Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling the influence of hypoxia on the potential habitat of Atlantic sturgeon Acipenser oxyrinchus: a comparison of two methods

Identifieur interne : 000038 ( PascalFrancis/Corpus ); précédent : 000037; suivant : 000039

Modeling the influence of hypoxia on the potential habitat of Atlantic sturgeon Acipenser oxyrinchus: a comparison of two methods

Auteurs : Adam J. Schlenger ; Elizabeth W. North ; Zachary Schlag ; YUN LI ; David H. Secor ; Katharine A. Smith ; Edwin J. Niklitschek

Source :

RBID : Pascal:13-0226811

Descripteurs français

English descriptors

Abstract

Management of marine and estuarine fish and shellfish would benefit from a numerical approach that quantifies the impacts of climate variability and eutrophication. We present a proof-of-concept habitat volume model that incorporates predictions from a 3-dimensional biophysical model. Using temperature, salinity, and dissolved oxygen, habitat volumes were calculated based on threshold physiological tolerances (fixed criteria) and potential growth (bioenergetics) for Atlantic sturgeon Acipenser oxyrinchus. Simulations from a coupled oxygen and hydrodynamic model of the Chesapeake Bay, USA, were used to estimate habitat volumes of juvenile sturgeon and assess the sensitivity of habitat to environmental factors. In winter, salinity controlled the required (needed for survival) and optimal (needed for highest growth) habitat. Temperature and salinity defined spring and autumn optimal habitat, and a combination of salinity, temperature and dissolved oxygen influenced habitat volumes during summer. Although average summertime oxygen limitation reduced the volumes of juvenile habitat by 3.3-28.0 %, the largest reductions in summertime habitat resulted from temperature limitation. The average difference in annual and seasonal volumes between fixed-criteria and bioenergetics methods was approximately 14 %, with similar trends over the annual cycle for most life stages and habitat types. We conclude that fixed-criteria habitat volume models would be suitable when bioenergetics information is not available. Both habitat volume models can be used to assess the impacts of climate change and eutrophication on the habitat of fish and shellfish in regions where hydrodynamic models exist and for species for which physiological tolerances are known.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0171-8630
A03   1    @0 Mar. ecol., Prog. ser. : (Halstenbek)
A05       @2 483
A08 01  1  ENG  @1 Modeling the influence of hypoxia on the potential habitat of Atlantic sturgeon Acipenser oxyrinchus: a comparison of two methods
A11 01  1    @1 SCHLENGER (Adam J.)
A11 02  1    @1 NORTH (Elizabeth W.)
A11 03  1    @1 SCHLAG (Zachary)
A11 04  1    @1 YUN LI
A11 05  1    @1 SECOR (David H.)
A11 06  1    @1 SMITH (Katharine A.)
A11 07  1    @1 NIKLITSCHEK (Edwin J.)
A14 01      @1 University of Maryland Center for Environmental Science, 2020 Horns Point Rd @2 Cambridge, Maryland 21613 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 University of Maryland, Center for Environmental Science, PO Box 38 @2 Solomons, Maryland 20688 @3 USA @Z 5 aut.
A14 03      @1 Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Rd @2 Honolulu, Hawaii 96822 @3 USA @Z 6 aut.
A14 04      @1 Universidad de Los Lagos, Centro i∼mar, Camino a Chinquihue Km. 6 @2 Puerto Montt 5480000 @3 CHL @Z 7 aut.
A14 05      @1 NOAA/NMFS, Northeast Fishery Science Center, 166 Water Street @2 Woods Hole, Massachusetts 02543 @3 USA @Z 4 aut.
A20       @1 257-272
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 18208 @5 354000503829290190
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 2 p.1/4
A47 01  1    @0 13-0226811
A60       @1 P
A61       @0 A
A64 01  1    @0 Marine ecology. Progress series : (Halstenbek)
A66 01      @0 DEU
C01 01    ENG  @0 Management of marine and estuarine fish and shellfish would benefit from a numerical approach that quantifies the impacts of climate variability and eutrophication. We present a proof-of-concept habitat volume model that incorporates predictions from a 3-dimensional biophysical model. Using temperature, salinity, and dissolved oxygen, habitat volumes were calculated based on threshold physiological tolerances (fixed criteria) and potential growth (bioenergetics) for Atlantic sturgeon Acipenser oxyrinchus. Simulations from a coupled oxygen and hydrodynamic model of the Chesapeake Bay, USA, were used to estimate habitat volumes of juvenile sturgeon and assess the sensitivity of habitat to environmental factors. In winter, salinity controlled the required (needed for survival) and optimal (needed for highest growth) habitat. Temperature and salinity defined spring and autumn optimal habitat, and a combination of salinity, temperature and dissolved oxygen influenced habitat volumes during summer. Although average summertime oxygen limitation reduced the volumes of juvenile habitat by 3.3-28.0 %, the largest reductions in summertime habitat resulted from temperature limitation. The average difference in annual and seasonal volumes between fixed-criteria and bioenergetics methods was approximately 14 %, with similar trends over the annual cycle for most life stages and habitat types. We conclude that fixed-criteria habitat volume models would be suitable when bioenergetics information is not available. Both habitat volume models can be used to assess the impacts of climate change and eutrophication on the habitat of fish and shellfish in regions where hydrodynamic models exist and for species for which physiological tolerances are known.
C02 01  X    @0 002A14B04E
C02 02  X    @0 002A14A02
C02 03  X    @0 002A15B
C03 01  X  FRE  @0 Modélisation @5 01
C03 01  X  ENG  @0 Modeling @5 01
C03 01  X  SPA  @0 Modelización @5 01
C03 02  X  FRE  @0 Hypoxie @5 02
C03 02  X  ENG  @0 Hypoxia @5 02
C03 02  X  SPA  @0 Hipoxia @5 02
C03 03  X  FRE  @0 Habitat @5 03
C03 03  X  ENG  @0 Habitat @5 03
C03 03  X  SPA  @0 Habitat @5 03
C03 04  X  FRE  @0 Méthode @5 04
C03 04  X  ENG  @0 Method @5 04
C03 04  X  SPA  @0 Método @5 04
C03 05  X  FRE  @0 Modèle @5 05
C03 05  X  ENG  @0 Models @5 05
C03 05  X  SPA  @0 Modelo @5 05
C03 06  X  FRE  @0 Tolérance @5 06
C03 06  X  ENG  @0 Tolerance @5 06
C03 06  X  SPA  @0 Tolerancia @5 06
C03 07  X  FRE  @0 Oxygène @2 NC @2 FX @5 07
C03 07  X  ENG  @0 Oxygen @2 NC @2 FX @5 07
C03 07  X  SPA  @0 Oxígeno @2 NC @2 FX @5 07
C03 08  X  FRE  @0 Milieu marin @5 08
C03 08  X  ENG  @0 Marine environment @5 08
C03 08  X  SPA  @0 Medio marino @5 08
C03 09  X  FRE  @0 Acipenser sturio @2 NS @5 55
C03 09  X  ENG  @0 Acipenser sturio @2 NS @5 55
C03 09  X  SPA  @0 Acipenser sturio @2 NS @5 55
C07 01  X  FRE  @0 Pisces @2 NS @5 26
C07 01  X  ENG  @0 Pisces @2 NS @5 26
C07 01  X  SPA  @0 Pisces @2 NS @5 26
C07 02  X  FRE  @0 Vertebrata @2 NS
C07 02  X  ENG  @0 Vertebrata @2 NS
C07 02  X  SPA  @0 Vertebrata @2 NS
C07 03  X  FRE  @0 Acipenseridae @4 INC @5 32
N21       @1 210
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 13-0226811 INIST
ET : Modeling the influence of hypoxia on the potential habitat of Atlantic sturgeon Acipenser oxyrinchus: a comparison of two methods
AU : SCHLENGER (Adam J.); NORTH (Elizabeth W.); SCHLAG (Zachary); YUN LI; SECOR (David H.); SMITH (Katharine A.); NIKLITSCHEK (Edwin J.)
AF : University of Maryland Center for Environmental Science, 2020 Horns Point Rd/Cambridge, Maryland 21613/Etats-Unis (1 aut., 2 aut., 3 aut.); University of Maryland, Center for Environmental Science, PO Box 38/Solomons, Maryland 20688/Etats-Unis (5 aut.); Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Rd/Honolulu, Hawaii 96822/Etats-Unis (6 aut.); Universidad de Los Lagos, Centro i∼mar, Camino a Chinquihue Km. 6/Puerto Montt 5480000/Chili (7 aut.); NOAA/NMFS, Northeast Fishery Science Center, 166 Water Street/Woods Hole, Massachusetts 02543/Etats-Unis (4 aut.)
DT : Publication en série; Niveau analytique
SO : Marine ecology. Progress series : (Halstenbek); ISSN 0171-8630; Allemagne; Da. 2013; Vol. 483; Pp. 257-272; Bibl. 2 p.1/4
LA : Anglais
EA : Management of marine and estuarine fish and shellfish would benefit from a numerical approach that quantifies the impacts of climate variability and eutrophication. We present a proof-of-concept habitat volume model that incorporates predictions from a 3-dimensional biophysical model. Using temperature, salinity, and dissolved oxygen, habitat volumes were calculated based on threshold physiological tolerances (fixed criteria) and potential growth (bioenergetics) for Atlantic sturgeon Acipenser oxyrinchus. Simulations from a coupled oxygen and hydrodynamic model of the Chesapeake Bay, USA, were used to estimate habitat volumes of juvenile sturgeon and assess the sensitivity of habitat to environmental factors. In winter, salinity controlled the required (needed for survival) and optimal (needed for highest growth) habitat. Temperature and salinity defined spring and autumn optimal habitat, and a combination of salinity, temperature and dissolved oxygen influenced habitat volumes during summer. Although average summertime oxygen limitation reduced the volumes of juvenile habitat by 3.3-28.0 %, the largest reductions in summertime habitat resulted from temperature limitation. The average difference in annual and seasonal volumes between fixed-criteria and bioenergetics methods was approximately 14 %, with similar trends over the annual cycle for most life stages and habitat types. We conclude that fixed-criteria habitat volume models would be suitable when bioenergetics information is not available. Both habitat volume models can be used to assess the impacts of climate change and eutrophication on the habitat of fish and shellfish in regions where hydrodynamic models exist and for species for which physiological tolerances are known.
CC : 002A14B04E; 002A14A02; 002A15B
FD : Modélisation; Hypoxie; Habitat; Méthode; Modèle; Tolérance; Oxygène; Milieu marin; Acipenser sturio
FG : Pisces; Vertebrata; Acipenseridae
ED : Modeling; Hypoxia; Habitat; Method; Models; Tolerance; Oxygen; Marine environment; Acipenser sturio
EG : Pisces; Vertebrata
SD : Modelización; Hipoxia; Habitat; Método; Modelo; Tolerancia; Oxígeno; Medio marino; Acipenser sturio
LO : INIST-18208.354000503829290190
ID : 13-0226811

Links to Exploration step

Pascal:13-0226811

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Modeling the influence of hypoxia on the potential habitat of Atlantic sturgeon Acipenser oxyrinchus: a comparison of two methods</title>
<author>
<name sortKey="Schlenger, Adam J" sort="Schlenger, Adam J" uniqKey="Schlenger A" first="Adam J." last="Schlenger">Adam J. Schlenger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Maryland Center for Environmental Science, 2020 Horns Point Rd</s1>
<s2>Cambridge, Maryland 21613</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="North, Elizabeth W" sort="North, Elizabeth W" uniqKey="North E" first="Elizabeth W." last="North">Elizabeth W. North</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Maryland Center for Environmental Science, 2020 Horns Point Rd</s1>
<s2>Cambridge, Maryland 21613</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schlag, Zachary" sort="Schlag, Zachary" uniqKey="Schlag Z" first="Zachary" last="Schlag">Zachary Schlag</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Maryland Center for Environmental Science, 2020 Horns Point Rd</s1>
<s2>Cambridge, Maryland 21613</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yun Li" sort="Yun Li" uniqKey="Yun Li" last="Yun Li">YUN LI</name>
<affiliation>
<inist:fA14 i1="05">
<s1>NOAA/NMFS, Northeast Fishery Science Center, 166 Water Street</s1>
<s2>Woods Hole, Massachusetts 02543</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Secor, David H" sort="Secor, David H" uniqKey="Secor D" first="David H." last="Secor">David H. Secor</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Maryland, Center for Environmental Science, PO Box 38</s1>
<s2>Solomons, Maryland 20688</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Smith, Katharine A" sort="Smith, Katharine A" uniqKey="Smith K" first="Katharine A." last="Smith">Katharine A. Smith</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Rd</s1>
<s2>Honolulu, Hawaii 96822</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Niklitschek, Edwin J" sort="Niklitschek, Edwin J" uniqKey="Niklitschek E" first="Edwin J." last="Niklitschek">Edwin J. Niklitschek</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Universidad de Los Lagos, Centro i∼mar, Camino a Chinquihue Km. 6</s1>
<s2>Puerto Montt 5480000</s2>
<s3>CHL</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0226811</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0226811 INIST</idno>
<idno type="RBID">Pascal:13-0226811</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000038</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Modeling the influence of hypoxia on the potential habitat of Atlantic sturgeon Acipenser oxyrinchus: a comparison of two methods</title>
<author>
<name sortKey="Schlenger, Adam J" sort="Schlenger, Adam J" uniqKey="Schlenger A" first="Adam J." last="Schlenger">Adam J. Schlenger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Maryland Center for Environmental Science, 2020 Horns Point Rd</s1>
<s2>Cambridge, Maryland 21613</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="North, Elizabeth W" sort="North, Elizabeth W" uniqKey="North E" first="Elizabeth W." last="North">Elizabeth W. North</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Maryland Center for Environmental Science, 2020 Horns Point Rd</s1>
<s2>Cambridge, Maryland 21613</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schlag, Zachary" sort="Schlag, Zachary" uniqKey="Schlag Z" first="Zachary" last="Schlag">Zachary Schlag</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Maryland Center for Environmental Science, 2020 Horns Point Rd</s1>
<s2>Cambridge, Maryland 21613</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yun Li" sort="Yun Li" uniqKey="Yun Li" last="Yun Li">YUN LI</name>
<affiliation>
<inist:fA14 i1="05">
<s1>NOAA/NMFS, Northeast Fishery Science Center, 166 Water Street</s1>
<s2>Woods Hole, Massachusetts 02543</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Secor, David H" sort="Secor, David H" uniqKey="Secor D" first="David H." last="Secor">David H. Secor</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Maryland, Center for Environmental Science, PO Box 38</s1>
<s2>Solomons, Maryland 20688</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Smith, Katharine A" sort="Smith, Katharine A" uniqKey="Smith K" first="Katharine A." last="Smith">Katharine A. Smith</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Rd</s1>
<s2>Honolulu, Hawaii 96822</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Niklitschek, Edwin J" sort="Niklitschek, Edwin J" uniqKey="Niklitschek E" first="Edwin J." last="Niklitschek">Edwin J. Niklitschek</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Universidad de Los Lagos, Centro i∼mar, Camino a Chinquihue Km. 6</s1>
<s2>Puerto Montt 5480000</s2>
<s3>CHL</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Marine ecology. Progress series : (Halstenbek)</title>
<title level="j" type="abbreviated">Mar. ecol., Prog. ser. : (Halstenbek)</title>
<idno type="ISSN">0171-8630</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Marine ecology. Progress series : (Halstenbek)</title>
<title level="j" type="abbreviated">Mar. ecol., Prog. ser. : (Halstenbek)</title>
<idno type="ISSN">0171-8630</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acipenser sturio</term>
<term>Habitat</term>
<term>Hypoxia</term>
<term>Marine environment</term>
<term>Method</term>
<term>Modeling</term>
<term>Models</term>
<term>Oxygen</term>
<term>Tolerance</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modélisation</term>
<term>Hypoxie</term>
<term>Habitat</term>
<term>Méthode</term>
<term>Modèle</term>
<term>Tolérance</term>
<term>Oxygène</term>
<term>Milieu marin</term>
<term>Acipenser sturio</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Management of marine and estuarine fish and shellfish would benefit from a numerical approach that quantifies the impacts of climate variability and eutrophication. We present a proof-of-concept habitat volume model that incorporates predictions from a 3-dimensional biophysical model. Using temperature, salinity, and dissolved oxygen, habitat volumes were calculated based on threshold physiological tolerances (fixed criteria) and potential growth (bioenergetics) for Atlantic sturgeon Acipenser oxyrinchus. Simulations from a coupled oxygen and hydrodynamic model of the Chesapeake Bay, USA, were used to estimate habitat volumes of juvenile sturgeon and assess the sensitivity of habitat to environmental factors. In winter, salinity controlled the required (needed for survival) and optimal (needed for highest growth) habitat. Temperature and salinity defined spring and autumn optimal habitat, and a combination of salinity, temperature and dissolved oxygen influenced habitat volumes during summer. Although average summertime oxygen limitation reduced the volumes of juvenile habitat by 3.3-28.0 %, the largest reductions in summertime habitat resulted from temperature limitation. The average difference in annual and seasonal volumes between fixed-criteria and bioenergetics methods was approximately 14 %, with similar trends over the annual cycle for most life stages and habitat types. We conclude that fixed-criteria habitat volume models would be suitable when bioenergetics information is not available. Both habitat volume models can be used to assess the impacts of climate change and eutrophication on the habitat of fish and shellfish in regions where hydrodynamic models exist and for species for which physiological tolerances are known.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0171-8630</s0>
</fA01>
<fA03 i2="1">
<s0>Mar. ecol., Prog. ser. : (Halstenbek)</s0>
</fA03>
<fA05>
<s2>483</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Modeling the influence of hypoxia on the potential habitat of Atlantic sturgeon Acipenser oxyrinchus: a comparison of two methods</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SCHLENGER (Adam J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NORTH (Elizabeth W.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHLAG (Zachary)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YUN LI</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SECOR (David H.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SMITH (Katharine A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>NIKLITSCHEK (Edwin J.)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Maryland Center for Environmental Science, 2020 Horns Point Rd</s1>
<s2>Cambridge, Maryland 21613</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>University of Maryland, Center for Environmental Science, PO Box 38</s1>
<s2>Solomons, Maryland 20688</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Rd</s1>
<s2>Honolulu, Hawaii 96822</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Universidad de Los Lagos, Centro i∼mar, Camino a Chinquihue Km. 6</s1>
<s2>Puerto Montt 5480000</s2>
<s3>CHL</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>NOAA/NMFS, Northeast Fishery Science Center, 166 Water Street</s1>
<s2>Woods Hole, Massachusetts 02543</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>257-272</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18208</s2>
<s5>354000503829290190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>2 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0226811</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Marine ecology. Progress series : (Halstenbek)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Management of marine and estuarine fish and shellfish would benefit from a numerical approach that quantifies the impacts of climate variability and eutrophication. We present a proof-of-concept habitat volume model that incorporates predictions from a 3-dimensional biophysical model. Using temperature, salinity, and dissolved oxygen, habitat volumes were calculated based on threshold physiological tolerances (fixed criteria) and potential growth (bioenergetics) for Atlantic sturgeon Acipenser oxyrinchus. Simulations from a coupled oxygen and hydrodynamic model of the Chesapeake Bay, USA, were used to estimate habitat volumes of juvenile sturgeon and assess the sensitivity of habitat to environmental factors. In winter, salinity controlled the required (needed for survival) and optimal (needed for highest growth) habitat. Temperature and salinity defined spring and autumn optimal habitat, and a combination of salinity, temperature and dissolved oxygen influenced habitat volumes during summer. Although average summertime oxygen limitation reduced the volumes of juvenile habitat by 3.3-28.0 %, the largest reductions in summertime habitat resulted from temperature limitation. The average difference in annual and seasonal volumes between fixed-criteria and bioenergetics methods was approximately 14 %, with similar trends over the annual cycle for most life stages and habitat types. We conclude that fixed-criteria habitat volume models would be suitable when bioenergetics information is not available. Both habitat volume models can be used to assess the impacts of climate change and eutrophication on the habitat of fish and shellfish in regions where hydrodynamic models exist and for species for which physiological tolerances are known.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14B04E</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A14A02</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002A15B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Hypoxie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Hypoxia</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Hipoxia</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Habitat</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Habitat</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Habitat</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Models</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Tolérance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Tolerance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Tolerancia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Milieu marin</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Marine environment</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Medio marino</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Acipenser sturio</s0>
<s2>NS</s2>
<s5>55</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Acipenser sturio</s0>
<s2>NS</s2>
<s5>55</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Acipenser sturio</s0>
<s2>NS</s2>
<s5>55</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Acipenseridae</s0>
<s4>INC</s4>
<s5>32</s5>
</fC07>
<fN21>
<s1>210</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 13-0226811 INIST</NO>
<ET>Modeling the influence of hypoxia on the potential habitat of Atlantic sturgeon Acipenser oxyrinchus: a comparison of two methods</ET>
<AU>SCHLENGER (Adam J.); NORTH (Elizabeth W.); SCHLAG (Zachary); YUN LI; SECOR (David H.); SMITH (Katharine A.); NIKLITSCHEK (Edwin J.)</AU>
<AF>University of Maryland Center for Environmental Science, 2020 Horns Point Rd/Cambridge, Maryland 21613/Etats-Unis (1 aut., 2 aut., 3 aut.); University of Maryland, Center for Environmental Science, PO Box 38/Solomons, Maryland 20688/Etats-Unis (5 aut.); Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Rd/Honolulu, Hawaii 96822/Etats-Unis (6 aut.); Universidad de Los Lagos, Centro i∼mar, Camino a Chinquihue Km. 6/Puerto Montt 5480000/Chili (7 aut.); NOAA/NMFS, Northeast Fishery Science Center, 166 Water Street/Woods Hole, Massachusetts 02543/Etats-Unis (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Marine ecology. Progress series : (Halstenbek); ISSN 0171-8630; Allemagne; Da. 2013; Vol. 483; Pp. 257-272; Bibl. 2 p.1/4</SO>
<LA>Anglais</LA>
<EA>Management of marine and estuarine fish and shellfish would benefit from a numerical approach that quantifies the impacts of climate variability and eutrophication. We present a proof-of-concept habitat volume model that incorporates predictions from a 3-dimensional biophysical model. Using temperature, salinity, and dissolved oxygen, habitat volumes were calculated based on threshold physiological tolerances (fixed criteria) and potential growth (bioenergetics) for Atlantic sturgeon Acipenser oxyrinchus. Simulations from a coupled oxygen and hydrodynamic model of the Chesapeake Bay, USA, were used to estimate habitat volumes of juvenile sturgeon and assess the sensitivity of habitat to environmental factors. In winter, salinity controlled the required (needed for survival) and optimal (needed for highest growth) habitat. Temperature and salinity defined spring and autumn optimal habitat, and a combination of salinity, temperature and dissolved oxygen influenced habitat volumes during summer. Although average summertime oxygen limitation reduced the volumes of juvenile habitat by 3.3-28.0 %, the largest reductions in summertime habitat resulted from temperature limitation. The average difference in annual and seasonal volumes between fixed-criteria and bioenergetics methods was approximately 14 %, with similar trends over the annual cycle for most life stages and habitat types. We conclude that fixed-criteria habitat volume models would be suitable when bioenergetics information is not available. Both habitat volume models can be used to assess the impacts of climate change and eutrophication on the habitat of fish and shellfish in regions where hydrodynamic models exist and for species for which physiological tolerances are known.</EA>
<CC>002A14B04E; 002A14A02; 002A15B</CC>
<FD>Modélisation; Hypoxie; Habitat; Méthode; Modèle; Tolérance; Oxygène; Milieu marin; Acipenser sturio</FD>
<FG>Pisces; Vertebrata; Acipenseridae</FG>
<ED>Modeling; Hypoxia; Habitat; Method; Models; Tolerance; Oxygen; Marine environment; Acipenser sturio</ED>
<EG>Pisces; Vertebrata</EG>
<SD>Modelización; Hipoxia; Habitat; Método; Modelo; Tolerancia; Oxígeno; Medio marino; Acipenser sturio</SD>
<LO>INIST-18208.354000503829290190</LO>
<ID>13-0226811</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000038 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000038 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0226811
   |texte=   Modeling the influence of hypoxia on the potential habitat of Atlantic sturgeon Acipenser oxyrinchus: a comparison of two methods
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024