Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cardiorespiratory responses of white sturgeon to environmental hypercapnia

Identifieur interne : 000356 ( PascalFrancis/Corpus ); précédent : 000355; suivant : 000357

Cardiorespiratory responses of white sturgeon to environmental hypercapnia

Auteurs : C. E. Crocker ; A. P. Farrell ; A. K. Gamperl ; J. J. Jr Cech

Source :

RBID : Pascal:00-0512579

Descripteurs français

English descriptors

Abstract

Cardioventilatory variables and blood-gas, acid-base status were measured in cannulated white sturgeon (Acipenser transmontanus) maintained at 19°C during normocapnic and hypercapnic (PwCO2 ∼20 Torr) water conditions and after the injection of adrenergic analogs. Hypercapnia produced significant increases in arterial PCO2, ventilatory frequency, and plasma concentration of cortisol and epinephrine, and it produced significant decreases in arterial pH and plasma concentration of glucose but no change in arterial PO2, hematocrit, and concentration of lactate or norepinephrine. Hypercapnia significantly increased cardiac output (Q) by 22%, mean arterial pressure (MAP) by 8%, and heart rate (HR) by 8%. However, gut blood flow (GBF) remained constant. In normocapnic fish, phenylephrine significantly constricted the splanchnic circulation, whereas isoproterenol significantly increased Q and produced a systemic vasodilation. During hypercapnia, propranolol significantly decreased Q, GBF, MAP, and HR, whereas phentolamine significantly decreased MAP and increased GBF. These changes suggest that cardiovascular function in the white sturgeon is sensitive to both α- and (3-adrenergic modulation. We found microspheres to be unreliable in predicting GBF on the basis of our comparisons with simultaneous direct measurements of GBF. Overall, our results demonstrate that environmental hypercapnia (e.g., as is experienced in high-intensity culture situations) elicits stress responses in white sturgeon that significantly elevate steady-state cardiovascular and ventilatory activity levels.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0363-6119
A02 01      @0 AJPRDO
A03   1    @0 Am. j. physiol., Regul. integr. comp. physiol.
A05       @2 48
A06       @2 2
A08 01  1  ENG  @1 Cardiorespiratory responses of white sturgeon to environmental hypercapnia
A11 01  1    @1 CROCKER (C. E.)
A11 02  1    @1 FARRELL (A. P.)
A11 03  1    @1 GAMPERL (A. K.)
A11 04  1    @1 CECH (J. J. JR)
A14 01      @1 Department of Wildlife, Fish, and Conservation Biology, University of California @2 Davis, California 95616-8751 @3 USA @Z 1 aut. @Z 4 aut.
A14 02      @1 Department of Biological Sciences, Simon Fraser University @2 Burnaby, British Columbia V5A 1S6 @3 CAN @Z 2 aut. @Z 3 aut.
A20       @2 R617-R628
A21       @1 2000
A23 01      @0 ENG
A43 01      @1 INIST @2 670E @5 354000091005050330
A44       @0 0000 @1 © 2000 INIST-CNRS. All rights reserved.
A45       @0 42 ref.
A47 01  1    @0 00-0512579
A60       @1 P
A61       @0 A
A64 01  1    @0 American journal of physiology. Regulatory, integrative and comparative physiology
A66 01      @0 USA
C01 01    ENG  @0 Cardioventilatory variables and blood-gas, acid-base status were measured in cannulated white sturgeon (Acipenser transmontanus) maintained at 19°C during normocapnic and hypercapnic (PwCO2 ∼20 Torr) water conditions and after the injection of adrenergic analogs. Hypercapnia produced significant increases in arterial PCO2, ventilatory frequency, and plasma concentration of cortisol and epinephrine, and it produced significant decreases in arterial pH and plasma concentration of glucose but no change in arterial PO2, hematocrit, and concentration of lactate or norepinephrine. Hypercapnia significantly increased cardiac output (Q) by 22%, mean arterial pressure (MAP) by 8%, and heart rate (HR) by 8%. However, gut blood flow (GBF) remained constant. In normocapnic fish, phenylephrine significantly constricted the splanchnic circulation, whereas isoproterenol significantly increased Q and produced a systemic vasodilation. During hypercapnia, propranolol significantly decreased Q, GBF, MAP, and HR, whereas phentolamine significantly decreased MAP and increased GBF. These changes suggest that cardiovascular function in the white sturgeon is sensitive to both α- and (3-adrenergic modulation. We found microspheres to be unreliable in predicting GBF on the basis of our comparisons with simultaneous direct measurements of GBF. Overall, our results demonstrate that environmental hypercapnia (e.g., as is experienced in high-intensity culture situations) elicits stress responses in white sturgeon that significantly elevate steady-state cardiovascular and ventilatory activity levels.
C02 01  X    @0 002A25E
C03 01  X  FRE  @0 Rythme cardiaque @5 01
C03 01  X  ENG  @0 Heart rate @5 01
C03 01  X  SPA  @0 Ritmo cardíaco @5 01
C03 02  X  FRE  @0 Gaz sanguin @5 02
C03 02  X  ENG  @0 Blood gas @5 02
C03 02  X  SPA  @0 Gas sanguíneo @5 02
C03 03  X  FRE  @0 Pression artérielle @5 03
C03 03  X  ENG  @0 Arterial pressure @5 03
C03 03  X  SPA  @0 Presión arterial @5 03
C03 04  X  FRE  @0 Equilibre acidobasique @5 04
C03 04  X  ENG  @0 Acid base balance @5 04
C03 04  X  SPA  @0 Equilibrio acido-base @5 04
C03 05  X  FRE  @0 Carbone dioxyde @2 NK @2 FX @5 05
C03 05  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 05
C03 05  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 05
C03 06  X  FRE  @0 Hypercapnie @5 06
C03 06  X  ENG  @0 Hypercapnia @5 06
C03 06  X  SPA  @0 Hipercapnia @5 06
C03 07  X  FRE  @0 Noradrénaline @2 NK @5 07
C03 07  X  ENG  @0 Norepinephrine @2 NK @5 07
C03 07  X  SPA  @0 Noradrenalina @2 NK @5 07
C03 08  X  FRE  @0 Récepteur adrénergique @5 08
C03 08  X  ENG  @0 Adrenergic receptor @5 08
C03 08  X  SPA  @0 Receptor adrenérgico @5 08
C03 09  X  FRE  @0 Contrôle cardiorespiratoire @5 10
C03 09  X  ENG  @0 Cardiorespiratory control @5 10
C03 09  X  SPA  @0 Control cardiorespiratorio @5 10
C03 10  X  FRE  @0 Contrôle cardiovasculaire @5 11
C03 10  X  ENG  @0 Cardiovascular control @5 11
C03 10  X  SPA  @0 Control cardiovascular @5 11
C03 11  X  FRE  @0 Respiration @5 13
C03 11  X  ENG  @0 Respiration @5 13
C03 11  X  SPA  @0 Respiración @5 13
C03 12  X  FRE  @0 Acipenser transmontanus @2 NS @5 54
C03 12  X  ENG  @0 Acipenser transmontanus @2 NS @5 54
C03 12  X  SPA  @0 Acipenser transmontanus @2 NS @5 54
C07 01  X  FRE  @0 Hémodynamique @5 26
C07 01  X  ENG  @0 Hemodynamics @5 26
C07 01  X  SPA  @0 Hemodinámica @5 26
C07 02  X  FRE  @0 Pisces @2 NS
C07 02  X  ENG  @0 Pisces @2 NS
C07 02  X  SPA  @0 Pisces @2 NS
C07 03  X  FRE  @0 Vertebrata @2 NS
C07 03  X  ENG  @0 Vertebrata @2 NS
C07 03  X  SPA  @0 Vertebrata @2 NS
N21       @1 339

Format Inist (serveur)

NO : PASCAL 00-0512579 INIST
ET : Cardiorespiratory responses of white sturgeon to environmental hypercapnia
AU : CROCKER (C. E.); FARRELL (A. P.); GAMPERL (A. K.); CECH (J. J. JR)
AF : Department of Wildlife, Fish, and Conservation Biology, University of California/Davis, California 95616-8751/Etats-Unis (1 aut., 4 aut.); Department of Biological Sciences, Simon Fraser University/Burnaby, British Columbia V5A 1S6/Canada (2 aut., 3 aut.)
DT : Publication en série; Niveau analytique
SO : American journal of physiology. Regulatory, integrative and comparative physiology; ISSN 0363-6119; Coden AJPRDO; Etats-Unis; Da. 2000; Vol. 48; No. 2; R617-R628; Bibl. 42 ref.
LA : Anglais
EA : Cardioventilatory variables and blood-gas, acid-base status were measured in cannulated white sturgeon (Acipenser transmontanus) maintained at 19°C during normocapnic and hypercapnic (PwCO2 ∼20 Torr) water conditions and after the injection of adrenergic analogs. Hypercapnia produced significant increases in arterial PCO2, ventilatory frequency, and plasma concentration of cortisol and epinephrine, and it produced significant decreases in arterial pH and plasma concentration of glucose but no change in arterial PO2, hematocrit, and concentration of lactate or norepinephrine. Hypercapnia significantly increased cardiac output (Q) by 22%, mean arterial pressure (MAP) by 8%, and heart rate (HR) by 8%. However, gut blood flow (GBF) remained constant. In normocapnic fish, phenylephrine significantly constricted the splanchnic circulation, whereas isoproterenol significantly increased Q and produced a systemic vasodilation. During hypercapnia, propranolol significantly decreased Q, GBF, MAP, and HR, whereas phentolamine significantly decreased MAP and increased GBF. These changes suggest that cardiovascular function in the white sturgeon is sensitive to both α- and (3-adrenergic modulation. We found microspheres to be unreliable in predicting GBF on the basis of our comparisons with simultaneous direct measurements of GBF. Overall, our results demonstrate that environmental hypercapnia (e.g., as is experienced in high-intensity culture situations) elicits stress responses in white sturgeon that significantly elevate steady-state cardiovascular and ventilatory activity levels.
CC : 002A25E
FD : Rythme cardiaque; Gaz sanguin; Pression artérielle; Equilibre acidobasique; Carbone dioxyde; Hypercapnie; Noradrénaline; Récepteur adrénergique; Contrôle cardiorespiratoire; Contrôle cardiovasculaire; Respiration; Acipenser transmontanus
FG : Hémodynamique; Pisces; Vertebrata
ED : Heart rate; Blood gas; Arterial pressure; Acid base balance; Carbon dioxide; Hypercapnia; Norepinephrine; Adrenergic receptor; Cardiorespiratory control; Cardiovascular control; Respiration; Acipenser transmontanus
EG : Hemodynamics; Pisces; Vertebrata
SD : Ritmo cardíaco; Gas sanguíneo; Presión arterial; Equilibrio acido-base; Carbono dióxido; Hipercapnia; Noradrenalina; Receptor adrenérgico; Control cardiorespiratorio; Control cardiovascular; Respiración; Acipenser transmontanus
LO : INIST-670E.354000091005050330
ID : 00-0512579

Links to Exploration step

Pascal:00-0512579

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Cardiorespiratory responses of white sturgeon to environmental hypercapnia</title>
<author>
<name sortKey="Crocker, C E" sort="Crocker, C E" uniqKey="Crocker C" first="C. E." last="Crocker">C. E. Crocker</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Wildlife, Fish, and Conservation Biology, University of California</s1>
<s2>Davis, California 95616-8751</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Farrell, A P" sort="Farrell, A P" uniqKey="Farrell A" first="A. P." last="Farrell">A. P. Farrell</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological Sciences, Simon Fraser University</s1>
<s2>Burnaby, British Columbia V5A 1S6</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gamperl, A K" sort="Gamperl, A K" uniqKey="Gamperl A" first="A. K." last="Gamperl">A. K. Gamperl</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological Sciences, Simon Fraser University</s1>
<s2>Burnaby, British Columbia V5A 1S6</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cech, J J Jr" sort="Cech, J J Jr" uniqKey="Cech J" first="J. J. Jr" last="Cech">J. J. Jr Cech</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Wildlife, Fish, and Conservation Biology, University of California</s1>
<s2>Davis, California 95616-8751</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">00-0512579</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 00-0512579 INIST</idno>
<idno type="RBID">Pascal:00-0512579</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000356</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Cardiorespiratory responses of white sturgeon to environmental hypercapnia</title>
<author>
<name sortKey="Crocker, C E" sort="Crocker, C E" uniqKey="Crocker C" first="C. E." last="Crocker">C. E. Crocker</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Wildlife, Fish, and Conservation Biology, University of California</s1>
<s2>Davis, California 95616-8751</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Farrell, A P" sort="Farrell, A P" uniqKey="Farrell A" first="A. P." last="Farrell">A. P. Farrell</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological Sciences, Simon Fraser University</s1>
<s2>Burnaby, British Columbia V5A 1S6</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gamperl, A K" sort="Gamperl, A K" uniqKey="Gamperl A" first="A. K." last="Gamperl">A. K. Gamperl</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Biological Sciences, Simon Fraser University</s1>
<s2>Burnaby, British Columbia V5A 1S6</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cech, J J Jr" sort="Cech, J J Jr" uniqKey="Cech J" first="J. J. Jr" last="Cech">J. J. Jr Cech</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Wildlife, Fish, and Conservation Biology, University of California</s1>
<s2>Davis, California 95616-8751</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">American journal of physiology. Regulatory, integrative and comparative physiology</title>
<title level="j" type="abbreviated">Am. j. physiol., Regul. integr. comp. physiol.</title>
<idno type="ISSN">0363-6119</idno>
<imprint>
<date when="2000">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">American journal of physiology. Regulatory, integrative and comparative physiology</title>
<title level="j" type="abbreviated">Am. j. physiol., Regul. integr. comp. physiol.</title>
<idno type="ISSN">0363-6119</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acid base balance</term>
<term>Acipenser transmontanus</term>
<term>Adrenergic receptor</term>
<term>Arterial pressure</term>
<term>Blood gas</term>
<term>Carbon dioxide</term>
<term>Cardiorespiratory control</term>
<term>Cardiovascular control</term>
<term>Heart rate</term>
<term>Hypercapnia</term>
<term>Norepinephrine</term>
<term>Respiration</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rythme cardiaque</term>
<term>Gaz sanguin</term>
<term>Pression artérielle</term>
<term>Equilibre acidobasique</term>
<term>Carbone dioxyde</term>
<term>Hypercapnie</term>
<term>Noradrénaline</term>
<term>Récepteur adrénergique</term>
<term>Contrôle cardiorespiratoire</term>
<term>Contrôle cardiovasculaire</term>
<term>Respiration</term>
<term>Acipenser transmontanus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cardioventilatory variables and blood-gas, acid-base status were measured in cannulated white sturgeon (Acipenser transmontanus) maintained at 19°C during normocapnic and hypercapnic (Pw
<sub>CO2</sub>
∼20 Torr) water conditions and after the injection of adrenergic analogs. Hypercapnia produced significant increases in arterial PCO
<sub>2</sub>
, ventilatory frequency, and plasma concentration of cortisol and epinephrine, and it produced significant decreases in arterial pH and plasma concentration of glucose but no change in arterial PO
<sub>2</sub>
, hematocrit, and concentration of lactate or norepinephrine. Hypercapnia significantly increased cardiac output (Q) by 22%, mean arterial pressure (MAP) by 8%, and heart rate (HR) by 8%. However, gut blood flow (GBF) remained constant. In normocapnic fish, phenylephrine significantly constricted the splanchnic circulation, whereas isoproterenol significantly increased Q and produced a systemic vasodilation. During hypercapnia, propranolol significantly decreased Q, GBF, MAP, and HR, whereas phentolamine significantly decreased MAP and increased GBF. These changes suggest that cardiovascular function in the white sturgeon is sensitive to both α- and (3-adrenergic modulation. We found microspheres to be unreliable in predicting GBF on the basis of our comparisons with simultaneous direct measurements of GBF. Overall, our results demonstrate that environmental hypercapnia (e.g., as is experienced in high-intensity culture situations) elicits stress responses in white sturgeon that significantly elevate steady-state cardiovascular and ventilatory activity levels.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0363-6119</s0>
</fA01>
<fA02 i1="01">
<s0>AJPRDO</s0>
</fA02>
<fA03 i2="1">
<s0>Am. j. physiol., Regul. integr. comp. physiol.</s0>
</fA03>
<fA05>
<s2>48</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Cardiorespiratory responses of white sturgeon to environmental hypercapnia</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CROCKER (C. E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FARRELL (A. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GAMPERL (A. K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CECH (J. J. JR)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Wildlife, Fish, and Conservation Biology, University of California</s1>
<s2>Davis, California 95616-8751</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Biological Sciences, Simon Fraser University</s1>
<s2>Burnaby, British Columbia V5A 1S6</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>R617-R628</s2>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>670E</s2>
<s5>354000091005050330</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2000 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>42 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>00-0512579</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>American journal of physiology. Regulatory, integrative and comparative physiology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Cardioventilatory variables and blood-gas, acid-base status were measured in cannulated white sturgeon (Acipenser transmontanus) maintained at 19°C during normocapnic and hypercapnic (Pw
<sub>CO2</sub>
∼20 Torr) water conditions and after the injection of adrenergic analogs. Hypercapnia produced significant increases in arterial PCO
<sub>2</sub>
, ventilatory frequency, and plasma concentration of cortisol and epinephrine, and it produced significant decreases in arterial pH and plasma concentration of glucose but no change in arterial PO
<sub>2</sub>
, hematocrit, and concentration of lactate or norepinephrine. Hypercapnia significantly increased cardiac output (Q) by 22%, mean arterial pressure (MAP) by 8%, and heart rate (HR) by 8%. However, gut blood flow (GBF) remained constant. In normocapnic fish, phenylephrine significantly constricted the splanchnic circulation, whereas isoproterenol significantly increased Q and produced a systemic vasodilation. During hypercapnia, propranolol significantly decreased Q, GBF, MAP, and HR, whereas phentolamine significantly decreased MAP and increased GBF. These changes suggest that cardiovascular function in the white sturgeon is sensitive to both α- and (3-adrenergic modulation. We found microspheres to be unreliable in predicting GBF on the basis of our comparisons with simultaneous direct measurements of GBF. Overall, our results demonstrate that environmental hypercapnia (e.g., as is experienced in high-intensity culture situations) elicits stress responses in white sturgeon that significantly elevate steady-state cardiovascular and ventilatory activity levels.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A25E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Rythme cardiaque</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Heart rate</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Ritmo cardíaco</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Gaz sanguin</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Blood gas</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Gas sanguíneo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Pression artérielle</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Arterial pressure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Presión arterial</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Equilibre acidobasique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Acid base balance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Equilibrio acido-base</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Carbone dioxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Hypercapnie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Hypercapnia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Hipercapnia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Noradrénaline</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Norepinephrine</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Noradrenalina</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Récepteur adrénergique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Adrenergic receptor</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Receptor adrenérgico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Contrôle cardiorespiratoire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Cardiorespiratory control</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Control cardiorespiratorio</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Contrôle cardiovasculaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Cardiovascular control</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Control cardiovascular</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Respiration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Respiration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Respiración</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>54</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>54</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>54</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Hémodynamique</s0>
<s5>26</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Hemodynamics</s0>
<s5>26</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Hemodinámica</s0>
<s5>26</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Pisces</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Pisces</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Pisces</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>339</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 00-0512579 INIST</NO>
<ET>Cardiorespiratory responses of white sturgeon to environmental hypercapnia</ET>
<AU>CROCKER (C. E.); FARRELL (A. P.); GAMPERL (A. K.); CECH (J. J. JR)</AU>
<AF>Department of Wildlife, Fish, and Conservation Biology, University of California/Davis, California 95616-8751/Etats-Unis (1 aut., 4 aut.); Department of Biological Sciences, Simon Fraser University/Burnaby, British Columbia V5A 1S6/Canada (2 aut., 3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>American journal of physiology. Regulatory, integrative and comparative physiology; ISSN 0363-6119; Coden AJPRDO; Etats-Unis; Da. 2000; Vol. 48; No. 2; R617-R628; Bibl. 42 ref.</SO>
<LA>Anglais</LA>
<EA>Cardioventilatory variables and blood-gas, acid-base status were measured in cannulated white sturgeon (Acipenser transmontanus) maintained at 19°C during normocapnic and hypercapnic (Pw
<sub>CO2</sub>
∼20 Torr) water conditions and after the injection of adrenergic analogs. Hypercapnia produced significant increases in arterial PCO
<sub>2</sub>
, ventilatory frequency, and plasma concentration of cortisol and epinephrine, and it produced significant decreases in arterial pH and plasma concentration of glucose but no change in arterial PO
<sub>2</sub>
, hematocrit, and concentration of lactate or norepinephrine. Hypercapnia significantly increased cardiac output (Q) by 22%, mean arterial pressure (MAP) by 8%, and heart rate (HR) by 8%. However, gut blood flow (GBF) remained constant. In normocapnic fish, phenylephrine significantly constricted the splanchnic circulation, whereas isoproterenol significantly increased Q and produced a systemic vasodilation. During hypercapnia, propranolol significantly decreased Q, GBF, MAP, and HR, whereas phentolamine significantly decreased MAP and increased GBF. These changes suggest that cardiovascular function in the white sturgeon is sensitive to both α- and (3-adrenergic modulation. We found microspheres to be unreliable in predicting GBF on the basis of our comparisons with simultaneous direct measurements of GBF. Overall, our results demonstrate that environmental hypercapnia (e.g., as is experienced in high-intensity culture situations) elicits stress responses in white sturgeon that significantly elevate steady-state cardiovascular and ventilatory activity levels.</EA>
<CC>002A25E</CC>
<FD>Rythme cardiaque; Gaz sanguin; Pression artérielle; Equilibre acidobasique; Carbone dioxyde; Hypercapnie; Noradrénaline; Récepteur adrénergique; Contrôle cardiorespiratoire; Contrôle cardiovasculaire; Respiration; Acipenser transmontanus</FD>
<FG>Hémodynamique; Pisces; Vertebrata</FG>
<ED>Heart rate; Blood gas; Arterial pressure; Acid base balance; Carbon dioxide; Hypercapnia; Norepinephrine; Adrenergic receptor; Cardiorespiratory control; Cardiovascular control; Respiration; Acipenser transmontanus</ED>
<EG>Hemodynamics; Pisces; Vertebrata</EG>
<SD>Ritmo cardíaco; Gas sanguíneo; Presión arterial; Equilibrio acido-base; Carbono dióxido; Hipercapnia; Noradrenalina; Receptor adrenérgico; Control cardiorespiratorio; Control cardiovascular; Respiración; Acipenser transmontanus</SD>
<LO>INIST-670E.354000091005050330</LO>
<ID>00-0512579</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000356 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000356 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:00-0512579
   |texte=   Cardiorespiratory responses of white sturgeon to environmental hypercapnia
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024