Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The mechanism of gastrulation in the white sturgeon.

Identifieur interne : 000867 ( Ncbi/Merge ); précédent : 000866; suivant : 000868

The mechanism of gastrulation in the white sturgeon.

Auteurs : J A Bolker

Source :

RBID : pubmed:8501437

English descriptors

Abstract

Gastrulation in the white sturgeon, Acipenser transmontanus, involves many of the same processes as in the amphibian Xenopus laevis, but the timing and relative importance of these processes are altered so that they function appropriately in a different type of egg. In both species, convergence and extension result from a combination of radial and mediolateral cell intercalation. In sturgeons, where the blastopore lip forms at the equator, an early phase of thinning and extension of the animal cap moves the marginal zone below the equator during late blastula and early gastrula stages. This early extension without convergence is followed by convergent extension of the dorsal marginal zone after its displacement vegetally. When the animal cap is removed before gastrulation, precluding the initial extension that moves the marginal zone below the equator, autonomous convergence of the lower marginal zone produces an equatorially constricted embryo. Dorsal explants of sturgeon embryos undergo convergent extension similar to that documented in Xenopus (Keller and Danilchik: Development, 103:193-209, 1988), with distinct zones of extension in the involuting and non-involuting marginal zone regions. The extension of cultured explants demonstrates that this morphogenetic behavior is intrinsic to the dorsal tissue. These results show that normal gastrulation depends not only on the function of these independent morphogenetic mechanisms, but also on their mechanical context in the embryo. Experimental analyses and comparison of gastrulation in similar embryos, such as those of Xenopus and sturgeons, reveal both common developmental mechanisms, and variation in their roles.

DOI: 10.1002/jez.1402660207
PubMed: 8501437

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:8501437

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The mechanism of gastrulation in the white sturgeon.</title>
<author>
<name sortKey="Bolker, J A" sort="Bolker, J A" uniqKey="Bolker J" first="J A" last="Bolker">J A Bolker</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley 94720.</nlm:affiliation>
<wicri:noCountry code="subField">Berkeley 94720</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:8501437</idno>
<idno type="pmid">8501437</idno>
<idno type="doi">10.1002/jez.1402660207</idno>
<idno type="wicri:Area/PubMed/Corpus">000717</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000717</idno>
<idno type="wicri:Area/PubMed/Curation">000717</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000717</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000717</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000717</idno>
<idno type="wicri:Area/Ncbi/Merge">000867</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The mechanism of gastrulation in the white sturgeon.</title>
<author>
<name sortKey="Bolker, J A" sort="Bolker, J A" uniqKey="Bolker J" first="J A" last="Bolker">J A Bolker</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, University of California, Berkeley 94720.</nlm:affiliation>
<wicri:noCountry code="subField">Berkeley 94720</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of experimental zoology</title>
<idno type="ISSN">0022-104X</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Blastocyst (cytology)</term>
<term>Blastocyst (ultrastructure)</term>
<term>Fishes (embryology)</term>
<term>Gastrula (physiology)</term>
<term>Gastrula (ultrastructure)</term>
<term>In Vitro Techniques</term>
<term>Microscopy, Electron, Scanning</term>
<term>Xenopus laevis</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Blastocyst</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Fishes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gastrula</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Blastocyst</term>
<term>Gastrula</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>In Vitro Techniques</term>
<term>Microscopy, Electron, Scanning</term>
<term>Xenopus laevis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gastrulation in the white sturgeon, Acipenser transmontanus, involves many of the same processes as in the amphibian Xenopus laevis, but the timing and relative importance of these processes are altered so that they function appropriately in a different type of egg. In both species, convergence and extension result from a combination of radial and mediolateral cell intercalation. In sturgeons, where the blastopore lip forms at the equator, an early phase of thinning and extension of the animal cap moves the marginal zone below the equator during late blastula and early gastrula stages. This early extension without convergence is followed by convergent extension of the dorsal marginal zone after its displacement vegetally. When the animal cap is removed before gastrulation, precluding the initial extension that moves the marginal zone below the equator, autonomous convergence of the lower marginal zone produces an equatorially constricted embryo. Dorsal explants of sturgeon embryos undergo convergent extension similar to that documented in Xenopus (Keller and Danilchik: Development, 103:193-209, 1988), with distinct zones of extension in the involuting and non-involuting marginal zone regions. The extension of cultured explants demonstrates that this morphogenetic behavior is intrinsic to the dorsal tissue. These results show that normal gastrulation depends not only on the function of these independent morphogenetic mechanisms, but also on their mechanical context in the embryo. Experimental analyses and comparison of gastrulation in similar embryos, such as those of Xenopus and sturgeons, reveal both common developmental mechanisms, and variation in their roles.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8501437</PMID>
<DateCreated>
<Year>1993</Year>
<Month>06</Month>
<Day>30</Day>
</DateCreated>
<DateCompleted>
<Year>1993</Year>
<Month>06</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-104X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>266</Volume>
<Issue>2</Issue>
<PubDate>
<Year>1993</Year>
<Month>Jun</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of experimental zoology</Title>
<ISOAbbreviation>J. Exp. Zool.</ISOAbbreviation>
</Journal>
<ArticleTitle>The mechanism of gastrulation in the white sturgeon.</ArticleTitle>
<Pagination>
<MedlinePgn>132-45</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Gastrulation in the white sturgeon, Acipenser transmontanus, involves many of the same processes as in the amphibian Xenopus laevis, but the timing and relative importance of these processes are altered so that they function appropriately in a different type of egg. In both species, convergence and extension result from a combination of radial and mediolateral cell intercalation. In sturgeons, where the blastopore lip forms at the equator, an early phase of thinning and extension of the animal cap moves the marginal zone below the equator during late blastula and early gastrula stages. This early extension without convergence is followed by convergent extension of the dorsal marginal zone after its displacement vegetally. When the animal cap is removed before gastrulation, precluding the initial extension that moves the marginal zone below the equator, autonomous convergence of the lower marginal zone produces an equatorially constricted embryo. Dorsal explants of sturgeon embryos undergo convergent extension similar to that documented in Xenopus (Keller and Danilchik: Development, 103:193-209, 1988), with distinct zones of extension in the involuting and non-involuting marginal zone regions. The extension of cultured explants demonstrates that this morphogenetic behavior is intrinsic to the dorsal tissue. These results show that normal gastrulation depends not only on the function of these independent morphogenetic mechanisms, but also on their mechanical context in the embryo. Experimental analyses and comparison of gastrulation in similar embryos, such as those of Xenopus and sturgeons, reveal both common developmental mechanisms, and variation in their roles.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bolker</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, University of California, Berkeley 94720.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HD 25594</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Exp Zool</MedlineTA>
<NlmUniqueID>0375365</NlmUniqueID>
<ISSNLinking>0022-104X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001755" MajorTopicYN="N">Blastocyst</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="Y">embryology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005775" MajorTopicYN="N">Gastrula</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008855" MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014982" MajorTopicYN="N">Xenopus laevis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1993</Year>
<Month>6</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1993</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1993</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8501437</ArticleId>
<ArticleId IdType="doi">10.1002/jez.1402660207</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Bolker, J A" sort="Bolker, J A" uniqKey="Bolker J" first="J A" last="Bolker">J A Bolker</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000867 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000867 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:8501437
   |texte=   The mechanism of gastrulation in the white sturgeon.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:8501437" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024