Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of optimum feeding rate model for white sturgeon (Acipenser transmontanus)

Identifieur interne : 000008 ( PascalFrancis/Corpus ); précédent : 000007; suivant : 000009

Development of optimum feeding rate model for white sturgeon (Acipenser transmontanus)

Auteurs : SEUNGHYUNG LEE ; YICHUAN WANG ; Silas S. O. Hung ; Anders B. Strathe ; Nann A. Fangue ; James G. Fadel

Source :

RBID : Pascal:14-0243689

Descripteurs français

English descriptors

Abstract

Establishing the optimum feeding rate (OFR; % body weight per day) for a cultured fish is a significant step toward the success of the aquaculture operation. Therefore, the objectives of this study were 1) the estimation of OFR for 19 datasets with different initial body weights by applying broken-line and quadratic regression models and 2) an investigation of potential OFR prediction models using 19 estimated OFRs from objective 1. Objective 1) Nineteen datasets were obtained from five published studies (14 datasets) and one unpublished study (5 datasets) which were carried out to evaluate the effects of feeding rate on growth performance in white sturgeon of initial body weights varying from 0.05 g to 764 g. Each dataset, containing feeding rate (independent variable) and specific growth rate (% body weight increase per day; dependent variable) was used to estimate OFR by one-slope straight broken-line, two-slope straight broken-line, quadratic broken-line, and quadratic models for each body weight class. Calculations of model selection criteria, including the adjusted coefficient of correlation, Akaike information criterion, and corrected Akaike information criterion were performed to compare model performance on OFR estimation for each dataset. Three models (two-slope straight broken-line, quadratic broken-line, and quadratic models) were considered acceptable for the estimation of OFR, and the three sets of estimated OFRs obtained by these models were used in objective 2. Objective 2) Several regression models, including polynomial models of order from 1 to 6, a simple exponential model with a constant, and a bi-exponential model, were fitted to each set of the 19 estimated OFRs against transformed initial body weights. A power function model was also fitted to the estimated OFRs against untransformed initial body weights. The model selection criteria for objective 2 were the same as those for objective 1. Overall model performance on the estimation of OFR for the 19 datasets shows that the quadratic broken-line model performed best, followed by the quadratic, two-slope straight broken-line, and one-slope straight broken-line models. Given the overall performance of model fitness to the sets of the OFR estimates, the bi-exponential regression model emerged as the most favorable one. As a result, the bi-exponential model equation. OFR (% body weight per day) = 0.00344(±0.0123) e-5.684(±2.309) InNobody weight) + 8.695(±0.606) e-0.549(±0.065) In(body weight) obtained by fitting the estimated OFRs derived from the quadratic broken-line model analysis, can be used to predict the OFR for white sturgeon from about 0.05 g to 800 g.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0044-8486
A02 01      @0 AQCLAL
A03   1    @0 Aquaculture : (Amst.)
A05       @2 433
A08 01  1  ENG  @1 Development of optimum feeding rate model for white sturgeon (Acipenser transmontanus)
A11 01  1    @1 SEUNGHYUNG LEE
A11 02  1    @1 YICHUAN WANG
A11 03  1    @1 HUNG (Silas S. O.)
A11 04  1    @1 STRATHE (Anders B.)
A11 05  1    @1 FANGUE (Nann A.)
A11 06  1    @1 FADEL (James G.)
A14 01      @1 Department of Animal Science, University of California, One Shields Avenue @2 Davis, CA 95616 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 6 aut.
A14 02      @1 Department of Wildlife, Fish and Conservation Biology, University of California, One Shields Avenue @2 Davis, CA 95616 @3 USA @Z 5 aut.
A20       @1 411-420
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 15964 @5 354000504516580560
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 1/4 p.
A47 01  1    @0 14-0243689
A60       @1 P
A61       @0 A
A64 01  1    @0 Aquaculture : (Amsterdam)
A66 01      @0 NLD
C01 01    ENG  @0 Establishing the optimum feeding rate (OFR; % body weight per day) for a cultured fish is a significant step toward the success of the aquaculture operation. Therefore, the objectives of this study were 1) the estimation of OFR for 19 datasets with different initial body weights by applying broken-line and quadratic regression models and 2) an investigation of potential OFR prediction models using 19 estimated OFRs from objective 1. Objective 1) Nineteen datasets were obtained from five published studies (14 datasets) and one unpublished study (5 datasets) which were carried out to evaluate the effects of feeding rate on growth performance in white sturgeon of initial body weights varying from 0.05 g to 764 g. Each dataset, containing feeding rate (independent variable) and specific growth rate (% body weight increase per day; dependent variable) was used to estimate OFR by one-slope straight broken-line, two-slope straight broken-line, quadratic broken-line, and quadratic models for each body weight class. Calculations of model selection criteria, including the adjusted coefficient of correlation, Akaike information criterion, and corrected Akaike information criterion were performed to compare model performance on OFR estimation for each dataset. Three models (two-slope straight broken-line, quadratic broken-line, and quadratic models) were considered acceptable for the estimation of OFR, and the three sets of estimated OFRs obtained by these models were used in objective 2. Objective 2) Several regression models, including polynomial models of order from 1 to 6, a simple exponential model with a constant, and a bi-exponential model, were fitted to each set of the 19 estimated OFRs against transformed initial body weights. A power function model was also fitted to the estimated OFRs against untransformed initial body weights. The model selection criteria for objective 2 were the same as those for objective 1. Overall model performance on the estimation of OFR for the 19 datasets shows that the quadratic broken-line model performed best, followed by the quadratic, two-slope straight broken-line, and one-slope straight broken-line models. Given the overall performance of model fitness to the sets of the OFR estimates, the bi-exponential regression model emerged as the most favorable one. As a result, the bi-exponential model equation. OFR (% body weight per day) = 0.00344(±0.0123) e-5.684(±2.309) InNobody weight) + 8.695(±0.606) e-0.549(±0.065) In(body weight) obtained by fitting the estimated OFRs derived from the quadratic broken-line model analysis, can be used to predict the OFR for white sturgeon from about 0.05 g to 800 g.
C02 01  X    @0 002A36B01
C02 02  X    @0 002A15B
C03 01  X  FRE  @0 Développement @5 01
C03 01  X  ENG  @0 Development @5 01
C03 01  X  SPA  @0 Desarrollo @5 01
C03 02  X  FRE  @0 Optimum @5 02
C03 02  X  ENG  @0 Optimum @5 02
C03 02  X  SPA  @0 Optimo @5 02
C03 03  X  FRE  @0 Consommation alimentaire @5 03
C03 03  X  ENG  @0 Food intake @5 03
C03 03  X  SPA  @0 Consumo alimenticio @5 03
C03 04  X  FRE  @0 Modèle @5 04
C03 04  X  ENG  @0 Models @5 04
C03 04  X  SPA  @0 Modelo @5 04
C03 05  X  FRE  @0 Taux croissance @5 05
C03 05  X  ENG  @0 Growth rate @5 05
C03 05  X  SPA  @0 Tasa crecimiento @5 05
C03 06  X  FRE  @0 Aquiculture @5 06
C03 06  X  ENG  @0 Aquaculture @5 06
C03 06  X  SPA  @0 Acuicultura @5 06
C03 07  X  FRE  @0 Acipenser transmontanus @2 NS @5 55
C03 07  X  ENG  @0 Acipenser transmontanus @2 NS @5 55
C03 07  X  SPA  @0 Acipenser transmontanus @2 NS @5 55
C07 01  X  FRE  @0 Pisces @2 NS @5 26
C07 01  X  ENG  @0 Pisces @2 NS @5 26
C07 01  X  SPA  @0 Pisces @2 NS @5 26
C07 02  X  FRE  @0 Vertebrata @2 NS
C07 02  X  ENG  @0 Vertebrata @2 NS
C07 02  X  SPA  @0 Vertebrata @2 NS
C07 03  X  FRE  @0 Acipenseridae @4 INC @5 32
N21       @1 293
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 14-0243689 INIST
ET : Development of optimum feeding rate model for white sturgeon (Acipenser transmontanus)
AU : SEUNGHYUNG LEE; YICHUAN WANG; HUNG (Silas S. O.); STRATHE (Anders B.); FANGUE (Nann A.); FADEL (James G.)
AF : Department of Animal Science, University of California, One Shields Avenue/Davis, CA 95616/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 6 aut.); Department of Wildlife, Fish and Conservation Biology, University of California, One Shields Avenue/Davis, CA 95616/Etats-Unis (5 aut.)
DT : Publication en série; Niveau analytique
SO : Aquaculture : (Amsterdam); ISSN 0044-8486; Coden AQCLAL; Pays-Bas; Da. 2014; Vol. 433; Pp. 411-420; Bibl. 1/4 p.
LA : Anglais
EA : Establishing the optimum feeding rate (OFR; % body weight per day) for a cultured fish is a significant step toward the success of the aquaculture operation. Therefore, the objectives of this study were 1) the estimation of OFR for 19 datasets with different initial body weights by applying broken-line and quadratic regression models and 2) an investigation of potential OFR prediction models using 19 estimated OFRs from objective 1. Objective 1) Nineteen datasets were obtained from five published studies (14 datasets) and one unpublished study (5 datasets) which were carried out to evaluate the effects of feeding rate on growth performance in white sturgeon of initial body weights varying from 0.05 g to 764 g. Each dataset, containing feeding rate (independent variable) and specific growth rate (% body weight increase per day; dependent variable) was used to estimate OFR by one-slope straight broken-line, two-slope straight broken-line, quadratic broken-line, and quadratic models for each body weight class. Calculations of model selection criteria, including the adjusted coefficient of correlation, Akaike information criterion, and corrected Akaike information criterion were performed to compare model performance on OFR estimation for each dataset. Three models (two-slope straight broken-line, quadratic broken-line, and quadratic models) were considered acceptable for the estimation of OFR, and the three sets of estimated OFRs obtained by these models were used in objective 2. Objective 2) Several regression models, including polynomial models of order from 1 to 6, a simple exponential model with a constant, and a bi-exponential model, were fitted to each set of the 19 estimated OFRs against transformed initial body weights. A power function model was also fitted to the estimated OFRs against untransformed initial body weights. The model selection criteria for objective 2 were the same as those for objective 1. Overall model performance on the estimation of OFR for the 19 datasets shows that the quadratic broken-line model performed best, followed by the quadratic, two-slope straight broken-line, and one-slope straight broken-line models. Given the overall performance of model fitness to the sets of the OFR estimates, the bi-exponential regression model emerged as the most favorable one. As a result, the bi-exponential model equation. OFR (% body weight per day) = 0.00344(±0.0123) e-5.684(±2.309) InNobody weight) + 8.695(±0.606) e-0.549(±0.065) In(body weight) obtained by fitting the estimated OFRs derived from the quadratic broken-line model analysis, can be used to predict the OFR for white sturgeon from about 0.05 g to 800 g.
CC : 002A36B01; 002A15B
FD : Développement; Optimum; Consommation alimentaire; Modèle; Taux croissance; Aquiculture; Acipenser transmontanus
FG : Pisces; Vertebrata; Acipenseridae
ED : Development; Optimum; Food intake; Models; Growth rate; Aquaculture; Acipenser transmontanus
EG : Pisces; Vertebrata
SD : Desarrollo; Optimo; Consumo alimenticio; Modelo; Tasa crecimiento; Acuicultura; Acipenser transmontanus
LO : INIST-15964.354000504516580560
ID : 14-0243689

Links to Exploration step

Pascal:14-0243689

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Development of optimum feeding rate model for white sturgeon (Acipenser transmontanus)</title>
<author>
<name sortKey="Seunghyung Lee" sort="Seunghyung Lee" uniqKey="Seunghyung Lee" last="Seunghyung Lee">SEUNGHYUNG LEE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yichuan Wang" sort="Yichuan Wang" uniqKey="Yichuan Wang" last="Yichuan Wang">YICHUAN WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hung, Silas S O" sort="Hung, Silas S O" uniqKey="Hung S" first="Silas S. O." last="Hung">Silas S. O. Hung</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Strathe, Anders B" sort="Strathe, Anders B" uniqKey="Strathe A" first="Anders B." last="Strathe">Anders B. Strathe</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fangue, Nann A" sort="Fangue, Nann A" uniqKey="Fangue N" first="Nann A." last="Fangue">Nann A. Fangue</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Wildlife, Fish and Conservation Biology, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fadel, James G" sort="Fadel, James G" uniqKey="Fadel J" first="James G." last="Fadel">James G. Fadel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0243689</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0243689 INIST</idno>
<idno type="RBID">Pascal:14-0243689</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000008</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Development of optimum feeding rate model for white sturgeon (Acipenser transmontanus)</title>
<author>
<name sortKey="Seunghyung Lee" sort="Seunghyung Lee" uniqKey="Seunghyung Lee" last="Seunghyung Lee">SEUNGHYUNG LEE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yichuan Wang" sort="Yichuan Wang" uniqKey="Yichuan Wang" last="Yichuan Wang">YICHUAN WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hung, Silas S O" sort="Hung, Silas S O" uniqKey="Hung S" first="Silas S. O." last="Hung">Silas S. O. Hung</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Strathe, Anders B" sort="Strathe, Anders B" uniqKey="Strathe A" first="Anders B." last="Strathe">Anders B. Strathe</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fangue, Nann A" sort="Fangue, Nann A" uniqKey="Fangue N" first="Nann A." last="Fangue">Nann A. Fangue</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Wildlife, Fish and Conservation Biology, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fadel, James G" sort="Fadel, James G" uniqKey="Fadel J" first="James G." last="Fadel">James G. Fadel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Aquaculture : (Amsterdam)</title>
<title level="j" type="abbreviated">Aquaculture : (Amst.)</title>
<idno type="ISSN">0044-8486</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Aquaculture : (Amsterdam)</title>
<title level="j" type="abbreviated">Aquaculture : (Amst.)</title>
<idno type="ISSN">0044-8486</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acipenser transmontanus</term>
<term>Aquaculture</term>
<term>Development</term>
<term>Food intake</term>
<term>Growth rate</term>
<term>Models</term>
<term>Optimum</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Développement</term>
<term>Optimum</term>
<term>Consommation alimentaire</term>
<term>Modèle</term>
<term>Taux croissance</term>
<term>Aquiculture</term>
<term>Acipenser transmontanus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Establishing the optimum feeding rate (OFR; % body weight per day) for a cultured fish is a significant step toward the success of the aquaculture operation. Therefore, the objectives of this study were 1) the estimation of OFR for 19 datasets with different initial body weights by applying broken-line and quadratic regression models and 2) an investigation of potential OFR prediction models using 19 estimated OFRs from objective 1. Objective 1) Nineteen datasets were obtained from five published studies (14 datasets) and one unpublished study (5 datasets) which were carried out to evaluate the effects of feeding rate on growth performance in white sturgeon of initial body weights varying from 0.05 g to 764 g. Each dataset, containing feeding rate (independent variable) and specific growth rate (% body weight increase per day; dependent variable) was used to estimate OFR by one-slope straight broken-line, two-slope straight broken-line, quadratic broken-line, and quadratic models for each body weight class. Calculations of model selection criteria, including the adjusted coefficient of correlation, Akaike information criterion, and corrected Akaike information criterion were performed to compare model performance on OFR estimation for each dataset. Three models (two-slope straight broken-line, quadratic broken-line, and quadratic models) were considered acceptable for the estimation of OFR, and the three sets of estimated OFRs obtained by these models were used in objective 2. Objective 2) Several regression models, including polynomial models of order from 1 to 6, a simple exponential model with a constant, and a bi-exponential model, were fitted to each set of the 19 estimated OFRs against transformed initial body weights. A power function model was also fitted to the estimated OFRs against untransformed initial body weights. The model selection criteria for objective 2 were the same as those for objective 1. Overall model performance on the estimation of OFR for the 19 datasets shows that the quadratic broken-line model performed best, followed by the quadratic, two-slope straight broken-line, and one-slope straight broken-line models. Given the overall performance of model fitness to the sets of the OFR estimates, the bi-exponential regression model emerged as the most favorable one. As a result, the bi-exponential model equation. OFR (% body weight per day) = 0.00344(±0.0123) e
<sup>-5.684(±2.309)</sup>
<sup>In</sup>
<sup>Nobody</sup>
<sup>weight)</sup>
+ 8.695(±0.606) e
<sup>-0.549(±0.065)</sup>
<sup>In(</sup>
<sup>body weight)</sup>
obtained by fitting the estimated OFRs derived from the quadratic broken-line model analysis, can be used to predict the OFR for white sturgeon from about 0.05 g to 800 g.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0044-8486</s0>
</fA01>
<fA02 i1="01">
<s0>AQCLAL</s0>
</fA02>
<fA03 i2="1">
<s0>Aquaculture : (Amst.)</s0>
</fA03>
<fA05>
<s2>433</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Development of optimum feeding rate model for white sturgeon (Acipenser transmontanus)</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SEUNGHYUNG LEE</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YICHUAN WANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HUNG (Silas S. O.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>STRATHE (Anders B.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FANGUE (Nann A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FADEL (James G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Animal Science, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Wildlife, Fish and Conservation Biology, University of California, One Shields Avenue</s1>
<s2>Davis, CA 95616</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>411-420</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15964</s2>
<s5>354000504516580560</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0243689</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Aquaculture : (Amsterdam)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Establishing the optimum feeding rate (OFR; % body weight per day) for a cultured fish is a significant step toward the success of the aquaculture operation. Therefore, the objectives of this study were 1) the estimation of OFR for 19 datasets with different initial body weights by applying broken-line and quadratic regression models and 2) an investigation of potential OFR prediction models using 19 estimated OFRs from objective 1. Objective 1) Nineteen datasets were obtained from five published studies (14 datasets) and one unpublished study (5 datasets) which were carried out to evaluate the effects of feeding rate on growth performance in white sturgeon of initial body weights varying from 0.05 g to 764 g. Each dataset, containing feeding rate (independent variable) and specific growth rate (% body weight increase per day; dependent variable) was used to estimate OFR by one-slope straight broken-line, two-slope straight broken-line, quadratic broken-line, and quadratic models for each body weight class. Calculations of model selection criteria, including the adjusted coefficient of correlation, Akaike information criterion, and corrected Akaike information criterion were performed to compare model performance on OFR estimation for each dataset. Three models (two-slope straight broken-line, quadratic broken-line, and quadratic models) were considered acceptable for the estimation of OFR, and the three sets of estimated OFRs obtained by these models were used in objective 2. Objective 2) Several regression models, including polynomial models of order from 1 to 6, a simple exponential model with a constant, and a bi-exponential model, were fitted to each set of the 19 estimated OFRs against transformed initial body weights. A power function model was also fitted to the estimated OFRs against untransformed initial body weights. The model selection criteria for objective 2 were the same as those for objective 1. Overall model performance on the estimation of OFR for the 19 datasets shows that the quadratic broken-line model performed best, followed by the quadratic, two-slope straight broken-line, and one-slope straight broken-line models. Given the overall performance of model fitness to the sets of the OFR estimates, the bi-exponential regression model emerged as the most favorable one. As a result, the bi-exponential model equation. OFR (% body weight per day) = 0.00344(±0.0123) e
<sup>-5.684(±2.309)</sup>
<sup>In</sup>
<sup>Nobody</sup>
<sup>weight)</sup>
+ 8.695(±0.606) e
<sup>-0.549(±0.065)</sup>
<sup>In(</sup>
<sup>body weight)</sup>
obtained by fitting the estimated OFRs derived from the quadratic broken-line model analysis, can be used to predict the OFR for white sturgeon from about 0.05 g to 800 g.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A36B01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A15B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Développement</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Development</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Desarrollo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Optimum</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Optimum</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Optimo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Consommation alimentaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Food intake</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Consumo alimenticio</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Models</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Taux croissance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Growth rate</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tasa crecimiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Aquiculture</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Aquaculture</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Acuicultura</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>55</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>55</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>55</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>26</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Acipenseridae</s0>
<s4>INC</s4>
<s5>32</s5>
</fC07>
<fN21>
<s1>293</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 14-0243689 INIST</NO>
<ET>Development of optimum feeding rate model for white sturgeon (Acipenser transmontanus)</ET>
<AU>SEUNGHYUNG LEE; YICHUAN WANG; HUNG (Silas S. O.); STRATHE (Anders B.); FANGUE (Nann A.); FADEL (James G.)</AU>
<AF>Department of Animal Science, University of California, One Shields Avenue/Davis, CA 95616/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 6 aut.); Department of Wildlife, Fish and Conservation Biology, University of California, One Shields Avenue/Davis, CA 95616/Etats-Unis (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Aquaculture : (Amsterdam); ISSN 0044-8486; Coden AQCLAL; Pays-Bas; Da. 2014; Vol. 433; Pp. 411-420; Bibl. 1/4 p.</SO>
<LA>Anglais</LA>
<EA>Establishing the optimum feeding rate (OFR; % body weight per day) for a cultured fish is a significant step toward the success of the aquaculture operation. Therefore, the objectives of this study were 1) the estimation of OFR for 19 datasets with different initial body weights by applying broken-line and quadratic regression models and 2) an investigation of potential OFR prediction models using 19 estimated OFRs from objective 1. Objective 1) Nineteen datasets were obtained from five published studies (14 datasets) and one unpublished study (5 datasets) which were carried out to evaluate the effects of feeding rate on growth performance in white sturgeon of initial body weights varying from 0.05 g to 764 g. Each dataset, containing feeding rate (independent variable) and specific growth rate (% body weight increase per day; dependent variable) was used to estimate OFR by one-slope straight broken-line, two-slope straight broken-line, quadratic broken-line, and quadratic models for each body weight class. Calculations of model selection criteria, including the adjusted coefficient of correlation, Akaike information criterion, and corrected Akaike information criterion were performed to compare model performance on OFR estimation for each dataset. Three models (two-slope straight broken-line, quadratic broken-line, and quadratic models) were considered acceptable for the estimation of OFR, and the three sets of estimated OFRs obtained by these models were used in objective 2. Objective 2) Several regression models, including polynomial models of order from 1 to 6, a simple exponential model with a constant, and a bi-exponential model, were fitted to each set of the 19 estimated OFRs against transformed initial body weights. A power function model was also fitted to the estimated OFRs against untransformed initial body weights. The model selection criteria for objective 2 were the same as those for objective 1. Overall model performance on the estimation of OFR for the 19 datasets shows that the quadratic broken-line model performed best, followed by the quadratic, two-slope straight broken-line, and one-slope straight broken-line models. Given the overall performance of model fitness to the sets of the OFR estimates, the bi-exponential regression model emerged as the most favorable one. As a result, the bi-exponential model equation. OFR (% body weight per day) = 0.00344(±0.0123) e
<sup>-5.684(±2.309)</sup>
<sup>In</sup>
<sup>Nobody</sup>
<sup>weight)</sup>
+ 8.695(±0.606) e
<sup>-0.549(±0.065)</sup>
<sup>In(</sup>
<sup>body weight)</sup>
obtained by fitting the estimated OFRs derived from the quadratic broken-line model analysis, can be used to predict the OFR for white sturgeon from about 0.05 g to 800 g.</EA>
<CC>002A36B01; 002A15B</CC>
<FD>Développement; Optimum; Consommation alimentaire; Modèle; Taux croissance; Aquiculture; Acipenser transmontanus</FD>
<FG>Pisces; Vertebrata; Acipenseridae</FG>
<ED>Development; Optimum; Food intake; Models; Growth rate; Aquaculture; Acipenser transmontanus</ED>
<EG>Pisces; Vertebrata</EG>
<SD>Desarrollo; Optimo; Consumo alimenticio; Modelo; Tasa crecimiento; Acuicultura; Acipenser transmontanus</SD>
<LO>INIST-15964.354000504516580560</LO>
<ID>14-0243689</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000008 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000008 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0243689
   |texte=   Development of optimum feeding rate model for white sturgeon (Acipenser transmontanus)
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024