</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Habitat</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Habitat</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Habitat</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Models</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Logique floue</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Fuzzy logic</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Lógica difusa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Stockage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Storage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Almacenamiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Chine</s0>
<s2>NG</s2>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>China</s0>
<s2>NG</s2>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>China</s0>
<s2>NG</s2>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Acipenser sinensis</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Rivière Yangtze</s0>
<s4>INC</s4>
<s5>88</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>132</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000351 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000351 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:14-0097204
   |texte=   Assessing the effect of the Three Gorges reservoir impoundment on spawning habitat suitability of Chinese sturgeon (Acipenser sinensis) in Yangtze River, China
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024