Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Absorption, distribution, and elimination of graded oral doses of methylmercury in juvenile white sturgeon

Identifieur interne : 000058 ( PascalFrancis/Corpus ); précédent : 000057; suivant : 000059

Absorption, distribution, and elimination of graded oral doses of methylmercury in juvenile white sturgeon

Auteurs : Susie Shih-Yin Huang ; Anders Bjerring Strathe ; James G. Fadel ; PINPIN LIN ; Tsung-Yun Liu ; Silas S. O. Hung

Source :

RBID : Pascal:12-0361705

Descripteurs français

English descriptors

Abstract

Mercury (Hg) is toxic and is released into the environment from a wide variety of anthropogenic sources. Methylmercury (MeHg), a product of microbial methylation, enables rapid Hg bioaccumulation and bio-magnification in the biota. Methylmercury is sequestered and made available to the rest of the biota through the benthic-detrital component leading to the high risk of exposure to benthic fish species, such as white sturgeon (Acipenser transmontanus). In the present study, a combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized to characterize the absorption, distribution, and elimination of Hg in white sturgeon over a 48 h exposure. Mercury, as methylmercury chloride, at either 0, 250, 500, or 1000 μg Hg/kg body weight, was orally intubated into white sturgeon, in groups of five. The blood was repeatedly sampled and urine collected from the fish over the 48 h post intubation period, and at 48 h, the fish were sacrificed for Hg tissue concentration and distribution determinations. The fractional rate of absorption (K), blood Hg concentration (μg/ml), tissue concentration (μg/g dry weight) and distribution (%), and urinary Hg elimination flux (μg/kg/h) are significantly different (p < 0.05) among the MeHg doses. Complete blood uptake of Hg was observed in all MeHg treated fish by 12 h. The maximal observed blood Hg concentration peaks are 0.56 ± 0.02, 0.70 ± 0.02, and 2.19 ± 0.07 μg/ml (mean ± SEM) for the 250, 500, and 1000 μg Hg/kg body weight dose groups, respectively. Changes in blood Hg profiles can be described by a monomolecular function in all of the MeHg treated fish. The Hg concentration asymptote (A) and K are dose dependent. The relationship between A and the intubation dose, however, is nonlinear. Mercury levels in certain tissues are comparable to field data and longer-term study, indicating that the lower doses used in the current study are ecologically relevant for the species. Tissue Hg concentrations are in the following decreasing order: gastro-intestinal tract > kidney > spleen > gill > heart > liver > brain > white muscle and remaining whole body. At 48 h, Hg was found to be preferentially distributed to metabolically active tissues. Digestibility is highest at the lowest MeHg dose. Measurable urinary Hg was observed in the fish treated with the highest MeHg dose, and a significant increase in the elimination flux was observed between 3 and 12 h post intubation.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0166-445X
A02 01      @0 AQTODG
A03   1    @0 Aquat. toxicol.
A05       @2 122-23
A08 01  1  ENG  @1 Absorption, distribution, and elimination of graded oral doses of methylmercury in juvenile white sturgeon
A11 01  1    @1 SHIH-YIN HUANG (Susie)
A11 02  1    @1 BJERRING STRATHE (Anders)
A11 03  1    @1 FADEL (James G.)
A11 04  1    @1 PINPIN LIN
A11 05  1    @1 LIU (Tsung-Yun)
A11 06  1    @1 HUNG (Silas S. O.)
A14 01      @1 Department of Animal Science, University of California @2 Davis, CA 95616 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 6 aut.
A14 02      @1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes @2 Zhunan, 350 @3 TWN @Z 4 aut.
A14 03      @1 Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang-Ming University @2 Taipei, 112 @3 TWN @Z 5 aut.
A20       @1 163-171
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 18841 @5 354000508126360190
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 12-0361705
A60       @1 P
A61       @0 A
A64 01  1    @0 Aquatic toxicology
A66 01      @0 NLD
C01 01    ENG  @0 Mercury (Hg) is toxic and is released into the environment from a wide variety of anthropogenic sources. Methylmercury (MeHg), a product of microbial methylation, enables rapid Hg bioaccumulation and bio-magnification in the biota. Methylmercury is sequestered and made available to the rest of the biota through the benthic-detrital component leading to the high risk of exposure to benthic fish species, such as white sturgeon (Acipenser transmontanus). In the present study, a combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized to characterize the absorption, distribution, and elimination of Hg in white sturgeon over a 48 h exposure. Mercury, as methylmercury chloride, at either 0, 250, 500, or 1000 μg Hg/kg body weight, was orally intubated into white sturgeon, in groups of five. The blood was repeatedly sampled and urine collected from the fish over the 48 h post intubation period, and at 48 h, the fish were sacrificed for Hg tissue concentration and distribution determinations. The fractional rate of absorption (K), blood Hg concentration (μg/ml), tissue concentration (μg/g dry weight) and distribution (%), and urinary Hg elimination flux (μg/kg/h) are significantly different (p < 0.05) among the MeHg doses. Complete blood uptake of Hg was observed in all MeHg treated fish by 12 h. The maximal observed blood Hg concentration peaks are 0.56 ± 0.02, 0.70 ± 0.02, and 2.19 ± 0.07 μg/ml (mean ± SEM) for the 250, 500, and 1000 μg Hg/kg body weight dose groups, respectively. Changes in blood Hg profiles can be described by a monomolecular function in all of the MeHg treated fish. The Hg concentration asymptote (A) and K are dose dependent. The relationship between A and the intubation dose, however, is nonlinear. Mercury levels in certain tissues are comparable to field data and longer-term study, indicating that the lower doses used in the current study are ecologically relevant for the species. Tissue Hg concentrations are in the following decreasing order: gastro-intestinal tract > kidney > spleen > gill > heart > liver > brain > white muscle and remaining whole body. At 48 h, Hg was found to be preferentially distributed to metabolically active tissues. Digestibility is highest at the lowest MeHg dose. Measurable urinary Hg was observed in the fish treated with the highest MeHg dose, and a significant increase in the elimination flux was observed between 3 and 12 h post intubation.
C02 01  X    @0 002A14D05A
C02 02  X    @0 002A15B
C03 01  X  FRE  @0 Absorption @5 01
C03 01  X  ENG  @0 Absorption @5 01
C03 01  X  SPA  @0 Absorción @5 01
C03 02  X  FRE  @0 Elimination @5 02
C03 02  X  ENG  @0 Elimination @5 02
C03 02  X  SPA  @0 Eliminación @5 02
C03 03  X  FRE  @0 Mercure @2 NC @2 FX @5 03
C03 03  X  ENG  @0 Mercury @2 NC @2 FX @5 03
C03 03  X  SPA  @0 Mercurio @2 NC @2 FX @5 03
C03 04  X  FRE  @0 Temps exposition @5 04
C03 04  X  ENG  @0 Exposure time @5 04
C03 04  X  SPA  @0 Tiempo exposición @5 04
C03 05  X  FRE  @0 Contaminant @5 05
C03 05  X  ENG  @0 Contaminant @5 05
C03 05  X  SPA  @0 Contaminante @5 05
C03 06  X  FRE  @0 Milieu aquatique @5 06
C03 06  X  ENG  @0 Aquatic environment @5 06
C03 06  X  SPA  @0 Medio acuático @5 06
C03 07  X  FRE  @0 Ecotoxicologie @5 07
C03 07  X  ENG  @0 Ecotoxicology @5 07
C03 07  X  SPA  @0 Ecotoxicología @5 07
C03 08  X  FRE  @0 Toxicité @5 23
C03 08  X  ENG  @0 Toxicity @5 23
C03 08  X  SPA  @0 Toxicidad @5 23
C03 09  X  FRE  @0 Polluant @5 24
C03 09  X  ENG  @0 Pollutant @5 24
C03 09  X  SPA  @0 Contaminante @5 24
C03 10  X  FRE  @0 Acipenser transmontanus @2 NS @5 49
C03 10  X  ENG  @0 Acipenser transmontanus @2 NS @5 49
C03 10  X  SPA  @0 Acipenser transmontanus @2 NS @5 49
C03 11  X  FRE  @0 Mercure(méthyl) @4 INC @5 87
C07 01  X  FRE  @0 Composé organique @2 NA @5 17
C07 01  X  ENG  @0 Organic compounds @2 NA @5 17
C07 01  X  SPA  @0 Compuesto orgánico @2 NA @5 17
C07 02  X  FRE  @0 Métal lourd @5 18
C07 02  X  ENG  @0 Heavy metal @5 18
C07 02  X  SPA  @0 Metal pesado @5 18
C07 03  X  FRE  @0 Pisces @2 NS @5 29
C07 03  X  ENG  @0 Pisces @2 NS @5 29
C07 03  X  SPA  @0 Pisces @2 NS @5 29
C07 04  X  FRE  @0 Vertebrata @2 NS
C07 04  X  ENG  @0 Vertebrata @2 NS
C07 04  X  SPA  @0 Vertebrata @2 NS
C07 05  X  FRE  @0 Acipenseridae @4 INC @5 70
N21       @1 282
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0361705 INIST
ET : Absorption, distribution, and elimination of graded oral doses of methylmercury in juvenile white sturgeon
AU : SHIH-YIN HUANG (Susie); BJERRING STRATHE (Anders); FADEL (James G.); PINPIN LIN; LIU (Tsung-Yun); HUNG (Silas S. O.)
AF : Department of Animal Science, University of California/Davis, CA 95616/Etats-Unis (1 aut., 2 aut., 3 aut., 6 aut.); Division of Environmental Health and Occupational Medicine, National Health Research Institutes/Zhunan, 350/Taïwan (4 aut.); Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang-Ming University/Taipei, 112/Taïwan (5 aut.)
DT : Publication en série; Niveau analytique
SO : Aquatic toxicology; ISSN 0166-445X; Coden AQTODG; Pays-Bas; Da. 2012; Vol. 122-23; Pp. 163-171; Bibl. 1 p.1/4
LA : Anglais
EA : Mercury (Hg) is toxic and is released into the environment from a wide variety of anthropogenic sources. Methylmercury (MeHg), a product of microbial methylation, enables rapid Hg bioaccumulation and bio-magnification in the biota. Methylmercury is sequestered and made available to the rest of the biota through the benthic-detrital component leading to the high risk of exposure to benthic fish species, such as white sturgeon (Acipenser transmontanus). In the present study, a combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized to characterize the absorption, distribution, and elimination of Hg in white sturgeon over a 48 h exposure. Mercury, as methylmercury chloride, at either 0, 250, 500, or 1000 μg Hg/kg body weight, was orally intubated into white sturgeon, in groups of five. The blood was repeatedly sampled and urine collected from the fish over the 48 h post intubation period, and at 48 h, the fish were sacrificed for Hg tissue concentration and distribution determinations. The fractional rate of absorption (K), blood Hg concentration (μg/ml), tissue concentration (μg/g dry weight) and distribution (%), and urinary Hg elimination flux (μg/kg/h) are significantly different (p < 0.05) among the MeHg doses. Complete blood uptake of Hg was observed in all MeHg treated fish by 12 h. The maximal observed blood Hg concentration peaks are 0.56 ± 0.02, 0.70 ± 0.02, and 2.19 ± 0.07 μg/ml (mean ± SEM) for the 250, 500, and 1000 μg Hg/kg body weight dose groups, respectively. Changes in blood Hg profiles can be described by a monomolecular function in all of the MeHg treated fish. The Hg concentration asymptote (A) and K are dose dependent. The relationship between A and the intubation dose, however, is nonlinear. Mercury levels in certain tissues are comparable to field data and longer-term study, indicating that the lower doses used in the current study are ecologically relevant for the species. Tissue Hg concentrations are in the following decreasing order: gastro-intestinal tract > kidney > spleen > gill > heart > liver > brain > white muscle and remaining whole body. At 48 h, Hg was found to be preferentially distributed to metabolically active tissues. Digestibility is highest at the lowest MeHg dose. Measurable urinary Hg was observed in the fish treated with the highest MeHg dose, and a significant increase in the elimination flux was observed between 3 and 12 h post intubation.
CC : 002A14D05A; 002A15B
FD : Absorption; Elimination; Mercure; Temps exposition; Contaminant; Milieu aquatique; Ecotoxicologie; Toxicité; Polluant; Acipenser transmontanus; Mercure(méthyl)
FG : Composé organique; Métal lourd; Pisces; Vertebrata; Acipenseridae
ED : Absorption; Elimination; Mercury; Exposure time; Contaminant; Aquatic environment; Ecotoxicology; Toxicity; Pollutant; Acipenser transmontanus
EG : Organic compounds; Heavy metal; Pisces; Vertebrata
SD : Absorción; Eliminación; Mercurio; Tiempo exposición; Contaminante; Medio acuático; Ecotoxicología; Toxicidad; Contaminante; Acipenser transmontanus
LO : INIST-18841.354000508126360190
ID : 12-0361705

Links to Exploration step

Pascal:12-0361705

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Absorption, distribution, and elimination of graded oral doses of methylmercury in juvenile white sturgeon</title>
<author>
<name sortKey="Shih Yin Huang, Susie" sort="Shih Yin Huang, Susie" uniqKey="Shih Yin Huang S" first="Susie" last="Shih-Yin Huang">Susie Shih-Yin Huang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bjerring Strathe, Anders" sort="Bjerring Strathe, Anders" uniqKey="Bjerring Strathe A" first="Anders" last="Bjerring Strathe">Anders Bjerring Strathe</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fadel, James G" sort="Fadel, James G" uniqKey="Fadel J" first="James G." last="Fadel">James G. Fadel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pinpin Lin" sort="Pinpin Lin" uniqKey="Pinpin Lin" last="Pinpin Lin">PINPIN LIN</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Environmental Health and Occupational Medicine, National Health Research Institutes</s1>
<s2>Zhunan, 350</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liu, Tsung Yun" sort="Liu, Tsung Yun" uniqKey="Liu T" first="Tsung-Yun" last="Liu">Tsung-Yun Liu</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang-Ming University</s1>
<s2>Taipei, 112</s2>
<s3>TWN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hung, Silas S O" sort="Hung, Silas S O" uniqKey="Hung S" first="Silas S. O." last="Hung">Silas S. O. Hung</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0361705</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0361705 INIST</idno>
<idno type="RBID">Pascal:12-0361705</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000058</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Absorption, distribution, and elimination of graded oral doses of methylmercury in juvenile white sturgeon</title>
<author>
<name sortKey="Shih Yin Huang, Susie" sort="Shih Yin Huang, Susie" uniqKey="Shih Yin Huang S" first="Susie" last="Shih-Yin Huang">Susie Shih-Yin Huang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bjerring Strathe, Anders" sort="Bjerring Strathe, Anders" uniqKey="Bjerring Strathe A" first="Anders" last="Bjerring Strathe">Anders Bjerring Strathe</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fadel, James G" sort="Fadel, James G" uniqKey="Fadel J" first="James G." last="Fadel">James G. Fadel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pinpin Lin" sort="Pinpin Lin" uniqKey="Pinpin Lin" last="Pinpin Lin">PINPIN LIN</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Environmental Health and Occupational Medicine, National Health Research Institutes</s1>
<s2>Zhunan, 350</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liu, Tsung Yun" sort="Liu, Tsung Yun" uniqKey="Liu T" first="Tsung-Yun" last="Liu">Tsung-Yun Liu</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang-Ming University</s1>
<s2>Taipei, 112</s2>
<s3>TWN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hung, Silas S O" sort="Hung, Silas S O" uniqKey="Hung S" first="Silas S. O." last="Hung">Silas S. O. Hung</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Aquatic toxicology</title>
<title level="j" type="abbreviated">Aquat. toxicol.</title>
<idno type="ISSN">0166-445X</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Aquatic toxicology</title>
<title level="j" type="abbreviated">Aquat. toxicol.</title>
<idno type="ISSN">0166-445X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption</term>
<term>Acipenser transmontanus</term>
<term>Aquatic environment</term>
<term>Contaminant</term>
<term>Ecotoxicology</term>
<term>Elimination</term>
<term>Exposure time</term>
<term>Mercury</term>
<term>Pollutant</term>
<term>Toxicity</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Absorption</term>
<term>Elimination</term>
<term>Mercure</term>
<term>Temps exposition</term>
<term>Contaminant</term>
<term>Milieu aquatique</term>
<term>Ecotoxicologie</term>
<term>Toxicité</term>
<term>Polluant</term>
<term>Acipenser transmontanus</term>
<term>Mercure(méthyl)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mercury (Hg) is toxic and is released into the environment from a wide variety of anthropogenic sources. Methylmercury (MeHg), a product of microbial methylation, enables rapid Hg bioaccumulation and bio-magnification in the biota. Methylmercury is sequestered and made available to the rest of the biota through the benthic-detrital component leading to the high risk of exposure to benthic fish species, such as white sturgeon (Acipenser transmontanus). In the present study, a combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized to characterize the absorption, distribution, and elimination of Hg in white sturgeon over a 48 h exposure. Mercury, as methylmercury chloride, at either 0, 250, 500, or 1000 μg Hg/kg body weight, was orally intubated into white sturgeon, in groups of five. The blood was repeatedly sampled and urine collected from the fish over the 48 h post intubation period, and at 48 h, the fish were sacrificed for Hg tissue concentration and distribution determinations. The fractional rate of absorption (K), blood Hg concentration (μg/ml), tissue concentration (μg/g dry weight) and distribution (%), and urinary Hg elimination flux (μg/kg/h) are significantly different (p < 0.05) among the MeHg doses. Complete blood uptake of Hg was observed in all MeHg treated fish by 12 h. The maximal observed blood Hg concentration peaks are 0.56 ± 0.02, 0.70 ± 0.02, and 2.19 ± 0.07 μg/ml (mean ± SEM) for the 250, 500, and 1000 μg Hg/kg body weight dose groups, respectively. Changes in blood Hg profiles can be described by a monomolecular function in all of the MeHg treated fish. The Hg concentration asymptote (A) and K are dose dependent. The relationship between A and the intubation dose, however, is nonlinear. Mercury levels in certain tissues are comparable to field data and longer-term study, indicating that the lower doses used in the current study are ecologically relevant for the species. Tissue Hg concentrations are in the following decreasing order: gastro-intestinal tract > kidney > spleen > gill > heart > liver > brain > white muscle and remaining whole body. At 48 h, Hg was found to be preferentially distributed to metabolically active tissues. Digestibility is highest at the lowest MeHg dose. Measurable urinary Hg was observed in the fish treated with the highest MeHg dose, and a significant increase in the elimination flux was observed between 3 and 12 h post intubation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0166-445X</s0>
</fA01>
<fA02 i1="01">
<s0>AQTODG</s0>
</fA02>
<fA03 i2="1">
<s0>Aquat. toxicol.</s0>
</fA03>
<fA05>
<s2>122-23</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Absorption, distribution, and elimination of graded oral doses of methylmercury in juvenile white sturgeon</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHIH-YIN HUANG (Susie)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BJERRING STRATHE (Anders)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FADEL (James G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PINPIN LIN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LIU (Tsung-Yun)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HUNG (Silas S. O.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Division of Environmental Health and Occupational Medicine, National Health Research Institutes</s1>
<s2>Zhunan, 350</s2>
<s3>TWN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang-Ming University</s1>
<s2>Taipei, 112</s2>
<s3>TWN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>163-171</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18841</s2>
<s5>354000508126360190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0361705</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Aquatic toxicology</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Mercury (Hg) is toxic and is released into the environment from a wide variety of anthropogenic sources. Methylmercury (MeHg), a product of microbial methylation, enables rapid Hg bioaccumulation and bio-magnification in the biota. Methylmercury is sequestered and made available to the rest of the biota through the benthic-detrital component leading to the high risk of exposure to benthic fish species, such as white sturgeon (Acipenser transmontanus). In the present study, a combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized to characterize the absorption, distribution, and elimination of Hg in white sturgeon over a 48 h exposure. Mercury, as methylmercury chloride, at either 0, 250, 500, or 1000 μg Hg/kg body weight, was orally intubated into white sturgeon, in groups of five. The blood was repeatedly sampled and urine collected from the fish over the 48 h post intubation period, and at 48 h, the fish were sacrificed for Hg tissue concentration and distribution determinations. The fractional rate of absorption (K), blood Hg concentration (μg/ml), tissue concentration (μg/g dry weight) and distribution (%), and urinary Hg elimination flux (μg/kg/h) are significantly different (p < 0.05) among the MeHg doses. Complete blood uptake of Hg was observed in all MeHg treated fish by 12 h. The maximal observed blood Hg concentration peaks are 0.56 ± 0.02, 0.70 ± 0.02, and 2.19 ± 0.07 μg/ml (mean ± SEM) for the 250, 500, and 1000 μg Hg/kg body weight dose groups, respectively. Changes in blood Hg profiles can be described by a monomolecular function in all of the MeHg treated fish. The Hg concentration asymptote (A) and K are dose dependent. The relationship between A and the intubation dose, however, is nonlinear. Mercury levels in certain tissues are comparable to field data and longer-term study, indicating that the lower doses used in the current study are ecologically relevant for the species. Tissue Hg concentrations are in the following decreasing order: gastro-intestinal tract > kidney > spleen > gill > heart > liver > brain > white muscle and remaining whole body. At 48 h, Hg was found to be preferentially distributed to metabolically active tissues. Digestibility is highest at the lowest MeHg dose. Measurable urinary Hg was observed in the fish treated with the highest MeHg dose, and a significant increase in the elimination flux was observed between 3 and 12 h post intubation.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14D05A</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A15B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Absorption</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Absorption</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Absorción</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Elimination</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Elimination</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Eliminación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Mercure</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Mercury</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Mercurio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Temps exposition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Exposure time</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Tiempo exposición</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Contaminant</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Contaminant</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Contaminante</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Milieu aquatique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Aquatic environment</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Medio acuático</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Ecotoxicologie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Ecotoxicology</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Ecotoxicología</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Toxicité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Toxicity</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Toxicidad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Polluant</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Pollutant</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Contaminante</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Mercure(méthyl)</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé organique</s0>
<s2>NA</s2>
<s5>17</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Organic compounds</s0>
<s2>NA</s2>
<s5>17</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto orgánico</s0>
<s2>NA</s2>
<s5>17</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Métal lourd</s0>
<s5>18</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Heavy metal</s0>
<s5>18</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Metal pesado</s0>
<s5>18</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>29</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>29</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>29</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Acipenseridae</s0>
<s4>INC</s4>
<s5>70</s5>
</fC07>
<fN21>
<s1>282</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0361705 INIST</NO>
<ET>Absorption, distribution, and elimination of graded oral doses of methylmercury in juvenile white sturgeon</ET>
<AU>SHIH-YIN HUANG (Susie); BJERRING STRATHE (Anders); FADEL (James G.); PINPIN LIN; LIU (Tsung-Yun); HUNG (Silas S. O.)</AU>
<AF>Department of Animal Science, University of California/Davis, CA 95616/Etats-Unis (1 aut., 2 aut., 3 aut., 6 aut.); Division of Environmental Health and Occupational Medicine, National Health Research Institutes/Zhunan, 350/Taïwan (4 aut.); Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang-Ming University/Taipei, 112/Taïwan (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Aquatic toxicology; ISSN 0166-445X; Coden AQTODG; Pays-Bas; Da. 2012; Vol. 122-23; Pp. 163-171; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>Mercury (Hg) is toxic and is released into the environment from a wide variety of anthropogenic sources. Methylmercury (MeHg), a product of microbial methylation, enables rapid Hg bioaccumulation and bio-magnification in the biota. Methylmercury is sequestered and made available to the rest of the biota through the benthic-detrital component leading to the high risk of exposure to benthic fish species, such as white sturgeon (Acipenser transmontanus). In the present study, a combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized to characterize the absorption, distribution, and elimination of Hg in white sturgeon over a 48 h exposure. Mercury, as methylmercury chloride, at either 0, 250, 500, or 1000 μg Hg/kg body weight, was orally intubated into white sturgeon, in groups of five. The blood was repeatedly sampled and urine collected from the fish over the 48 h post intubation period, and at 48 h, the fish were sacrificed for Hg tissue concentration and distribution determinations. The fractional rate of absorption (K), blood Hg concentration (μg/ml), tissue concentration (μg/g dry weight) and distribution (%), and urinary Hg elimination flux (μg/kg/h) are significantly different (p < 0.05) among the MeHg doses. Complete blood uptake of Hg was observed in all MeHg treated fish by 12 h. The maximal observed blood Hg concentration peaks are 0.56 ± 0.02, 0.70 ± 0.02, and 2.19 ± 0.07 μg/ml (mean ± SEM) for the 250, 500, and 1000 μg Hg/kg body weight dose groups, respectively. Changes in blood Hg profiles can be described by a monomolecular function in all of the MeHg treated fish. The Hg concentration asymptote (A) and K are dose dependent. The relationship between A and the intubation dose, however, is nonlinear. Mercury levels in certain tissues are comparable to field data and longer-term study, indicating that the lower doses used in the current study are ecologically relevant for the species. Tissue Hg concentrations are in the following decreasing order: gastro-intestinal tract > kidney > spleen > gill > heart > liver > brain > white muscle and remaining whole body. At 48 h, Hg was found to be preferentially distributed to metabolically active tissues. Digestibility is highest at the lowest MeHg dose. Measurable urinary Hg was observed in the fish treated with the highest MeHg dose, and a significant increase in the elimination flux was observed between 3 and 12 h post intubation.</EA>
<CC>002A14D05A; 002A15B</CC>
<FD>Absorption; Elimination; Mercure; Temps exposition; Contaminant; Milieu aquatique; Ecotoxicologie; Toxicité; Polluant; Acipenser transmontanus; Mercure(méthyl)</FD>
<FG>Composé organique; Métal lourd; Pisces; Vertebrata; Acipenseridae</FG>
<ED>Absorption; Elimination; Mercury; Exposure time; Contaminant; Aquatic environment; Ecotoxicology; Toxicity; Pollutant; Acipenser transmontanus</ED>
<EG>Organic compounds; Heavy metal; Pisces; Vertebrata</EG>
<SD>Absorción; Eliminación; Mercurio; Tiempo exposición; Contaminante; Medio acuático; Ecotoxicología; Toxicidad; Contaminante; Acipenser transmontanus</SD>
<LO>INIST-18841.354000508126360190</LO>
<ID>12-0361705</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000058 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000058 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0361705
   |texte=   Absorption, distribution, and elimination of graded oral doses of methylmercury in juvenile white sturgeon
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024