Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selenocompounds in juvenile white sturgeon: Estimating absorption, disposition, and elimination of selenium using Bayesian hierarchical modeling

Identifieur interne : 000308 ( PascalFrancis/Curation ); précédent : 000307; suivant : 000309

Selenocompounds in juvenile white sturgeon: Estimating absorption, disposition, and elimination of selenium using Bayesian hierarchical modeling

Auteurs : Susie Shih-Yin Huang [États-Unis] ; ANDERS BJERRING STRATHE [États-Unis] ; Silas S. O. Hung [États-Unis] ; Raymond C. Boston [États-Unis] ; James G. Fadel [États-Unis]

Source :

RBID : Pascal:12-0172959

Descripteurs français

English descriptors

Abstract

The biological function of selenium (Se) is determined by its form and concentration. Selenium is an essential micronutrient for all vertebrates, however, at environmental levels, it is a potent toxin. In the San Francisco Bay-Delta, Se pollution threatens top predatory fish, including white sturgeon. A multi-compartmental Bayesian hierarchical model was developed to estimate the fractional rates of absorption, disposition, and elimination of selenocompounds, in white sturgeon, from tissue measurements obtained in a previous study (Huang et al., 2012). This modeling methodology allows for a population based approach to estimate kinetic physiological parameters in white sturgeon. Briefly, thirty juvenile white sturgeon (five per treatment) were orally intubated with a control (no selenium) or a single dose of Se (500 μg Se/kg body weight) in the form of one inorganic (Selenite) or four organic selenocompounds: selenocystine (SeCys), L-selenomethionine (SeMet), Se-methylseleno-L-cysteine (MSeCys), or selenoyeast (SeYeast). Blood and urine Se were measured at intervals throughout the 48 h post intubation period and eight tissues were sampled at 48 h. The model is composed of four state variables, conceptually the gut (Q1), blood (Q2), and tissue (Q3); and urine (Q0), all in units of μg Se. Six kinetics parameters were estimated: the fractional rates [1/h] of absorption, tissue disposition, tissue release, and urinary elimination (k12, k23, k32, and k20), the proportion of the absorbed dose eliminated through the urine (f20), and the distribution blood volume (V; percent body weight, BW). The parameter k12 was higher in sturgeon given the organic Se forms, in the descending order of MSeCys > SeMet > SeCys > Selenite > SeYeast. The parameters k23 and k32 followed similar patterns, and f20 was lowest in fish given MSeCys. Selenium form did not affect k20 or V. The parameter differences observed can be attributed to the different mechanisms of transmucosal transport, metabolic reduction, and storage of the Se forms, which, in general, appear to be similar to that in mammals. We have demonstrated that the Bayesian approach is a powerful tool for integrating quantitative information from a study with sparse blood and urinary measurements and tissue concentrations from a single time point, while providing a full characterization of parameter variability. The model permits the quantitative mechanistic interpretation and predictions of Se absorption, disposition, and elimination processes. Furthermore, the model represents a first step towards population based physiological toxicokinetic modeling of Se in white sturgeon.
pA  
A01 01  1    @0 0166-445X
A02 01      @0 AQTODG
A03   1    @0 Aquat. toxicol.
A05       @2 109
A08 01  1  ENG  @1 Selenocompounds in juvenile white sturgeon: Estimating absorption, disposition, and elimination of selenium using Bayesian hierarchical modeling
A11 01  1    @1 HUANG (Susie Shih-Yin)
A11 02  1    @1 ANDERS BJERRING STRATHE
A11 03  1    @1 HUNG (Silas S. O.)
A11 04  1    @1 BOSTON (Raymond C.)
A11 05  1    @1 FADEL (James G.)
A14 01      @1 Department of Animal Science, University of California @2 Davis, CA 95616 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 5 aut.
A14 02      @1 Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania @2 Kennett Square, PA 19348 @3 USA @Z 4 aut.
A20       @1 150-157
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 18841 @5 354000509616490170
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 12-0172959
A60       @1 P
A61       @0 A
A64 01  1    @0 Aquatic toxicology
A66 01      @0 NLD
C01 01    ENG  @0 The biological function of selenium (Se) is determined by its form and concentration. Selenium is an essential micronutrient for all vertebrates, however, at environmental levels, it is a potent toxin. In the San Francisco Bay-Delta, Se pollution threatens top predatory fish, including white sturgeon. A multi-compartmental Bayesian hierarchical model was developed to estimate the fractional rates of absorption, disposition, and elimination of selenocompounds, in white sturgeon, from tissue measurements obtained in a previous study (Huang et al., 2012). This modeling methodology allows for a population based approach to estimate kinetic physiological parameters in white sturgeon. Briefly, thirty juvenile white sturgeon (five per treatment) were orally intubated with a control (no selenium) or a single dose of Se (500 μg Se/kg body weight) in the form of one inorganic (Selenite) or four organic selenocompounds: selenocystine (SeCys), L-selenomethionine (SeMet), Se-methylseleno-L-cysteine (MSeCys), or selenoyeast (SeYeast). Blood and urine Se were measured at intervals throughout the 48 h post intubation period and eight tissues were sampled at 48 h. The model is composed of four state variables, conceptually the gut (Q1), blood (Q2), and tissue (Q3); and urine (Q0), all in units of μg Se. Six kinetics parameters were estimated: the fractional rates [1/h] of absorption, tissue disposition, tissue release, and urinary elimination (k12, k23, k32, and k20), the proportion of the absorbed dose eliminated through the urine (f20), and the distribution blood volume (V; percent body weight, BW). The parameter k12 was higher in sturgeon given the organic Se forms, in the descending order of MSeCys > SeMet > SeCys > Selenite > SeYeast. The parameters k23 and k32 followed similar patterns, and f20 was lowest in fish given MSeCys. Selenium form did not affect k20 or V. The parameter differences observed can be attributed to the different mechanisms of transmucosal transport, metabolic reduction, and storage of the Se forms, which, in general, appear to be similar to that in mammals. We have demonstrated that the Bayesian approach is a powerful tool for integrating quantitative information from a study with sparse blood and urinary measurements and tissue concentrations from a single time point, while providing a full characterization of parameter variability. The model permits the quantitative mechanistic interpretation and predictions of Se absorption, disposition, and elimination processes. Furthermore, the model represents a first step towards population based physiological toxicokinetic modeling of Se in white sturgeon.
C02 01  X    @0 002A14D05A
C02 02  X    @0 002A14A02
C03 01  X  FRE  @0 Animal jeune @5 01
C03 01  X  ENG  @0 Young animal @5 01
C03 01  X  SPA  @0 Animal joven @5 01
C03 02  X  FRE  @0 Absorption @5 02
C03 02  X  ENG  @0 Absorption @5 02
C03 02  X  SPA  @0 Absorción @5 02
C03 03  X  FRE  @0 Elimination @5 03
C03 03  X  ENG  @0 Elimination @5 03
C03 03  X  SPA  @0 Eliminación @5 03
C03 04  X  FRE  @0 Sélénium @2 NC @5 04
C03 04  X  ENG  @0 Selenium @2 NC @5 04
C03 04  X  SPA  @0 Selenio @2 NC @5 04
C03 05  X  FRE  @0 Modélisation @5 05
C03 05  X  ENG  @0 Modeling @5 05
C03 05  X  SPA  @0 Modelización @5 05
C03 06  X  FRE  @0 Métabolisme @5 06
C03 06  X  ENG  @0 Metabolism @5 06
C03 06  X  SPA  @0 Metabolismo @5 06
C03 07  X  FRE  @0 Estimation Bayes @5 07
C03 07  X  ENG  @0 Bayes estimation @5 07
C03 07  X  SPA  @0 Estimación Bayes @5 07
C03 08  X  FRE  @0 Milieu aquatique @5 08
C03 08  X  ENG  @0 Aquatic environment @5 08
C03 08  X  SPA  @0 Medio acuático @5 08
C03 09  X  FRE  @0 Ecotoxicologie @5 09
C03 09  X  ENG  @0 Ecotoxicology @5 09
C03 09  X  SPA  @0 Ecotoxicología @5 09
C03 10  X  FRE  @0 Toxicité @5 23
C03 10  X  ENG  @0 Toxicity @5 23
C03 10  X  SPA  @0 Toxicidad @5 23
C03 11  X  FRE  @0 Acipenser transmontanus @2 NS @5 49
C03 11  X  ENG  @0 Acipenser transmontanus @2 NS @5 49
C03 11  X  SPA  @0 Acipenser transmontanus @2 NS @5 49
C03 12  X  FRE  @0 Analyse bayésienne @4 INC @5 87
C07 01  X  FRE  @0 Pisces @2 NS @5 29
C07 01  X  ENG  @0 Pisces @2 NS @5 29
C07 01  X  SPA  @0 Pisces @2 NS @5 29
C07 02  X  FRE  @0 Vertebrata @2 NS
C07 02  X  ENG  @0 Vertebrata @2 NS
C07 02  X  SPA  @0 Vertebrata @2 NS
C07 03  X  FRE  @0 Acipenseridae @4 INC @5 70
N21       @1 129
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0172959

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Selenocompounds in juvenile white sturgeon: Estimating absorption, disposition, and elimination of selenium using Bayesian hierarchical modeling</title>
<author>
<name sortKey="Huang, Susie Shih Yin" sort="Huang, Susie Shih Yin" uniqKey="Huang S" first="Susie Shih-Yin" last="Huang">Susie Shih-Yin Huang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Anders Bjerring Strathe" sort="Anders Bjerring Strathe" uniqKey="Anders Bjerring Strathe" last="Anders Bjerring Strathe">ANDERS BJERRING STRATHE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Hung, Silas S O" sort="Hung, Silas S O" uniqKey="Hung S" first="Silas S. O." last="Hung">Silas S. O. Hung</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Boston, Raymond C" sort="Boston, Raymond C" uniqKey="Boston R" first="Raymond C." last="Boston">Raymond C. Boston</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Kennett Square, PA 19348</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Fadel, James G" sort="Fadel, James G" uniqKey="Fadel J" first="James G." last="Fadel">James G. Fadel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0172959</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0172959 INIST</idno>
<idno type="RBID">Pascal:12-0172959</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000066</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000308</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Selenocompounds in juvenile white sturgeon: Estimating absorption, disposition, and elimination of selenium using Bayesian hierarchical modeling</title>
<author>
<name sortKey="Huang, Susie Shih Yin" sort="Huang, Susie Shih Yin" uniqKey="Huang S" first="Susie Shih-Yin" last="Huang">Susie Shih-Yin Huang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Anders Bjerring Strathe" sort="Anders Bjerring Strathe" uniqKey="Anders Bjerring Strathe" last="Anders Bjerring Strathe">ANDERS BJERRING STRATHE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Hung, Silas S O" sort="Hung, Silas S O" uniqKey="Hung S" first="Silas S. O." last="Hung">Silas S. O. Hung</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Boston, Raymond C" sort="Boston, Raymond C" uniqKey="Boston R" first="Raymond C." last="Boston">Raymond C. Boston</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Kennett Square, PA 19348</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Fadel, James G" sort="Fadel, James G" uniqKey="Fadel J" first="James G." last="Fadel">James G. Fadel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Aquatic toxicology</title>
<title level="j" type="abbreviated">Aquat. toxicol.</title>
<idno type="ISSN">0166-445X</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Aquatic toxicology</title>
<title level="j" type="abbreviated">Aquat. toxicol.</title>
<idno type="ISSN">0166-445X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption</term>
<term>Acipenser transmontanus</term>
<term>Aquatic environment</term>
<term>Bayes estimation</term>
<term>Ecotoxicology</term>
<term>Elimination</term>
<term>Metabolism</term>
<term>Modeling</term>
<term>Selenium</term>
<term>Toxicity</term>
<term>Young animal</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Animal jeune</term>
<term>Absorption</term>
<term>Elimination</term>
<term>Sélénium</term>
<term>Modélisation</term>
<term>Métabolisme</term>
<term>Estimation Bayes</term>
<term>Milieu aquatique</term>
<term>Ecotoxicologie</term>
<term>Toxicité</term>
<term>Acipenser transmontanus</term>
<term>Analyse bayésienne</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Milieu aquatique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The biological function of selenium (Se) is determined by its form and concentration. Selenium is an essential micronutrient for all vertebrates, however, at environmental levels, it is a potent toxin. In the San Francisco Bay-Delta, Se pollution threatens top predatory fish, including white sturgeon. A multi-compartmental Bayesian hierarchical model was developed to estimate the fractional rates of absorption, disposition, and elimination of selenocompounds, in white sturgeon, from tissue measurements obtained in a previous study (Huang et al., 2012). This modeling methodology allows for a population based approach to estimate kinetic physiological parameters in white sturgeon. Briefly, thirty juvenile white sturgeon (five per treatment) were orally intubated with a control (no selenium) or a single dose of Se (500 μg Se/kg body weight) in the form of one inorganic (Selenite) or four organic selenocompounds: selenocystine (SeCys),
<sub>L</sub>
-selenomethionine (SeMet), Se-methylseleno-
<sub>L</sub>
-cysteine (MSeCys), or selenoyeast (SeYeast). Blood and urine Se were measured at intervals throughout the 48 h post intubation period and eight tissues were sampled at 48 h. The model is composed of four state variables, conceptually the gut (Q
<sub>1</sub>
), blood (Q
<sub>2</sub>
), and tissue (Q
<sub>3</sub>
); and urine (Q
<sub>0</sub>
), all in units of μg Se. Six kinetics parameters were estimated: the fractional rates [1/h] of absorption, tissue disposition, tissue release, and urinary elimination (k
<sub>12</sub>
, k
<sub>23</sub>
, k
<sub>32</sub>
, and k
<sub>20</sub>
), the proportion of the absorbed dose eliminated through the urine (f
<sub>20</sub>
), and the distribution blood volume (V; percent body weight, BW). The parameter k
<sub>12</sub>
was higher in sturgeon given the organic Se forms, in the descending order of MSeCys > SeMet > SeCys > Selenite > SeYeast. The parameters k
<sub>23</sub>
and k
<sub>32</sub>
followed similar patterns, and f
<sub>20</sub>
was lowest in fish given MSeCys. Selenium form did not affect k
<sub>20</sub>
or V. The parameter differences observed can be attributed to the different mechanisms of transmucosal transport, metabolic reduction, and storage of the Se forms, which, in general, appear to be similar to that in mammals. We have demonstrated that the Bayesian approach is a powerful tool for integrating quantitative information from a study with sparse blood and urinary measurements and tissue concentrations from a single time point, while providing a full characterization of parameter variability. The model permits the quantitative mechanistic interpretation and predictions of Se absorption, disposition, and elimination processes. Furthermore, the model represents a first step towards population based physiological toxicokinetic modeling of Se in white sturgeon.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0166-445X</s0>
</fA01>
<fA02 i1="01">
<s0>AQTODG</s0>
</fA02>
<fA03 i2="1">
<s0>Aquat. toxicol.</s0>
</fA03>
<fA05>
<s2>109</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Selenocompounds in juvenile white sturgeon: Estimating absorption, disposition, and elimination of selenium using Bayesian hierarchical modeling</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HUANG (Susie Shih-Yin)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANDERS BJERRING STRATHE</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HUNG (Silas S. O.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BOSTON (Raymond C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FADEL (James G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania</s1>
<s2>Kennett Square, PA 19348</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>150-157</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18841</s2>
<s5>354000509616490170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0172959</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Aquatic toxicology</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The biological function of selenium (Se) is determined by its form and concentration. Selenium is an essential micronutrient for all vertebrates, however, at environmental levels, it is a potent toxin. In the San Francisco Bay-Delta, Se pollution threatens top predatory fish, including white sturgeon. A multi-compartmental Bayesian hierarchical model was developed to estimate the fractional rates of absorption, disposition, and elimination of selenocompounds, in white sturgeon, from tissue measurements obtained in a previous study (Huang et al., 2012). This modeling methodology allows for a population based approach to estimate kinetic physiological parameters in white sturgeon. Briefly, thirty juvenile white sturgeon (five per treatment) were orally intubated with a control (no selenium) or a single dose of Se (500 μg Se/kg body weight) in the form of one inorganic (Selenite) or four organic selenocompounds: selenocystine (SeCys),
<sub>L</sub>
-selenomethionine (SeMet), Se-methylseleno-
<sub>L</sub>
-cysteine (MSeCys), or selenoyeast (SeYeast). Blood and urine Se were measured at intervals throughout the 48 h post intubation period and eight tissues were sampled at 48 h. The model is composed of four state variables, conceptually the gut (Q
<sub>1</sub>
), blood (Q
<sub>2</sub>
), and tissue (Q
<sub>3</sub>
); and urine (Q
<sub>0</sub>
), all in units of μg Se. Six kinetics parameters were estimated: the fractional rates [1/h] of absorption, tissue disposition, tissue release, and urinary elimination (k
<sub>12</sub>
, k
<sub>23</sub>
, k
<sub>32</sub>
, and k
<sub>20</sub>
), the proportion of the absorbed dose eliminated through the urine (f
<sub>20</sub>
), and the distribution blood volume (V; percent body weight, BW). The parameter k
<sub>12</sub>
was higher in sturgeon given the organic Se forms, in the descending order of MSeCys > SeMet > SeCys > Selenite > SeYeast. The parameters k
<sub>23</sub>
and k
<sub>32</sub>
followed similar patterns, and f
<sub>20</sub>
was lowest in fish given MSeCys. Selenium form did not affect k
<sub>20</sub>
or V. The parameter differences observed can be attributed to the different mechanisms of transmucosal transport, metabolic reduction, and storage of the Se forms, which, in general, appear to be similar to that in mammals. We have demonstrated that the Bayesian approach is a powerful tool for integrating quantitative information from a study with sparse blood and urinary measurements and tissue concentrations from a single time point, while providing a full characterization of parameter variability. The model permits the quantitative mechanistic interpretation and predictions of Se absorption, disposition, and elimination processes. Furthermore, the model represents a first step towards population based physiological toxicokinetic modeling of Se in white sturgeon.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14D05A</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A14A02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Animal jeune</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Young animal</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Animal joven</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Absorption</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Absorption</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Absorción</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Elimination</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Elimination</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Eliminación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sélénium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Selenium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Selenio</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Métabolisme</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Metabolism</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Metabolismo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Estimation Bayes</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Bayes estimation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estimación Bayes</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Milieu aquatique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Aquatic environment</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Medio acuático</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Ecotoxicologie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Ecotoxicology</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Ecotoxicología</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Toxicité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Toxicity</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Toxicidad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Analyse bayésienne</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>29</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>29</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>29</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Acipenseridae</s0>
<s4>INC</s4>
<s5>70</s5>
</fC07>
<fN21>
<s1>129</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000308 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000308 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0172959
   |texte=   Selenocompounds in juvenile white sturgeon: Estimating absorption, disposition, and elimination of selenium using Bayesian hierarchical modeling
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024