Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distribution is a Major Factor Affecting Bioaccumulation of Decabrominated Diphenyl Ether: Chinese Sturgeon (Acipenser sinensis) as an Example

Identifieur interne : 000339 ( PascalFrancis/Curation ); précédent : 000338; suivant : 000340

Distribution is a Major Factor Affecting Bioaccumulation of Decabrominated Diphenyl Ether: Chinese Sturgeon (Acipenser sinensis) as an Example

Auteurs : YI WAN [République populaire de Chine] ; KUN ZHANG [République populaire de Chine] ; ZHAOMIN DONG [République populaire de Chine] ; JIANYING HU [République populaire de Chine]

Source :

RBID : Pascal:13-0247493

Descripteurs français

English descriptors

Abstract

While decabromodiphenyl ether (BDE-209) has very low bioavailability and a rapid biotransformation rate, it exhibits high bioaccumulation in wildlife. To explore the bioaccumulation mechanism of BDE-209 in organisms, its toxicokinetic processes were investigated in Chinese sturgeons from the Yangtze River. Different from less brominated BDEs, lipids did not play an important role in the distribution of BDE-209 with relatively high concentrations detected in liver (54.5 ± 3.3 ng/g wet weight (ww)), gills (47.4 ± 2.9 ng/g ww), and intestine (41.9 ± 3.0 ng/g ww), followed by stomach (21.9 ± 9.0 ng/g ww), muscle (19.1 ± 5.6 ng/g ww), heart (7.5 ± 5.2 ng/g ww), gonad (6.8 ± 4.9 ng/g ww), adipose (4.9 ± 1.2 ng/g ww), and egg (2.8 ± 2.3 ng/g ww). In vitro metabolism of BDE-209 by microsomal fractions of Chinese sturgeon found that BDE-209 was biotransformed rapidly with the rate constant (K) of 0.039 h-1 in liver. BDE-126, BDE-154, BDE-188, BDE-184, BDE-183, BDE-202, BDE-201, and BDE-204/ 197 were observed as debrominated products of BDE-209 after incubation, and their formation rates were 0.026, 0.016, and 0.006 h-1 for BDE-126 BDE-184, and BDE-154, respectively. The concentration ratios between heart and intestine for individual PBDEs suggested slow delivery of BDE-209 among tissues after absorption. A Bayesian hierarchical model was further developed to estimate partition coefficients in a physiologically based pharmacokinetic model of BDE-209 in Chinese sturgeon. The estimated partition coefficients between tissues and blood were higher than those of less brominated BDE or PCBs in various animals, suggesting that the low partition ratios from blood to tissues would lead to high bioaccumulation of BDE-209, especially in absorbing organs.
pA  
A01 01  1    @0 0013-936X
A02 01      @0 ESTHAG
A03   1    @0 Environ. sci. technol.
A05       @2 47
A06       @2 5
A08 01  1  ENG  @1 Distribution is a Major Factor Affecting Bioaccumulation of Decabrominated Diphenyl Ether: Chinese Sturgeon (Acipenser sinensis) as an Example
A11 01  1    @1 YI WAN
A11 02  1    @1 KUN ZHANG
A11 03  1    @1 ZHAOMIN DONG
A11 04  1    @1 JIANYING HU
A14 01      @1 Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University @2 Beijing 100871 @3 CHN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 2279-2286
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 13615 @5 354000173267460190
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 40 ref.
A47 01  1    @0 13-0247493
A60       @1 P
A61       @0 A
A64 01  1    @0 Environmental science & technology
A66 01      @0 USA
C01 01    ENG  @0 While decabromodiphenyl ether (BDE-209) has very low bioavailability and a rapid biotransformation rate, it exhibits high bioaccumulation in wildlife. To explore the bioaccumulation mechanism of BDE-209 in organisms, its toxicokinetic processes were investigated in Chinese sturgeons from the Yangtze River. Different from less brominated BDEs, lipids did not play an important role in the distribution of BDE-209 with relatively high concentrations detected in liver (54.5 ± 3.3 ng/g wet weight (ww)), gills (47.4 ± 2.9 ng/g ww), and intestine (41.9 ± 3.0 ng/g ww), followed by stomach (21.9 ± 9.0 ng/g ww), muscle (19.1 ± 5.6 ng/g ww), heart (7.5 ± 5.2 ng/g ww), gonad (6.8 ± 4.9 ng/g ww), adipose (4.9 ± 1.2 ng/g ww), and egg (2.8 ± 2.3 ng/g ww). In vitro metabolism of BDE-209 by microsomal fractions of Chinese sturgeon found that BDE-209 was biotransformed rapidly with the rate constant (K) of 0.039 h-1 in liver. BDE-126, BDE-154, BDE-188, BDE-184, BDE-183, BDE-202, BDE-201, and BDE-204/ 197 were observed as debrominated products of BDE-209 after incubation, and their formation rates were 0.026, 0.016, and 0.006 h-1 for BDE-126 BDE-184, and BDE-154, respectively. The concentration ratios between heart and intestine for individual PBDEs suggested slow delivery of BDE-209 among tissues after absorption. A Bayesian hierarchical model was further developed to estimate partition coefficients in a physiologically based pharmacokinetic model of BDE-209 in Chinese sturgeon. The estimated partition coefficients between tissues and blood were higher than those of less brominated BDE or PCBs in various animals, suggesting that the low partition ratios from blood to tissues would lead to high bioaccumulation of BDE-209, especially in absorbing organs.
C02 01  X    @0 002A14D05H1
C02 02  X    @0 002B03M01
C03 01  X  FRE  @0 Polluant @5 01
C03 01  X  ENG  @0 Pollutant @5 01
C03 01  X  SPA  @0 Contaminante @5 01
C03 02  X  FRE  @0 Retardateur flamme @5 02
C03 02  X  ENG  @0 Flame retardant @5 02
C03 02  X  SPA  @0 Retardador llama @5 02
C03 03  X  FRE  @0 Accumulation biologique @5 03
C03 03  X  ENG  @0 Biological accumulation @5 03
C03 03  X  SPA  @0 Acumulación biológica @5 03
C03 04  X  FRE  @0 Toxicocinétique @5 04
C03 04  X  ENG  @0 Toxicokinetics @5 04
C03 04  X  SPA  @0 Toxicocinética @5 04
C03 05  X  FRE  @0 Biocénose @5 05
C03 05  X  ENG  @0 Biocenosis @5 05
C03 05  X  SPA  @0 Biocenosis @5 05
C03 06  X  FRE  @0 Modèle animal @5 06
C03 06  X  ENG  @0 Animal model @5 06
C03 06  X  SPA  @0 Modelo animal @5 06
C03 07  X  FRE  @0 Composition corporelle @5 07
C03 07  X  ENG  @0 Body composition @5 07
C03 07  X  SPA  @0 Composicíon corporal @5 07
C03 08  X  FRE  @0 Métabolisme @5 08
C03 08  X  ENG  @0 Metabolism @5 08
C03 08  X  SPA  @0 Metabolismo @5 08
C03 09  X  FRE  @0 In vitro @5 09
C03 09  X  ENG  @0 In vitro @5 09
C03 09  X  SPA  @0 In vitro @5 09
C03 10  X  FRE  @0 Microsome @5 10
C03 10  X  ENG  @0 Microsome @5 10
C03 10  X  SPA  @0 Microsoma @5 10
C03 11  X  FRE  @0 Acipenser sinensis @4 INC @5 87
C03 12  X  FRE  @0 Phényle éther(polybromo) @4 INC @5 88
C07 01  X  FRE  @0 Pisces @2 NS @5 26
C07 01  X  ENG  @0 Pisces @2 NS @5 26
C07 01  X  SPA  @0 Pisces @2 NS @5 26
C07 02  X  FRE  @0 Vertebrata @2 NS
C07 02  X  ENG  @0 Vertebrata @2 NS
C07 02  X  SPA  @0 Vertebrata @2 NS
N21       @1 238

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0247493

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Distribution is a Major Factor Affecting Bioaccumulation of Decabrominated Diphenyl Ether: Chinese Sturgeon (Acipenser sinensis) as an Example</title>
<author>
<name sortKey="Yi Wan" sort="Yi Wan" uniqKey="Yi Wan" last="Yi Wan">YI WAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Kun Zhang" sort="Kun Zhang" uniqKey="Kun Zhang" last="Kun Zhang">KUN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Zhaomin Dong" sort="Zhaomin Dong" uniqKey="Zhaomin Dong" last="Zhaomin Dong">ZHAOMIN DONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Jianying Hu" sort="Jianying Hu" uniqKey="Jianying Hu" last="Jianying Hu">JIANYING HU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0247493</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0247493 INIST</idno>
<idno type="RBID">Pascal:13-0247493</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000035</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000339</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Distribution is a Major Factor Affecting Bioaccumulation of Decabrominated Diphenyl Ether: Chinese Sturgeon (Acipenser sinensis) as an Example</title>
<author>
<name sortKey="Yi Wan" sort="Yi Wan" uniqKey="Yi Wan" last="Yi Wan">YI WAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Kun Zhang" sort="Kun Zhang" uniqKey="Kun Zhang" last="Kun Zhang">KUN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Zhaomin Dong" sort="Zhaomin Dong" uniqKey="Zhaomin Dong" last="Zhaomin Dong">ZHAOMIN DONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Jianying Hu" sort="Jianying Hu" uniqKey="Jianying Hu" last="Jianying Hu">JIANYING HU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Environmental science & technology</title>
<title level="j" type="abbreviated">Environ. sci. technol.</title>
<idno type="ISSN">0013-936X</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Environmental science & technology</title>
<title level="j" type="abbreviated">Environ. sci. technol.</title>
<idno type="ISSN">0013-936X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal model</term>
<term>Biocenosis</term>
<term>Biological accumulation</term>
<term>Body composition</term>
<term>Flame retardant</term>
<term>In vitro</term>
<term>Metabolism</term>
<term>Microsome</term>
<term>Pollutant</term>
<term>Toxicokinetics</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Polluant</term>
<term>Retardateur flamme</term>
<term>Accumulation biologique</term>
<term>Toxicocinétique</term>
<term>Biocénose</term>
<term>Modèle animal</term>
<term>Composition corporelle</term>
<term>Métabolisme</term>
<term>In vitro</term>
<term>Microsome</term>
<term>Acipenser sinensis</term>
<term>Phényle éther(polybromo)</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Polluant</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">While decabromodiphenyl ether (BDE-209) has very low bioavailability and a rapid biotransformation rate, it exhibits high bioaccumulation in wildlife. To explore the bioaccumulation mechanism of BDE-209 in organisms, its toxicokinetic processes were investigated in Chinese sturgeons from the Yangtze River. Different from less brominated BDEs, lipids did not play an important role in the distribution of BDE-209 with relatively high concentrations detected in liver (54.5 ± 3.3 ng/g wet weight (ww)), gills (47.4
<sub>±</sub>
2.9 ng/g ww), and intestine (41.9 ± 3.0 ng/g ww), followed by stomach (21.9 ± 9.0 ng/g ww), muscle (19.1 ± 5.6 ng/g ww), heart (7.5 ± 5.2 ng/g ww), gonad (6.8 ± 4.9 ng/g ww), adipose (4.9 ± 1.2 ng/g ww), and egg (2.8 ± 2.3 ng/g ww). In vitro metabolism of BDE-209 by microsomal fractions of Chinese sturgeon found that BDE-209 was biotransformed rapidly with the rate constant (K) of 0.039 h
<sup>-1</sup>
in liver. BDE-126, BDE-154, BDE-188, BDE-184, BDE-183, BDE-202, BDE-201, and BDE-204/ 197 were observed as debrominated products of BDE-209 after incubation, and their formation rates were 0.026, 0.016, and 0.006 h
<sup>-1</sup>
for BDE-126 BDE-184, and BDE-154, respectively. The concentration ratios between heart and intestine for individual PBDEs suggested slow delivery of BDE-209 among tissues after absorption. A Bayesian hierarchical model was further developed to estimate partition coefficients in a physiologically based pharmacokinetic model of BDE-209 in Chinese sturgeon. The estimated partition coefficients between tissues and blood were higher than those of less brominated BDE or PCBs in various animals, suggesting that the low partition ratios from blood to tissues would lead to high bioaccumulation of BDE-209, especially in absorbing organs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-936X</s0>
</fA01>
<fA02 i1="01">
<s0>ESTHAG</s0>
</fA02>
<fA03 i2="1">
<s0>Environ. sci. technol.</s0>
</fA03>
<fA05>
<s2>47</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Distribution is a Major Factor Affecting Bioaccumulation of Decabrominated Diphenyl Ether: Chinese Sturgeon (Acipenser sinensis) as an Example</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YI WAN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KUN ZHANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHAOMIN DONG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JIANYING HU</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>2279-2286</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13615</s2>
<s5>354000173267460190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>40 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0247493</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Environmental science & technology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>While decabromodiphenyl ether (BDE-209) has very low bioavailability and a rapid biotransformation rate, it exhibits high bioaccumulation in wildlife. To explore the bioaccumulation mechanism of BDE-209 in organisms, its toxicokinetic processes were investigated in Chinese sturgeons from the Yangtze River. Different from less brominated BDEs, lipids did not play an important role in the distribution of BDE-209 with relatively high concentrations detected in liver (54.5 ± 3.3 ng/g wet weight (ww)), gills (47.4
<sub>±</sub>
2.9 ng/g ww), and intestine (41.9 ± 3.0 ng/g ww), followed by stomach (21.9 ± 9.0 ng/g ww), muscle (19.1 ± 5.6 ng/g ww), heart (7.5 ± 5.2 ng/g ww), gonad (6.8 ± 4.9 ng/g ww), adipose (4.9 ± 1.2 ng/g ww), and egg (2.8 ± 2.3 ng/g ww). In vitro metabolism of BDE-209 by microsomal fractions of Chinese sturgeon found that BDE-209 was biotransformed rapidly with the rate constant (K) of 0.039 h
<sup>-1</sup>
in liver. BDE-126, BDE-154, BDE-188, BDE-184, BDE-183, BDE-202, BDE-201, and BDE-204/ 197 were observed as debrominated products of BDE-209 after incubation, and their formation rates were 0.026, 0.016, and 0.006 h
<sup>-1</sup>
for BDE-126 BDE-184, and BDE-154, respectively. The concentration ratios between heart and intestine for individual PBDEs suggested slow delivery of BDE-209 among tissues after absorption. A Bayesian hierarchical model was further developed to estimate partition coefficients in a physiologically based pharmacokinetic model of BDE-209 in Chinese sturgeon. The estimated partition coefficients between tissues and blood were higher than those of less brominated BDE or PCBs in various animals, suggesting that the low partition ratios from blood to tissues would lead to high bioaccumulation of BDE-209, especially in absorbing organs.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14D05H1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B03M01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Polluant</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Pollutant</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Contaminante</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Retardateur flamme</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Flame retardant</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Retardador llama</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Accumulation biologique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Biological accumulation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Acumulación biológica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Toxicocinétique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Toxicokinetics</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Toxicocinética</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Biocénose</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Biocenosis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Biocenosis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Modèle animal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Animal model</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Modelo animal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Composition corporelle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Body composition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Composicíon corporal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Métabolisme</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Metabolism</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Metabolismo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>In vitro</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>In vitro</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>In vitro</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Microsome</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Microsome</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Microsoma</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Acipenser sinensis</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Phényle éther(polybromo)</s0>
<s4>INC</s4>
<s5>88</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>238</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000339 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000339 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0247493
   |texte=   Distribution is a Major Factor Affecting Bioaccumulation of Decabrominated Diphenyl Ether: Chinese Sturgeon (Acipenser sinensis) as an Example
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024